1
|
Yang J, Chen Y, Xie X, Hu X, Long B, Ali A, Deng GJ, Song T. Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction. J Colloid Interface Sci 2024; 683:612-621. [PMID: 39742742 DOI: 10.1016/j.jcis.2024.12.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl). It was found that the COF with mono-alkynes as a π-bridge (TP-EDAE) can accelerate the rapid carrier migration even under low-energy light compared to the other two types of π-bridges (aromatic ring and bis-alkynyl), which was conducive to the photocatalytic redox reactions. As a result, the TP-EDAE samples showed high CO coupling activity and good substrate versatility under both high-energy light (blue light) and low-energy light (green light), especially the TP-EDAE samples displayed high stability with no obvious activity decay within five cycles under low-energy light. This work highlights the fundamental molecular design of advanced functionalized COFs with specific π-bridges for photocatalytic organic reactions under low-energy light.
Collapse
Affiliation(s)
- Jiahuan Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yizheng Chen
- Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xiangjing Xie
- Intelligent Textile Institute of Innovation, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Bei Long
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Atif Ali
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ting Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Chen Y, Sun SN, Chen XH, Chen ML, Lin JM, Niu Q, Li SL, Liu J, Lan YQ. Predesign of Covalent-Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross-Coupling Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413638. [PMID: 39711245 DOI: 10.1002/adma.202413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Indexed: 12/24/2024]
Abstract
The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.
Collapse
Affiliation(s)
- Yu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiao-Hong Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ming-Lin Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qian Niu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Maiti R, Chakraborty J, Kumar Sahoo P, Nath I, Dai X, Rabeah J, De Geyter N, Morent R, Van Der Voort P, Das S. A Covalent Triazine Framework for Photocatalytic Anti-Markovnikov Hydrofunctionalizations. Angew Chem Int Ed Engl 2024; 63:e202415624. [PMID: 39404602 DOI: 10.1002/anie.202415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/17/2024]
Abstract
Porous materials-based heterogeneous photocatalysts, performing selective organic transformations, are increasing the applicability of photocatalytic reactions due to their ability to merge traditional photocatalysis with structured pores densely decorated with catalytic moiety for efficient mass and charge transfer, as well as added recyclability. We herein disclose a porous crystalline covalent triazine framework (CTF)-based heterogeneous photocatalyst that exhibits excellent photoredox properties for different hydrofunctionalization reactions such as hydrocarboxylations, hydroamination and hydroazidations. The high oxidizing property of this CTF enables the activation of styrenes, followed by regioselective C-N and C-O bond formation at ambient conditions. A change in the physicochemical and optoelectronic properties of the CTF, upon protonation during catalysis, lies at the basis of its photocatalytic properties. This allows us to obtain hydrocarboxylations, hydroamination, and hydroazidations from a myriad of electron-donating and -withdrawing aromatic and aliphatic substrates. This catalytic approach is further extended to late-stage functionalization of bio-active molecules. Finally, detailed characterizations of the CTF and further mechanistic investigations provide mechanistic insights into these reactions.
Collapse
Affiliation(s)
- Rakesh Maiti
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Jeet Chakraborty
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | | | - Ipsita Nath
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Kenari M, Maiti S, Ling J, El-Shamy X, Bagga H, Addicoat MA, Milner PJ, Das A. Toward Pore Size-Selective Photoredox Catalysis Using Bifunctional Microporous 2D Triazine-Based Covalent Organic Frameworks. ACS OMEGA 2024; 9:49249-49258. [PMID: 39713692 PMCID: PMC11656359 DOI: 10.1021/acsomega.4c06171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
The design and synthesis of photoactive metal-free 2D materials for selective heterogeneous photoredox catalysis continue to be challenging due to issues related to nonrecyclability, and limited photo- and chemical stability. Herein, we report the photocatalytic properties of a triazine-based porous COF, TRIPTA, which is found to be capable of facilitating both SET (single electron transfer) for photocatalytic reductive debromination of phenacyl bromide in absence of oxygen and generation of reactive oxygen species (ROS) for benzylamine photo-oxidation in the presence of oxygen, respectively, under visible light irradiation. Inspired by the latter results, we further systematically investigated different-sized benzylamine substrates in this single-component reaction and compared the results with an analogous COF (Micro-COF-2) exhibiting a larger pore size. We observed a marked improvement in the conversion of larger-sized substrates with the latter COF, thereby demonstrating angstrom-level pore size-selective photocatalytic activity of COFs.
Collapse
Affiliation(s)
- Melika
Eshaghi Kenari
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sayan Maiti
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Jianheng Ling
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Xena El-Shamy
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Hiren Bagga
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United
Kingdom
| | - Phillip J. Milner
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anindita Das
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
5
|
Wang Y, Wang H, Wang S, Fang Y. Carbon- and Nitrogen-Based Complexes as Photocatalysts for Prebiotic and Oxygen Chemistry during Earth Evolution. Angew Chem Int Ed Engl 2024; 63:e202413768. [PMID: 39238431 DOI: 10.1002/anie.202413768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Sunlight has long served as primary energy source on our planet, shaping the behavior of living organisms. Extensive research has been dedicated to unraveling the evolutionary pathways involved. When the formation of Earth atmosphere, it primarily consisted of small gas molecules, which are considered crucial for the emergence of life. Recent demonstrations have shown that these molecules can also be transformed into semiconductors, with the potential to harness solar energy and catalyze chemical reactions as photocatalysts. Building upon this research, this minireview focuses on the potential revolutionary impact of photocatalysis on Earth. Initially, it examines key reactions, such as the formation of prebiotic molecules and the oxygen evolution reaction via water oxidation. Additionally, various C-N complexes in photocatalysts are explored, showcasing their roles in catalyzing chemical reactions. The conclusion and outlook provide a potential pathway for the evolution of Earth, shedding light on the significance of metal-free photocatalysts in development of Earth.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Huan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
6
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
7
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
8
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
9
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400356. [PMID: 38842466 PMCID: PMC11587689 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Bhausaheb Dhokale
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Department of ChemistryUniversity of WyomingLaramieWyoming 82071United States of America
| | - Zeinab M. Saeed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry ProgramKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| |
Collapse
|
10
|
Li Z, Jiao J, Fu W, Gao K, Peng X, Wang Z, Zhuo H, Yang C, Yang M, Chang G, Yang L, Zheng X, Yan Y, Chen F, Zhang M, Meng Z, Shang X. Integration of Perylene Diimide into a Covalent Organic Framework for Photocatalytic Oxidation. Angew Chem Int Ed Engl 2024; 63:e202412977. [PMID: 39079914 DOI: 10.1002/anie.202412977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Perylene diimides (PDIs) have garnered considerable attention due to their immense potential in photocatalysis. However, manipulating the molecular packing within their aggregates and enhancing the efficiency of photogenerated carrier recombination remain significant challenges. In this study, we demonstrate the incorporation of a PDI unit into a covalent organic framework (COF), named PDI-PDA, by linking an ortho-substituted PDI with p-phenylenediamine (PDA) to control its intermolecular aggregation. The incorporation enables precise modulation of electron-transfer dynamics, leading to a ten-fold increase in the efficiency of photocatalytic oxidation of thioether to sulfoxide with PDI-PDA compared to the PDI molecular counterpart, with yields exceeding 90 %. Electron property studies and density functional theory calculations show that the PDI-PDA with its well-defined crystal structure, enhances π-π stacking and lowers the electron transition barrier. Moreover, the strong electron-withdrawing ability of the PDI unit promotes the spatial separation of the valency band maximum and conduction band minimum of PDI-PDA, suppressing the rapid recombination of photogenerated electron-hole pairs and improving the charge-separation efficiency to give high photocatalytic efficiency. This study provides a brief but effective way for improving the photocatalytic efficiency of commonly used PDI-based dyes by integrating them into a framework skeleton.
