1
|
Shen J, Lu L, He R, Ye Q, Yuan C, Guo L, Zhao M, Cui B. Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors. Carbohydr Polym 2024; 346:122608. [PMID: 39245492 DOI: 10.1016/j.carbpol.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Conductive hydrogels have been widely used in wearable electronics due to their flexible, conductive and adjustable properties. With ever-growing demand for sustainable and biocompatible sensing materials, biopolymer-based hydrogels have drawn significant attention. Among them, starch-based hydrogels have a great potential for wearable electronics. However, it remains challenging to develop multifunctional starch-based hydrogels with high stretchability, good conductivity, excellent durability and high sensitivity. Herein, amylopectin and ionic liquid were introduced into a hydrophobic association hydrogel to endow it with versatility. Benefiting from the synergistic effect of amylopectin and ionic liquid, the hydrogel exhibited excellent mechanical properties (the elongation of 2540 % with a Young's modulus of 12.0 kPa and a toughness of 1.3 MJ·m-3), self-recovery, good electrical properties (a conductivity of 1.8 S·m-1 and electrical self-healing), high sensitivity (gauge factor up to 26.85) and excellent durability (5850 cycles). The above properties of the hydrogel were closely correlated to its internal structure from hydrophobic association, H-bonding and electrostatic interaction, and can be regulated by changing the component contents. A wireless wearable sensor based on the hydrogel realized accurate and stable monitoring of joint motions and expression changes. This work demonstrates a kind of promising biopolymer-based materials as candidates for high-performance flexible wearable sensors.
Collapse
Affiliation(s)
- Jingmin Shen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Rongtong He
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Qichao Ye
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Akbarzadeh M, Olad A, Salari D, Mirmohseni A. Gelatin-carboxymethyl cellulose/iron-based metal-organic framework nanocomposite hydrogel as a promising biodegradable fertilizer release system: Synthesis, characterization, and fertilizer release studies. Int J Biol Macromol 2024; 279:135316. [PMID: 39236953 DOI: 10.1016/j.ijbiomac.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Application of fertilizers is a routine method in agriculture to increase the fertility of plants However, conventional fertilizers have raised serious health and environmental problems in recent years. Therefore, the development of biodegradable superabsorbent hydrogels based on natural polymers with the capability for fertilizer controlled release has attracted much interest. In the current research, a novel nanocomposite hydrogel based on gelatin and carboxymethyl cellulose polymers enriched with an iron based metal- organic framework (MIL-53 (Iron)) was prepared. The prepared nanocomposite hydrogel was loaded with NPK fertilizer to obtain a slow release fertilizer system. The structural properties of the nanocomposite hydrogel were investigated using FTIR, XRD, and SEM techniques. The swelling and fertilizer release behavior of the nanocomposite hydrogel were evaluated in conditions. Results showed that by adding iron-based metal organic framework to the hydrogel matrix, the water absorption capacity of the hydrogel system was increased to 345.8 (g/g). Fertilizer release studies revealed that the release of fertilizer from the nanocomposite matrix has a slow and continuous release pattern. Therefore, the synthesized nanocomposite has an appropriate strength and high potential to be used as a slow-release fertilizer system.
Collapse
Affiliation(s)
- Mina Akbarzadeh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Dariush Salari
- Laboratory of Petroleum Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolreza Mirmohseni
- Polymer Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Kalita A, Elayarajan M, Janaki P, Suganya S, Sankari A, Parameswari E. Organo-monomers coated slow-release fertilizers: Current understanding and future prospects. Int J Biol Macromol 2024; 274:133320. [PMID: 38950798 DOI: 10.1016/j.ijbiomac.2024.133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The increasing urge to make an impactful contribution towards attaining nutritional security amidst the ever-rising demand for food, changing climate and maintaining environmental health and safety has become the main focal point for today's researchers globally. Slow-release fertilizers (SRFs) are a broad, dynamic, and advance category of fertilizers but despite its environmental benefits and scientifically proven results it often faces some critical challenges, primarily due to its high cost, often stemming from synthetic coatings, deteriorating soil health and with unrevealed potential environmental impacts. Organo-monomers have gained immense popularity due to their organic origin, biodegradable nature, biocompatibility, bio-sustainability and as a targeted delivery of nutrients in the plant system leading to increase in nutrient use efficiency (NUE). They can form strong bond with other monomers, fertilizers elements and improve the soil quality, carbon sequestration and holistically the environment. This review emphasizes on organo-monomers based SRFs, its synthesis, application and deliberate mechanism of nutrient release; boosting crop productivity and global economy. In conclusion, provided the significant challenges posed by the classical or synthetically coated fertilizers; the application of organo-monomers based SRFs demonstrates immense potential for achieving sustainable yield, to help build a global nutritionally secure population.