Collapse
Affiliation(s)
- Zhenping Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junqiang Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinyuan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huagui Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gang Chang
- Instrumental Analysis Center of, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
11
|
Khalil I, Das P, Thomas A. Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency. Acc Chem Res 2024; 57:3138-3150. [PMID: 39435871 PMCID: PMC11542146 DOI: 10.1021/acs.accounts.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
ConspectusCovalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous polymers, characterized by their highly defined, predictable, and tunable structure, porosity, and properties. COFs can form both two-dimensional (2D) and three-dimensional (3D) architectures, each with unique characteristics and potential applications. 2D COFs have attracted particular interest due to their favorable structural and optoelectronic properties. They can be equipped with a range of different functional moieties in their backbone, ranging from acidic to basic, from hydrophilic to hydrophobic, and from metal-coordinating to redox-active functions. In addition, their crystallinity, high specific surface area, and remarkable thermal and chemical stability make them attractive for a variety of applications, including gas separation, catalysis, energy storage, and optoelectronics.This Account provides a detailed overview of our recent efforts to synthesize and apply 2D COFs. First, various synthesis routes are discussed, focusing on methods that involve reversible and irreversible linkage reactions. Reversible reactions, such as imine or boronate ester formation, are advantageous for producing highly crystalline COFs because they allow for error correction during synthesis. In contrast, irreversible reactions, such as carbon-carbon or carbon-nitrogen bond formation, yield COFs with greater chemical stability, although controlling crystallinity can be more challenging. Our group has contributed significantly to refining these methods to balance crystallinity and stability, enhancing the performance of the resulting 2D COFs.In addition to different binding patterns, we have also developed strategies to control the micro- and macromorphologies of COFs, which is crucial for optimizing their properties for specific applications. For example, we have explored the synthesis of hierarchical porous COFs by using templating techniques or by forming composites with other functional materials. These strategies enable us to fine-tune the porosity and surface properties of COFs, thereby improving their performance in applications like catalysis. Hierarchical structures in particular enhance photocatalytic efficiency by providing a larger surface area for light absorption and facilitating the transport of photogenerated charge carriers.We further examine the practical applications of 2D COFs, with a primary focus on photocatalysis. Photocatalysis uses light to enable or accelerate chemical reactions, and 2D COFs are ideal for this purpose due to their tunable band gaps and large surface areas. Our research has shown that 2D COFs are highly versatile photocatalysts that can effectively catalyze reactions such as water splitting, carbon dioxide reduction, hydrogen peroxide formation, and cross-coupling reactions. By exploiting the unique properties of 2D COFs, we have achieved significant improvement in many photocatalytic reactions.With this comprehensive overview, we aim to contribute to the further development and understanding of 2D COFs and encourage further research and innovation in this promising field.
Collapse
Affiliation(s)
- Islam
E. Khalil
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| | - Prasenjit Das
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| | - Arne Thomas
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
12
|
Pordel M, Gheibi H, Sharif A. Recent Advances in the Synthesis and Optical Applications of Acridine-based Hybrid Fluorescent Dyes. J Fluoresc 2024:10.1007/s10895-024-04001-3. [PMID: 39417934 DOI: 10.1007/s10895-024-04001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Acridine-based hybrid fluorescent dyes represent a category of dyes that integrate the acridine chromophore with other functional groups or materials to enhance their fluorescence properties. These dyes have garnered substantial attention across various domains, encompassing bioimaging, sensing, and optoelectronics. In recent years, researchers have directed their efforts toward fabricating acridine-based hybrid fluorescent dyes with improved water solubility, biocompatibility, and targeting capabilities. These advancements have facilitated their utilization in biological imaging applications, such as monitoring cellular processes, investigating protein-protein interactions, and detecting specific biomolecules. This review delineates the recent progress in synthesizing acridine-based hybrid fluorescent dyes and their applications in optical properties over the past decade. This review is anticipated to catalyze the development of innovative fluorescent materials featuring heightened properties and functionalities.