Collapse
Affiliation(s)
- Abreeta Kalita
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - M Elayarajan
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - P Janaki
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - S Suganya
- Dept. of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - A Sankari
- Dept. of Horticulture, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - E Parameswari
- Dept. of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| |
Collapse
|
4
|
Montazeri M, Baghban Salehi M, Fazelabdolabadi B, Golmohammadi S. QSPR study of viscoplastic properties of peptide-based hydrogels. J Biomol Struct Dyn 2024; 42:6577-6587. [PMID: 37455489 DOI: 10.1080/07391102.2023.2235008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In this study, the power of machine learning was harnessed to probe the link between molecular structures of peptide-based hydrogels and their viscoplastic properties. The selection of compounds was attempted in accordance with the prescribed full list of peptide-based materials exhibiting hydrogel functionality in the literature. In this pursuit, a complete set of molecular descriptors and fingerprints was considered - accounting for an entry of size 17,968 for each peptide-based structure analyzed. The elastic and viscous moduli response of materials were mapped over a wide frequency spectrum in the range [0.1-100] (rad/s). In general, the results indicate that the frequency-dependent mechanical response of peptide-based hydrogels is statistically correlated with its (inter)molecular attributes, such as charge, first ionization potential (or equivalently electronegativity), surface area, number of chemical substrates, bond type, and intermolecular interactions. The performance of several (supervised) soft computing techniques was measured, for our quantitative structure property relationships model. In addition, the hypothesis of mapping our databank to a new system of principal components was tested, by using an unsupervised methodology, which resulted in enhancement of the prediction accuracy. In terms of significance, the present article provides the first report of frequency-dependent elastic and viscous moduli, for a set of 70 peptide-based formulations with hydrogel functionality.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mahsa Baghban Salehi
- Petroleum Engineering Department, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | | |
Collapse
|
5
|
Sajid A, Amjad M, Manzoor Q, Wazir S, Sajid A, Alwadai N, Iqbal M, Tamam N. Synthesis of bimetallic oxides (SrO-CoO) nanoparticles decorated polyacrylamide hydrogels for controlled drug release and wound healing applications. Int J Biol Macromol 2024; 274:133194. [PMID: 38885867 DOI: 10.1016/j.ijbiomac.2024.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels are polymeric structures characterized by their three-dimensional nature, insolubility in aqueous media, and remarkable ability to absorb significant amounts of water. Owing to their exceptional biocompatibility with living tissues, hydrogels find extensive use in various biomedical applications. Guggul gum grafted polyacrylamide hydrogels (SG) were prepared and green synthesized SrO, CoO and SrO-CoO nanoparticles (NPs) were incorporated with hydrogels (SrG, CoG, Sr-CoG) respectively. The fabricated hydrogels were characterized by various analytical techniques such as FTIR, XRD and SEM. XRD results confirmed the presence of Sr and Co metal nanoparticles in the fabricated hydrogels matrix, SrG pattern showed diffraction peaks at 2θ = 30°, 36.59°, 44.11°, 50.22° and 62.20° while CoG peaks appeared at 2θ = 36.59°, 42.32°, 61.18°, 74.05° and 77.08°. SG, SrG, CoG and Sr-CoG hydrogels showed 11%, 32%, 23% and 45% radical scavenging activity respectively as compared to standard BHT (Butylated hydroxyl toluene). In vitro drug release tests results showed that SG, SrG, CoG and Sr-CoG exhibited 21%, 16%, 13% and 10% sustained release of naproxen respectively. The results revealed that SrO and CoO nanoparticles dopped hydrogels possessed good wound healing potential as compared to conventional hydrogels, which provides great potential in clinical treatment for wounds.
Collapse
Affiliation(s)
- Arfaa Sajid
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan.
| | - Muniba Amjad
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan.
| | - Saba Wazir
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan
| | - Anam Sajid
- Department of natural sciences and humanities, University of engineering and technology Lahore New Campus, Kala Sha Kaku, Pakistan.
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Nissren Tamam
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
6
|
Mafune KK, Kasson MT, Winkler MKH. Building blocks toward sustainable biofertilizers: variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J Appl Microbiol 2024; 135:lxae167. [PMID: 38960411 DOI: 10.1093/jambio/lxae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
7
|
Ahmed MS, Islam M, Hasan MK, Nam KW. A Comprehensive Review of Radiation-Induced Hydrogels: Synthesis, Properties, and Multidimensional Applications. Gels 2024; 10:381. [PMID: 38920928 PMCID: PMC11203285 DOI: 10.3390/gels10060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| | - Md. Kamrul Hasan
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.); (K.-W.N.)
| |
Collapse
|
8
|
Mikhailidi A, Ungureanu E, Tofanica BM, Ungureanu OC, Fortună ME, Belosinschi D, Volf I. Agriculture 4.0: Polymer Hydrogels as Delivery Agents of Active Ingredients. Gels 2024; 10:368. [PMID: 38920915 PMCID: PMC11203096 DOI: 10.3390/gels10060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture-natural or synthetic-is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” Iasi University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ovidiu C. Ungureanu
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania;
| | - Maria E. Fortună
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières QC G8Z 4M3, Canada;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| |
Collapse
|
9
|
Qin D, Ma Y, Wang M, Shan Z. Study on Nutrient Carrier of Mulch Based on Hydrogel @SiO 2. Polymers (Basel) 2024; 16:1442. [PMID: 38794635 PMCID: PMC11124839 DOI: 10.3390/polym16101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Soil conservation is one of the best methods to improve soil fertility and enhance crop growth efficiency. Replacing plastic mulch with biomass is an environmentally friendly strategy. Innovative encapsulated soil granules (ESGs) were developed using PVA/PC film as the wall material and rural soil as the core. The PVA/PC was synthesized using 60% protein polypeptide (PC) from leather waste scrap and 35% poly (vinyl alcohol) (PVA), which was optimized for water absorption expansion and water retention performance. The ESG-10 granulated with 10% PVA/PC exhibited good water absorption, moisture retention, and resistance to water solubility. As an auxiliary material for soil improvement, the amount of ESGs mixed with the topsoil at ratios of 0 g/m2, 200 g/m2, and 400 g/m2 was proportional to the soil insulation and moisture retention. In rapeseed cultivation, the experimental results indicated that the soil mulched with ESG-10 can maintain seedling vitality for a long time under low water content conditions.
Collapse
Affiliation(s)
- Dan Qin
- School of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (D.Q.); (Y.M.)
| | - Yujie Ma
- School of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (D.Q.); (Y.M.)
| | - Mei Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Zhihua Shan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China;
| |
Collapse
|
10
|
Yang Y, Xiao Y, Wu X, Deng J, Wei R, Liu A, Chai H, Wang R. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response. Macromol Rapid Commun 2024; 45:e2300643. [PMID: 38225681 DOI: 10.1002/marc.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Smart hydrogels responsive to external stimuli are promising for various applications such as soft robotics and smart devices. High mechanical strength and fast response rate are particularly important for the construction of hydrogel actuators. Herein, tough hydrogels with rapid response rates are synthesized using vinyl-functionalized poly(N-isopropylacrylamide) (PNIPAM) microgels as macro-crosslinkers and N-isopropylacrylamide as monomers. The compression strength of the obtained PNIPAM hydrogels is up to 7.13 MPa. The response rate of the microgel-crosslinked hydrogels is significantly enhanced compared with conventional chemically crosslinked PNIPAM hydrogels. The mechanical strength and response rate of hydrogels can be adjusted by varying the proportion of monomers and crosslinkers. The lower critical solution temperature (LCST) of the PNIPAM hydrogels could be tuned by copolymerizing with ionic monomer sodium methacrylate. Thermo-responsive bilayer hydrogels are fabricated using PINPAM hydrogels with different LCSTs via a layer-by-layer method. The thermo-responsive fast swelling and shrinking properties of the two layers endow the bilayer hydrogel with anisotropic structures and asymmetric response characteristics, allowing the hydrogel to respond rapidly. The bilayer hydrogels are fabricated into clamps to grab small objects and flowers that mimicked the closure of petals, and it shows great application prospects in the field of actuators.