Collapse
Affiliation(s)
- Mehdi Pordel
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hanieh Gheibi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ayda Sharif
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
13
|
Tang J, Jiang Z, Gao Z, Xie Q, Gu S, Chen A, Yuan J, Li W, Tang R, Yu G. Hydroxyl Radical Mediated Heterogeneous Photocatalytic Baeyer-Villiger Oxidation over Covalent Triazine/Heptazine-Based Frameworks. Angew Chem Int Ed Engl 2024:e202416879. [PMID: 39420686 DOI: 10.1002/anie.202416879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The Baeyer-Villiger (B-V) oxidation of ketones to the corresponding lactones/esters is a classic and essential reaction in the chemical industry. However, this oxidation process has not yet been achieved in ambient conditions with the aid of oxygen and heterogeneous photocatalysts. In this study, we developed an organic photocatalytic system using covalent triazine/heptazine-based frameworks (CTF-TB/CHF-TB) to enable the B-V oxidation reaction under mild conditions through a cascade reaction pathway. Experimental data and theoretical calculations showed that heptazine/triazine units can "chelate" and decompose the in situ generated H2O2 into hydroxyl radicals (⋅OH). Compared to conventional methods that primarily involve metal-activated benzaldehyde at elevated temperatures (e.g., 60 °C), the ⋅OH generated in our study can readily cleave the C-H bond of benzaldehyde, forming an active intermediate that drives subsequent sequential processes: O2→H2O2→⋅OH→Ph-CO⋅→Ph-COOO⋅. By employing this photocatalytic process, a yield of 91 % and a selectivity of over 99 % were obtained in the oxidation of cyclohexanone to caprolactone at room temperature. This performance is comparable to the state-of-the-art catalysts, and our CHF-TB catalyst demonstrates impressive reusability, maintaining a high yield after 5 consecutive runs. This work presents a straightforward approach for C-H cleavage by organocatalysts to produce ϵ-caprolactone in a mild manner by B-V oxidation.
Collapse
Affiliation(s)
- Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Zhiwei Jiang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Shuai Gu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Anqi Chen
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 113 51, Schweden
| | - Wen Li
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| |
Collapse
|
14
|
Huang H, Jiang Y, Yuan W, Lin YM. Modular Assembly of Acridines by Integrating Photo-Excitation of o-Alkyl Nitroarenes with Copper-Promoted Cascade Annulation. Angew Chem Int Ed Engl 2024; 63:e202409653. [PMID: 39039028 DOI: 10.1002/anie.202409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine derivatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red=2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.
Collapse
Affiliation(s)
- Haichao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
15
|
Roy M, Mishra B, Maji S, Sinha A, Dutta S, Mondal S, Banerjee A, Pachfule P, Adhikari D. Covalent Organic Framework Catalyzed Amide Synthesis Directly from Alcohol Under Red Light Excitation. Angew Chem Int Ed Engl 2024; 63:e202410300. [PMID: 38953116 DOI: 10.1002/anie.202410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/03/2024]
Abstract
The dehydrogenative coupling of alcohols and amines to form amide bonds is typically catalysed by homogeneous transition metal catalysts at high temperatures ranging from 130-140 °C. In our pursuit of an efficient and recyclable photocatalyst capable of conducting this transformation at room temperature, we report herein a COF-mediated dehydrogenative synthesis. The TTT-DHTD COF was strategically designed to incorporate a high density of functional units, specifically dithiophenedione, to trap photogenerated electrons and effectively facilitate hydrogen atom abstraction reactions. The photoactive TTT-DHTD COF, synthesized using solvothermal methods showed high crystallinity and moderate surface area, providing an ideal platform for heterogeneous amide synthesis. Light absorption by the COF across the entire visible range, narrow band gap, and valence band position make it well-suited for the efficient generation of excitons necessary for targeted dehydrogenation. Utilizing red light irradiation and employing extremely low loading of the COF, we have successfully prepared a wide range of amides, including challenging secondary amides, in good to excellent yields. The substrates' functional group tolerance, very mild reaction conditions, and the catalyst's significant recyclability represent substantial advancements over prior methodologies.
Collapse
Affiliation(s)
- Monojit Roy
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Bikash Mishra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Shyamali Maji
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Archisman Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Supriti Dutta
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Sukanta Mondal
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Abhik Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Debashis Adhikari
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| |
Collapse
|
16
|
Arango-Daza JC, Rivero-Crespo MA. Multi-Catalytic Metal-Based Homogeneous-Heterogeneous Systems in Organic Chemistry. Chemistry 2024; 30:e202400443. [PMID: 38958991 DOI: 10.1002/chem.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The combination of metal-based homogeneous and heterogeneous catalysts in the same reaction media is a powerful, yet relatively unexplored approach in organic chemistry. This strategy can address important limitations associated with purely homogeneous or heterogeneous catalysis such as the incompatibility of different catalytic species in solution, or the limited tunability of solid catalysts, respectively. Moreover, the facile reusability of the solid catalyst, contributes to increase the overall sustainability of the process. As a result, this semi-heterogeneous multi-catalytic approach has unlocked significant advances in organic chemistry, improving existing reactions and even enabling the discovery of novel transformations, exemplified by the formal alkane metathesis. This concept article aims to showcase the benefits of this strategy through the exploration of diverse relevant examples from the literature, hoping to spur research on new metal-based homogeneous-heterogeneous catalyst combinations that will result in reactivity challenging to achieve by conventional homogeneous or heterogeneous catalysis alone.
Collapse
Affiliation(s)
- Juan Camilo Arango-Daza
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| | - Miguel A Rivero-Crespo
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| |
Collapse
|
17
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
18
|
Wang K, Hou B, Dong J, Niu H, Liu Y, Cui Y. Controlling the Degree of Interpenetration in Chiral Three-Dimensional Covalent Organic Frameworks via Steric Tuning. J Am Chem Soc 2024; 146:21466-21475. [PMID: 39046143 DOI: 10.1021/jacs.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Network interpenetration plays a crucial role in functionalizing porous framework materials. However, controlling the degree of interpenetration in covalent organic frameworks (COFs) to influence their pore sizes, shapes, and functionalities still remains a significant challenge. Here, we demonstrate a steric tuning strategy to control the degree of COF interpenetration and modulate their physicochemical properties. By imine condensations of 1,1'-bi-2-naphthol-derived tetraaldehydes bearing different alkyl substituents with the monomer tetra(p-aminophenyl)-methane, we synthesized and characterized a family of two-component and three-component chiral COFs with different interpenetrated dia networks. The alkyl groups are periodically appended on the pore walls, and their types/contents that can be synthetically tuned control the interpenetration degree of COFs by minimizing repulsive interactions between the alkyl groups. Specifically, the COF with -OH groups adopts an interpenetrated dia-c5 topology, those with -OMe/-OEt groups take an interpenetrated dia-c4 topology, whereas those with the bulky -OnPr/-OnBu groups exhibit a noninterpenetrated dia-c1 topology. The multivariate COFs with both -OH and -OnBu groups display either a noninterpenetrated or dia-c5 topology, depending on the proportion of -OnBu groups. The extent of interpenetration in COFs significantly affects their porosity, thermal stability, and chemical stability, resulting in varying selective performances in the adsorption and separation of dyes and asymmetric catalysis. This work highlights the potential of using steric hindrance to tune and control interpenetration, porosity, stability, and functionalities of COFs materials, broadening the range of their applications.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Materials Science & Engineering, Anhui University, Hefei 230601, P. R. China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Zhang X, Liu J, Zhang H, Zhang Q, Shen J, Wei Y, Wang C. Facile construction of a stable core-shell spherically magnetic polyimide covalent organic framework for efficient extraction of phenylurea herbicides. Talanta 2024; 275:126184. [PMID: 38703485 DOI: 10.1016/j.talanta.2024.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Efficient enrichment is crucial for the highly sensitive monitoring of phenylurea herbicides (PUHs) in various environmental waters. In this work, a stable core-shell spherically magnetic polyimide covalent organic framework (COF) was synthesized via a simple template-mediated precipitation polymerization method under mild conditions using tri(4-aminophenyl)amine (TAPA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) as the building units (denoted as Fe3O4@TAPA-BPDA). The Fe3O4@TAPA-BPDA exhibits remarkable adsorption performance for PUHs with an optimized adsorption time of only 10 min. The adsorption of PUHs by Fe3O4@TAPA-BPDA followed the pseudo-second-order kinetic model and the Langmuir model. Furthermore, hydrogen bonding, halogen bonding, hydrophobic interaction, electro donor-acceptor interaction and π-π interactions are identified as the dominant mechanisms contributing to excellent adsorption performance. It was demonstrated that halogen bonds play an important role in the adsorption of substances containing chlorine atoms. The Fe3O4@TAPA-BPDA is easy to operate and highly regenerable. A simple magnetic solid-phase extraction (MSPE) method based on the Fe3O4@TAPA-BPDA was then developed for the rapid extraction of five PUHs in real samples, coupled with high-performance liquid chromatography (HPLC) determination. The analytical method developed has a linear range of 0.5-50 ng/mL, and the limit of detection (LOD) ranges from 0.06 to 0.10 ng/mL. The method exhibits good accuracy with recoveries ranged from 74.5 % to 111.4 %. The analytical method was successfully applied to the highly sensitive detection of PUHs in environmental water samples, which highlighting the potential application of the Fe3O4@TAPA-BPDA in the sample pretreatment.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Jinchang Liu
- School of Information Science and Technology, Northwest University, Xi'an, 71027, China
| | - Han Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 71027, China
| | - Qinming Zhang
- Shaanxi Environmental Monitoring Centre, Shaanxi Key Laboratory for Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, 710054, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
20
|
Chen X, Song JY, Zheng J, Wang YM, Luo J, Weng P, Cai BC, Lin XC, Ning GH, Li D. Metal Variance in Multivariate Metal-Organic Frameworks for Boosting Catalytic Conversion of CO 2. J Am Chem Soc 2024; 146:19271-19278. [PMID: 38950195 DOI: 10.1021/jacs.4c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h-1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h-1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jing-Yi Song
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jie Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Puxin Weng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Bing-Chen Cai
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Chun Lin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Das P, Chakraborty G, Friese N, Roeser J, Prinz C, Emmerling F, Schmidt J, Thomas A. Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions. J Am Chem Soc 2024; 146:17131-17139. [PMID: 38875002 PMCID: PMC11212053 DOI: 10.1021/jacs.4c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Multicomponent reactions (MCRs) offer a platform to create different chemical structures and linkages for highly stable covalent organic frameworks (COFs). As an illustrative example, the multicomponent Povarov reaction generates 2,4-phenylquinoline from aldehydes and amines in the presence of electron-rich alkenes. In this study, we introduce a new domino reaction to generate unprecedented 2,3-phenylquinoline COFs in the presence of epoxystyrene. This work thus presents, for the first time, structural isomeric COFs produced by multicomponent domino and Povarov reactions. Furthermore, 2,3-phenylquinolines can undergo a Scholl reaction to form extended aromatic linkages. With this approach, we synthesize two thermally and chemically stable MCR-COFs and two heteropolyaromatic COFs using both domino and in situ domino and Scholl reactions. The structure and properties of these COFs are compared with the corresponding 2,4-phenylquinoline-linked COF and imine-COF, and their activity toward benzene and cyclohexane sorption and separation is investigated. The position of the pendant phenyl groups within the COF pore plays a crucial role in facilitating the industrially important sorption and separation of benzene over cyclohexane. This study opens a new avenue to construct heteropolyaromatic COFs via MCR reactions.
Collapse
Affiliation(s)
- Prasenjit Das
- Department
of Chemistry/Functional Materials, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Gouri Chakraborty
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Nico Friese
- Department
of Chemistry/Functional Materials, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Jérôme Roeser
- Department
of Chemistry/Functional Materials, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Carsten Prinz
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Johannes Schmidt
- Department
of Chemistry/Functional Materials, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Arne Thomas
- Department
of Chemistry/Functional Materials, Technische
Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
22
|
Singh C, Kim JY, Park NJ, Kim CU, Yadav RK, Baeg JO. Solar Carboxylation Using CO 2: Interfacially Synthesized Flexible Covalent Organic Frameworks Film as a Photocatalyst for Highly Selective Solar Carboxylation of Arylamines with CO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31085-31097. [PMID: 38837183 DOI: 10.1021/acsami.4c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Carbon dioxide (CO2) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO2 is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO2 conversion into carboxylic acid under ambient conditions. Notably, the TaTpBpy-Ni COFs film showed excellent photocatalytic activity for the carboxylation of various arylamines with CO2 to the corresponding arylcarboxylic acid via C-N bond activation under solar-light irradiation. Moreover, this carboxylation protocol exhibits mild reaction conditions and good functional group tolerance without the necessity of using stoichiometric metallic reductants. This work shows a benchmark example of not only the interfacially synthesized COFs film used as a photocatalyst for solar-light energy utilization but also the selective solar chemical production system of arylcarboxylic acid directly from CO2.