Collapse
Affiliation(s)
- Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, P. R. China
| | - Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| |
Collapse
|
11
|
El Idrissi A, Channab BE, Essamlali Y, Zahouily M. Superabsorbent hydrogels based on natural polysaccharides: Classification, synthesis, physicochemical properties, and agronomic efficacy under abiotic stress conditions: A review. Int J Biol Macromol 2024; 258:128909. [PMID: 38141703 DOI: 10.1016/j.ijbiomac.2023.128909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Superabsorbent polymers (SAPs) are a class of polymers that have attracted tremendous interest due to their multifunctional properties and wide range of applications. The importance of this class of polymers is highlighted by the large number of publications, including articles and patents, dealing with the use of SAPs for various applications. Within this framework, this review provides an overview of SAPs and highlights various key aspects, such as their history, classification, and preparation methods, including those related to chemically or physically cross-linked networks, as well as key factors affecting their performance in terms of water absorption and storage. This review also examines the potential use of polysaccharides-based SAPs in agriculture as soil conditioners or slow-release fertilizers. The basic aspects of SAPs, and methods of chemical modification of polysaccharides are presented and guidelines for the preparation of hydrogels are given. The water retention and swelling mechanisms are discussed in light of some mathematical empirical models. The nutrient slow-release kinetics of nutrient-rich SAPs are also examined on the basic of commonly used mathematical models. Some examples illustrating the advantages of using SAPs in agriculture as soil conditioners and agrochemical carriers to improve crop growth and productivity are presented and discussed. This review also attempts to provide an overview of the role of SAPs in mitigating the adverse effects of various abiotic stresses, such as heavy metals, salinity, and drought, and outlines future trends and prospects.
Collapse
Affiliation(s)
- Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco
| | - Younes Essamlali
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II Casablanca University, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
12
|
Zhang W, Sun XL, Yang Q, Guo Y, Cui Y, Xiang Y, Hu B, Wei J, Tu P. In situ forming of PEG-NH 2/dialdehyde starch Schiff-base hydrogels and their application in slow-release urea. Int J Biol Macromol 2024; 256:128355. [PMID: 37995790 DOI: 10.1016/j.ijbiomac.2023.128355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
In this study, a biodegradable Schiff-base hydrogel urea, possessing substantial water retention and certain slow-release ability was designed and synthesized. Firstly, dialdehyde starch (DAS) and amine-terminated polyethylene glycol (PEG-(NH2)2) were synthesized using potato starch and polyethylene glycol. Then, a novel Schiff-base hydrogel (SH) was prepared through the in-situ reaction between the aldehyde group of DAS and the amino group of PEG-(NH2)2. Three SH based slow-release urea, designated as SHU1, SHU2, and SHU3 and distinguished by varying urea content, were obtained using SH as the substrate. Several characterizations and tests were conducted to determine the structure, thermal properties, morphology, swelling properties, sustainable use, water retention, and biodegradation properties of SH. Additionally, the slow-release behavior of SHU was studied. SEM results revealed that SH possessed a porous three-dimensional network structure, with a maximum water absorption capacity of 4440 % ± 6.23 %. Compared to pure urea, SHU exhibited better slow-release performance after 30 days of release in soil, with SHU1 having a residual nitrogen content of specifically 36.01 ± 0.57 % of the initial nitrogen content. A pot experiment with pakchoi substantiated the water retention and plant growth promotion properties of SHU. This study demonstrated a straightforward method for the preparation of starch-based Schiff-base hydrogels as fertilizer carriers.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Liao Sun
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Yang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Guo
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongsheng Xiang
- Lanzhou Petrochemical research center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China.