Collapse
Affiliation(s)
- Chandani Singh
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Jae Young Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - No-Joong Park
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Chul Ung Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Rajesh Kumar Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Jin-Ook Baeg
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
23
|
Traxler M, Dichtel WR. Continuous flow synthesis and post-synthetic conversion of single-crystalline covalent organic frameworks. Chem Sci 2024; 15:7545-7551. [PMID: 38784733 PMCID: PMC11110142 DOI: 10.1039/d4sc01128g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024] Open
Abstract
The synthesis and scale-up of high quality covalent organic frameworks (COFs) remains a challenge due to slow kinetics of the reversible bond formation and the need for precise control of reaction conditions. Here we report the rapid synthesis of faceted single crystals of two-dimensional (2D) COFs using a continuous flow reaction process. Two imine linked materials were polymerized to the hexagonal CF-TAPB-DMPDA and the rhombic CF-TAPPy-PDA COF, respectively. The reaction conditions were optimized to produce single crystals of micrometer size, which notably formed when the reaction was cooling to room temperature. This indicated a growth mechanism consistent with the fusion of smaller COF particles. The optimized conditions were used to demonstrate the scalability of the continuous approach by synthesizing high quality, faceted COFs at a rate of more than 1 g h-1. The materials showed high crystallinity and porosity with surface areas exceeding 2000 m2 g-1. Additionally, the versatility of the continuous flow reaction approach was demonstrated on a post-synthetic single crystal to single crystal demethylation of CF-TAPB-DMPDA to afford a hydroxyl functionalized COF CF-TAPB-DHPDA. Throughout the modification process, the material maintained its hexagonal morphology, crystallinity, and porosity. This work reports the first example of synthesizing and post-synthetically modifying imine linked COF single crystals in continuous flow and will prove a first step towards scaling high quality COFs to industrial levels.
Collapse
Affiliation(s)
- Michael Traxler
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
24
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
26
|
Lan X, Luo N, Li Z, Peng J, Cheng HM. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. ACS NANO 2024; 18:9285-9310. [PMID: 38522089 DOI: 10.1021/acsnano.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Replacing liquid electrolytes and separators in conventional lithium-ion batteries with solid-state electrolytes (SSEs) is an important strategy to ensure both high energy density and high safety. Searching for fast ionic conductors with high electrochemical and chemical stability has been the core of SSE research and applications over the past decades. Based on the atomic-level thickness and infinitely expandable planar structure, numerous two-dimensional materials (2DMs) have been exploited and applied to address the most critical issues of low ionic conductivity of SSEs and lithium dendrite growth in all-solid-state lithium batteries. This review introduces the research process of 2DMs in SSEs, then summarizes the mechanisms and strategies of inert and active 2DMs toward Li+ transport to improve the ionic conductivity and enhance the electrode/SSE interfacial compatibility. More importantly, the main challenges and future directions for the application of 2DMs in SSEs are considered, including the importance of exploring the relationship between the anisotropic structure of 2DMs and Li+ diffusion behavior, the exploitation of more 2DMs, and the significance of in situ characterizations in elucidating the mechanisms of Li+ transport and interfacial reactions. This review aims to provide a comprehensive understanding to facilitate the application of 2DMs in SSEs.
Collapse
Affiliation(s)
- Xuexia Lan
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Luo
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Li
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Peng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1110016, China
| |
Collapse
|
27
|
Koner K, Mohata S, Ogaeri Y, Nishiyama Y, Addicoat MA, Banerjee R. Enhancing the Crystallinity of Keto-enamine-Linked Covalent Organic Frameworks through an in situ Protection-Deprotection Strategy. Angew Chem Int Ed Engl 2024; 63:e202316873. [PMID: 38324467 DOI: 10.1002/anie.202316873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
β-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable β-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of β-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .
Collapse
Affiliation(s)
- Kalipada Koner
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Shibani Mohata
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Yutaro Ogaeri
- JEOL Ltd. Musashino, Akishima, Tokyo, 196-8558, Japan
| | | | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| |
Collapse
|
28
|
Yuan L, Du P, Yin L, Yao J, Wang J, Liu C. Metal-organic framework-based S-scheme heterojunction photocatalysts. NANOSCALE 2024. [PMID: 38393670 DOI: 10.1039/d3nr06677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Photocatalysis is a promising technology to resolve energy and environmental issues, where the design of high-efficiency photocatalysts is the central task. As an emerging family of photocatalysts, semiconducting metal-organic frameworks (MOFs) with remarkable features have demonstrated great potential in various photocatalytic fields. Compared to MOF-based photocatalysts with a single component, construction of S-scheme heterojunctions can render MOFs with enhanced charge separation, redox capacity and solar energy utilization, and thus improved photocatalytic performance. Herein, an overview of the recent advances in the design of MOF-based S-scheme heterojunctions for photocatalytic applications is provided. The basic principle of S-scheme heterojunctions is introduced. Then, three types of MOF-based S-scheme heterojunctions with different compositions are systematically summarized including MOF/non-MOF, MOF-on-MOF and MOF-derived heterojunctions. Afterwards, the enhanced performances of MOF-based S-scheme heterojunctions in hydrogen production, CO2 reduction, C-H functionalization, H2O2 production and wastewater treatment are highlighted. Lastly, the current challenges and future prospects regarding the design and applications of MOF-based S-scheme heterojunctions are discussed to inspire the further development of this emerging field.
Collapse
Affiliation(s)
- Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Luli Yin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jiamin Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| |
Collapse
|
29
|
Zhang F, Wang Y, Zhao H, Dong X, Gu XK, Lang X. Expanding Olefin-Linked Covalent Organic Frameworks toward Selective Photocatalytic Oxidation of Organic Sulfides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8772-8782. [PMID: 38324765 DOI: 10.1021/acsami.3c16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Olefin-linked covalent organic frameworks (COFs) have exhibited great potential in visible-light photocatalysis. In principle, expanding fully conjugated COFs can facilitate light absorption and charge transfer, leading to improved photocatalysis. Herein, three olefin-linked COFs with the same topology are synthesized by combining 2,4,6-trimethyl-1,3,5-triazine (TMT) with 1,3,5-triformylbenzene (TFB), 1,3,5-tris(4-formylphenyl)benzene (TFPB), and 1,3,5-tris(4-formylphenylethynyl)benzene (TFPEB), namely, TMT-TFB-COF, TMT-TFPB-COF, and TMT-TFPEB-COF, respectively. From TMT-TFB-COF to TMT-TFPB-COF, expanding phenyl rings provides only limited expansion for π-conjugation due to the steric effect of structural twisting. However, from TMT-TFPB-COF to TMT-TFPEB-COF, the insertion of acetylenes eliminates the steric effect and provides more delocalized π-electrons. As such, TMT-TFPEB-COF exhibits the best optoelectronic properties among these three olefin-linked COFs. Consequently, the photocatalytic performance of TMT-TFPEB-COF is much better than those of TMT-TFB-COF and TMT-TFPB-COF on the oxidation of organic sulfides into sulfoxides with oxygen. The desirable reusability and substrate compatibility of the TMT-TFPEB-COF photocatalyst are further confirmed. The selective formation of organic sulfoxides over TMT-TFPEB-COF under blue light irradiation proceeds via both electron- and energy-transfer pathways. This work highlights a rational design of expanding the π-conjugation of fully conjugated COFs toward selective visible-light photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxiang Zhao
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Wang Y, Deng Y, Xia H, Zhang R, Liu J, Zhang H, Sun Y, Zhang Z, Lu X. Superhydrophilic Triazine-Based Covalent Organic Frameworks via Post-Modification of FeOOH Clusters for Boosted Photocatalytic Performance. SMALL METHODS 2024; 8:e2300163. [PMID: 37316981 DOI: 10.1002/smtd.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Xia
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
31
|
Weng W, Lin Z, Zhang H, Niu F, Wang C, Hu K, Guo J. Effect of ESIPT-Induced Photoisomerization of Keto-Enamine Linkages on the Photocatalytic Hydrogen Evolution Performance of Covalent Organic Frameworks. JACS AU 2023; 3:3391-3399. [PMID: 38155651 PMCID: PMC10751766 DOI: 10.1021/jacsau.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/30/2023]
Abstract
Photoexcitation of keto-enamine allows intramolecular proton transfer from C-NH to C=O, leading to tautomerization, while the photogenerated isomers are excluded from the study of photocatalytic applications. Herein, we demonstrate the photoisomerization of keto-enamine linkages on covalent organic frameworks (COFs) induced by excited-state intramolecular proton transfer (ESIPT). Partial enolization generates partially enolized photoisomers with a mixture of keto (C=O) and enol (OH) forms, conferring extended π-conjugation with an increase in electron density. The spatially separated D-A configuration is thus rebuilt with the enol-imine-linked branch as a donor and the keto-enamine-linked branch as an acceptor, and in turn, the photoinduced charges transfer between the two adjacent branches with a long lifetime. We further prove that the partially enolized photoisomer is a key transition instead of the keto-enamine form as an excited-state model to understand the photocatalytic behaviors. Therefore, ESIPT-induced photoisomerization must be considered for rationally designing keto-enamine-linked COFs with enhanced photocatalytic activity. Also, our study points toward the importance of controlling excited-state structures for long-lived separated charges, which is of particular interest for optoelectronic applications.
Collapse
Affiliation(s)
- Weijun Weng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zheng Lin
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hualei Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Fushuang Niu
- Department
of Chemistry, Fudan University, Shanghai 200438, China
| | - Changchun Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ke Hu
- Department
of Chemistry, Fudan University, Shanghai 200438, China
| | - Jia Guo
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
32
|
Li M, Chu J, Ding D, Li T, Su E, Song Y, Yang YF, She Y, Jia J. Towards high-performance nonlinear optical materials through embedding a D-A system into β-ketoenamine-linked COFs. Chem Commun (Camb) 2023. [PMID: 37991933 DOI: 10.1039/d3cc04845d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Two covalent organic framework (COF) films supported by a glass substrate were obtained by solvothermal reaction of an electron donor with electron acceptor 1,3,5-triformylbenzene (TF) or 2,4,6-triformylphloroglucinol (TFP), respectively. The TFP-BD film exhibits a nonlinear absorption coefficient of -3.01 × 105 cm GW-1. The TFP-BD film can aggregate electrons around the connected monomer through the D-A effect due to its highly polar and electronegative carbonyl oxygen atoms, thereby modulating the electronic structure of the COFs. This work provides a novel approach for the structural modulation of optical materials with strong nonlinearity.
Collapse
Affiliation(s)
- Mingyan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiahui Chu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tingting Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Endian Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yinglin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215123, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianhong Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
33
|
Sprachmann J, Grabicki N, Möckel A, Maltitz J, Monroy JR, Smales GJ, Dumele O. Substituted benzophenone imines for COF synthesis via formal transimination. Chem Commun (Camb) 2023; 59:13639-13642. [PMID: 37905422 DOI: 10.1039/d3cc03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Anna Möckel
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Jeremy Maltitz
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - José Refugio Monroy
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| |
Collapse
|
34
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
35
|
Feng JD, Zhang WD, Liu Y, Han WK, Zhu RM, Gu ZG. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Chemistry 2023; 29:e202302201. [PMID: 37565784 DOI: 10.1002/chem.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
36
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
37
|
Shi Y, Xu R, Wang S, Zheng J, Zhu F, Hu Q, Huang J, Ouyang G. Fluorinated-Squaramide Covalent Organic Frameworks for High-Performance and Interference-Free Extraction of Synthetic Cannabinoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302925. [PMID: 37807813 PMCID: PMC10646270 DOI: 10.1002/advs.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances (NPSs), have emerged as a significant public health threat in different regions worldwide. Analyzing SCs in water samples is critical to estimate their consumption and control. However, due to their low background concentration and the coexistence of complex matrix, the selective and effective enrichment of SCs is still challenging. In this study, a series of fluorinated-squaramide-based covalent organic frameworks (COF: FSQ-2, FSQ-3, and FSQ-4) are synthesized, and the as-prepared FSQ-4 exhibits strong affinity to different SCs. The proper pore size (1.4 nm) and pre-located functional groups (hydrogen-bond donors, hydrogen-bond acceptors, and fluorophilic segments) work synergistically for efficient SCs capture. Remarkably, when coupled FSQ-4 with solid-phase microextraction (SPME), trace-level (part per trillion, 10-9 ) determination of 13 SCs can be easily achieved, representing one of the best results among NPS analyses, and the excellent extraction performance can be maintained under various interfering conditions.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Ruolun Xu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Shaohan Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Qingkun Hu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Junlong Huang
- SGS‐CSTC Standards Technical Services Co., Ltd.Guangzhou510670China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
38
|
Cheng Y, Li YX, Liu CH, Zhu YY, Lin W. Diaryl Dihydrophenazine-Based Porous Organic Polymers Enhance Synergistic Catalysis in Visible-Light-Driven Organic Transformations. Angew Chem Int Ed Engl 2023; 62:e202310470. [PMID: 37615272 DOI: 10.1002/anie.202310470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Porous organic polymers (POPs) have emerged as a novel class of porous materials that are synthesized by the polymerization of various organic monomers with different geometries and topologies. The molecular tunability of organic building blocks allows the incorporation of functional units for photocatalytic organic transformations. Here, we report the synthesis of two POP-based photocatalysts via homopolymerization of vinyl-functionalized diaryl dihydrophenazine (DADHP) monomer (POP1) and copolymerization of vinyl-functionalized DADHP and 2,2'-bipyridine monomers (POP2). The fluorescence lifetimes of DADHP units in the POPs significantly increased, resulting in enhanced photocatalytic performances over homogeneous controls. POP1 is highly effective in catalysing visible-light-driven C-N bond forming cross-coupling reactions. Upon coordination with Ni2+ ions, POP2-Ni shows strong synergy between photocatalytic and Ni catalytic cycles due to the confinement effect within the POP framework, leading to high efficiency in energy, electron, and organic radical transfer. POP2-Ni displays excellent activity in catalysing C-P bond forming reactions between diarylphosphine oxides and aryl iodides. They increased the photocatalytic activities by more than 30-fold in C-N and C-P cross-coupling reactions. These POP catalysts were readily recovered via centrifugal separation and reused in six catalytic cycles without loss of activities. Thus, photosensitizer-based POPs provide a promising platform for heterogeneous photocatalytic organic transformations.
Collapse
Affiliation(s)
- Yan Cheng
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Chen Q, Wang Y, Luo G. Green and Rapid Synthesis of Acridine-Functionalized Covalent Organic Polymers for Photocatalysis by Combining Sonochemistry and Ion Induction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11731-11740. [PMID: 37555639 DOI: 10.1021/acs.langmuir.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covalent organic polymers (COPs) are powerful candidates for achieving the visible-light-driven degradation of organic pollutants by virtue of structural designability, but their synthesis relies on harmful reagents and high temperatures, which weakens their associated green merits. Here, we report a novel strategy for combining sonochemistry with ion induction for the rapid preparation of acridine-functionalized COPs in green and mild aqueous solutions with tunable high yields of 80 to 90%. Photochemical studies reveal the ability of these COPs to harvest visible light and their sufficient conduction potentials for generating superoxide radicals. Furthermore, the photodegradation of methylene blue confirms the good photocatalytic activity and reusability of the zinc ion-based acridine-functionalized COP, which achieves 90.8% removal in 150 min and retains 82.5% activity after 5 reuse cycles, with a rate constant of up to 3.2 times that of commercial titanium dioxide nanoparticles. This strategy paves the way for the green, rapid, and mild synthesis of acridine-functionalized COPs, enabling visible light photocatalytic degradation for water treatment and energy conversion to advance in a thoroughly environmentally friendly and cost-effective manner.
Collapse
Affiliation(s)
- Qiang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Jati A, Dam S, Kumar S, Kumar K, Maji B. A π-conjugated covalent organic framework enables interlocked nickel/photoredox catalysis for light-harvesting cross-coupling reactions. Chem Sci 2023; 14:8624-8634. [PMID: 37592981 PMCID: PMC10430564 DOI: 10.1039/d3sc02440g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Covalent organic frameworks (COFs) are an outstanding platform for heterogeneous photocatalysis. Herein, we synthesized a pyrene-based two-dimensional C[double bond, length as m-dash]C linked π-conjugated COF via Knoevenagel condensation and anchored Ni(ii)-centers through bipyridine moieties. Instead of traditional dual metallaphotoredox catalysis, the mono-metal decorated Ni@Bpy-sp2c-COF interlocked the catalysis mediated by light and the transition metal. Under light irradiation, enhanced energy and electron transfer in the COF backbone, as delineated by the photoluminescence, electrochemical, and control experiments, expedited the excitation of Ni centers to efficiently catalyze diverse photocatalytic C-X (X = B, C, N, O, P, S) cross-coupling reactions with efficiencies orders of magnitude higher than the homogeneous controls. The COF catalyst tolerated a diverse range of coupling partners with various steric and electronic properties, delivering the products with up to 99% yields. Some reactions were performed on a gram scale and were applied to diversify pharmaceuticals and complex molecules to demonstrate the synthetic utility.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Suranjana Dam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Shekhar Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Kundan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| |
Collapse
|
41
|
Li G, Cao Y, Zhang B, Zhang Q, Hu Y, Zhao X. One-step synthesis of a benzothiadiazole-based nonbranching functionalized covalent organic framework and its application in efficient removal of Hg 2. Dalton Trans 2023; 52:11035-11041. [PMID: 37526042 DOI: 10.1039/d3dt02083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, a variety of adsorbents have been developed for Hg2+ removal. However, these adsorbents are unsatisfactory for adsorption due to narrow and irregular pore channels or poor adsorption capacity and low stability. Therefore, it is worth exploring a porous Hg2+ adsorbent material with high adsorption performance and stability. In this study, a benzothiadiazole-based nonbranching functionalized covalent organic framework (COF) material (TPS-COF) by one-step synthesis was reported, which exhibited a high specific surface area of 1564 m2 g-1, high crystallinity and stability attributed to its high conjugated linkage structure of benzothiadiazole. In addition, due to the rich S and N elements of the benzothiadiazole unit, it exhibited excellent adsorption performance on Hg2+, including excellent adsorption amount (1040 mg g-1), high initial adsorption rate (448 mg g-1 min-1) and very short adsorption equilibrium time (10 min), with an efficient removal rate of Hg2+ in the pH range of 2-8. After desorption, the TPS-COF still retained good pore stability, adsorption capacity, and reusability. Such a one-step synthetic unbranched functionalization strategy provides further insights to achieve a good balance between the high crystallinity, functionality and stability of COFs.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Yuanzhe Cao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Bo Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Yingyuan Hu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Xin Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| |
Collapse
|
42
|
Yusran Y, Xing J, Lin Q, Wu G, Peng WC, Wu Y, Su T, Yang L, Zhang L, Li Q, Wang H, Li ZT, Zhang DW. Metallaphotocatalytic Amination of Aryl Chlorides Enabled by Highly Crystalline Acetylene-Based Hydrazone-Linked Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303069. [PMID: 37165759 DOI: 10.1002/smll.202303069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Amination of aryl chlorides by metallaphotocatalysis is highly desired but remains practically challenging. Meanwhile, relying on soluble noble-metal photocatalysts suffers from resource scarcity and structural instability which limit their practical application. Here in, a highly crystalline acetylene-based hydrazone-linked covalent organic framewok-1 (AC-COF-1) is reported that enables metallaphotocatalytic amination of aryl chlorides. The non-planar effect of hydrazone linkage and weak interlayer attraction of acetylene bond are minimized by intralayer hydrogen-bonding. As a result, the COF shows not only improved crystallinity and porosity, but also enhanced optical and electronic properties compared to a COF analog without hydrogen-bonding. Notably, dual AC-COF-1/Ni system affords CN coupling products from broad aryl chloride substrates in excellent yields (up to 99%) and good functional tolerance. Furthermore, AC-COF-1 is recoverable and reusable for seven times photocatalysis cycles. This report demonstrates simple approach to tune the structure-activity relationship in COFs at molecular level.
Collapse
Affiliation(s)
- Yusran Yusran
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Jiabin Xing
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qihan Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Gang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wen-Chang Peng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Tianhui Su
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Lingyi Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Liming Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
43
|
Zhang Z, Bi S, Meng F, Li X, Li M, Mou K, Wu D, Zhang F. Hexatopic Vertex-Directed Approach to Vinylene-Linked Covalent Organic Frameworks with Heteroporous Topologies. J Am Chem Soc 2023. [PMID: 37485987 DOI: 10.1021/jacs.3c04410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A D3h-symmetric hexatopic monomer was first prepared by attaching the three-fold ditopic moiety 2,6-dimethylpyridine to the meta-positions of a phenyl ring. It was further condensed at its six pyridylmethyl carbons with linear ditopic aromatic dialdehydes, resulting in two vinylene-linked COFs with heteroporous topologies, as revealed by powder X-ray diffraction (PXRD), nitrogen sorption, and pore-size distribution analyses, as well as transmission electron microscopy (TEM) image. The linear- and cross-conjugations, respectively, arising from the 2,6-linked pyridines and meta-linked phenylenes in the hexatopic nodes rendered the resultant COFs with well-patterned π-delocalization, allowing for efficiently catalyzing the bromination of aromatic derivatives with the pore-size-dependent conversion yields and regioselectivity under the irradiation of green light.
Collapse
Affiliation(s)
- Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiwen Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Li X, Wang Y, Zhang F, Lang X. Benzothiadiazole covalent organic framework photocatalysis with an electron transfer mediator for selective aerobic sulfoxidation. J Colloid Interface Sci 2023; 648:683-692. [PMID: 37321087 DOI: 10.1016/j.jcis.2023.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) are promising visible light photocatalysts for aerobic oxidation reactions. However, COFs usually suffer from the assault of reactive oxygen species, leading to hindered electron transfer. This scenario could be addressed by integrating a mediator to promote photocatalysis. Starting with 4,4'-(benzo-2,1,3-thiadiazole-4,7-diyl)dianiline (BTD) and 2,4,6-triformylphloroglucinol (Tp), TpBTD-COF is developed as a photocatalyst for aerobic sulfoxidation. Adding an electron transfer mediator 2,2,6,6-tetramethylpiperidine-1‑oxyl (TEMPO), the conversions are radically accelerated, over 2.5 times of that without TEMPO. Moreover, the robustness of TpBTD-COF is preserved by TEMPO. Remarkably, TpBTD-COF could endure multiple cycles of sulfoxidation, even with higher conversions than the fresh one. TpBTD-COF photocatalysis with TEMPO implements diverse aerobic sulfoxidation by an electron transfer pathway. This work highlights that benzothiadiazole COFs are an avenue for tailor-made photocatalytic transformations.
Collapse
Affiliation(s)
- Xia Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
45
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
46
|
Yang H, Hao M, Xie Y, Liu X, Liu Y, Chen Z, Wang X, Waterhouse GIN, Ma S. Tuning Local Charge Distribution in Multicomponent Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Uranium Extraction. Angew Chem Int Ed Engl 2023. [DOI: doi.org/10.1002/ange.202303129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Hui Yang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yanfang Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | | | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX-76201 USA
| |
Collapse
|
47
|
Basak A, Karak S, Banerjee R. Covalent Organic Frameworks as Porous Pigments for Photocatalytic Metal-Free C-H Borylation. J Am Chem Soc 2023; 145:7592-7599. [PMID: 36943195 DOI: 10.1021/jacs.3c00950] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Covalent organic frameworks (COFs) are highly promising as heterogeneous photocatalysts due to their tunable structures and optoelectronic properties. Though COFs have been used as heterogeneous photocatalysts, they have mainly been employed in water splitting, carbon dioxide reduction, and hydrogen evolution reactions. A few examples in organic synthesis using metal-anchored COF photocatalysts were reported. Herein, we report highly stable β-keto-enamine-based COFs as photocatalysts for metal-free C-B bond formation reactions. Three different COFs have been availed for this purpose. Their photocatalysis performances have been monitored for 12 different substrates, like quinolines, pyridines, and pyrimidines. All the COFs showcase moderate-to-high yields (up to 96%) depending upon the substrate's molecular functionality. High crystallinity, a large surface area, a low band gap, and a suitable band position result in the highest catalytic activity of TpAzo COF. The thorough mechanistic investigation further highlights the crucial role of light-harvesting capacity, charge separation efficiency, and current density during catalysis. The light absorbance capacity of the COF plays a critical role during catalysis as yields are maximized near the COF's absorption maxima. The high photostability of the as-synthesized COFs offers their reusability for several (>5) catalytic cycles.
Collapse
Affiliation(s)
- Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Suvendu Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| |
Collapse
|
48
|
Wang J, Zhu W, Meng F, Bai G, Zhang Q, Lan X. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fanyu Meng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
49
|
Parvatkar PT, Kandambeth S, Shaikh AC, Nadinov I, Yin J, Kale VS, Healing G, Emwas AH, Shekhah O, Alshareef HN, Mohammed OF, Eddaoudi M. A Tailored COF for Visible-Light Photosynthesis of 2,3-Dihydrobenzofurans. J Am Chem Soc 2023; 145:5074-5082. [PMID: 36827417 PMCID: PMC9999419 DOI: 10.1021/jacs.2c10471] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sharath Kandambeth
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aslam C Shaikh
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong People's Republic of China
| | - Vinayak S Kale
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - George Healing
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Fan Y, Kang DW, Labalme S, Li J, Lin W. Enhanced Energy Transfer in A π-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218908. [PMID: 36652347 DOI: 10.1002/anie.202218908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| |
Collapse
|