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wei
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Tu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
14
|
Sajid M, Amjid M, Munir H, Valipour M, Rasul F, Khil A, Alqahtani MD, Ahmad M, Zulfiqar U, Iqbal R, Ali MF, Ibtahaj I. Enhancing Sugarcane Yield and Sugar Quality through Optimal Application of Polymer-Coated Single Super Phosphate and Irrigation Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3432. [PMID: 37836172 PMCID: PMC10574698 DOI: 10.3390/plants12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The judicious use of crop input is of prime importance for achieving a considerable output with a low-cost input. A two-year field experimentation was executed to assess the effect of varying polymer-coated single super phosphate (SSP) regimes on the yield and quality of sugarcane under differential water regimes. A two-factor study was executed under a randomized complete block design with a split-plot arrangement. The CPF-249 sugarcane variety was planted during the 2019-2020 period and the 2020-2021 period. The experiment consisted of four levels of polymer-coated SSP, i.e., control, 90, 110, and 130 kg ha-1, and three water regimes, which consisted of a number of irrigations, i.e., 18 irrigations, 15 irrigations, and 12 irrigations. Moreover, the water regimes were kept in the main plot, whereas the polymer-coated supplement was allocated in a subplot and replicated thrice. The data on the yield components and sugar-related traits were recorded during both years of study, and the treatment means were differentiated using an LSD test at a 95% confidence interval. Summating the findings of this study, a significant variation was revealed under the subject levels of both factors. Statistically, a 110 kg ha-1 polymer-coated SSP dose, along with 18 irrigations, declared the highest millable canes, stripped cane yield, and unstripped cane yield, followed by the 130 kg ha-1 treatment. Additionally, the highest pol% and cane sugar recovery % were recorded under 12 irrigations along with 130 kg ha-1 during both years. Similarly, the °Brix value was also significantly affected by 12 irrigations when 110 kg ha-1 of polymer-coated SSP was used. The unstripped cane yield had a strong positive correlation with the stripped cane yield, millable canes, and the number of internodes. Moreover, the commercial cane sugar % resulted in a strong positive correlation with the pol%, whereas the cane sugar recovery % revealed a strong positive correlation with the pol% and commercial cane sugar %.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Muhammad Amjid
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Hassan Munir
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Aka Khil
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.S.); (M.A.); (H.M.); (F.R.); (M.A.)
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A & F University, Xianyang 712100, China;
| | - Iqra Ibtahaj
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
15
|
Lavrentev FV, Shilovskikh VV, Alabusheva VS, Yurova VY, Nikitina AA, Ulasevich SA, Skorb EV. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023; 28:5931. [PMID: 37570901 PMCID: PMC10421015 DOI: 10.3390/molecules28155931] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Diffusion is one of the key nature processes which plays an important role in respiration, digestion, and nutrient transport in cells. In this regard, the present article aims to review various diffusion approaches used to fabricate different functional materials based on hydrogels, unique examples of materials that control diffusion. They have found applications in fields such as drug encapsulation and delivery, nutrient delivery in agriculture, developing materials for regenerative medicine, and creating stimuli-responsive materials in soft robotics and microrobotics. In addition, mechanisms of release and drug diffusion kinetics as key tools for material design are discussed.
Collapse
Affiliation(s)
- Filipp V. Lavrentev
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Vladimir V. Shilovskikh
- Laboratory of Polymer and Composite Materials “SmartTextiles”, IRC–X-ray Coherent Optics, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia;
| | - Varvara S. Alabusheva
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Veronika Yu. Yurova
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Anna A. Nikitina
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Sviatlana A. Ulasevich
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| |
Collapse
|
16
|
Chen M, Wang W, Fang J, Guo P, Liu X, Li G, Li Z, Wang X, Li J, Lei K. Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. Int J Biol Macromol 2023; 241:124496. [PMID: 37086763 DOI: 10.1016/j.ijbiomac.2023.124496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Polysaccharide hydrogels are one of the most promising hydrogel materials due to their inherent characteristics, including biocompatibility, biodegradability, renewability, and easy modification, and their structure and functional designs have been widely researched to adapt to different application scenarios as well as to broaden their application fields. As typical wet-soft materials, the high water content and water-absorbing ability of polysaccharide-based hydrogels (PHs) are conducive to their wide biomedical applications, such as wound healing, tissue repair, and drug delivery. In addition, along with technological progress, PHs have shown potential application prospects in some high-tech fields, including human-computer interaction, intelligent driving, smart dressing, flexible sensors, etc. However, in practical applications, due to the poor ability of PHs to resist freezing below zero, dehydration at high temperature, and acid-base/swelling-induced deformation in a solution environment, they are prone to lose their wet-soft peculiarities, including structural integrity, injectability, flexibility, transparency, conductivity and other inherent characteristics, which greatly limit their high-tech applications. Hence, reducing their freezing point, enhancing their high-temperature dehydration resistance, and improving their extreme solution tolerance are powerful approaches to endow PHs with multienvironmental adaptability, broadening their application areas. This report systematically reviews the study advances of environmentally adaptive polysaccharide-based hydrogels (EAPHs), comprising anti-icing hydrogels, high temperature/dehydration resistant hydrogels, and acid/base/swelling deformation resistant hydrogels in recent years. First, the construction methods of EAPHs are presented, and the mechanisms and properties of freeze-resistant, high temperature/dehydration-resistant, and acid/base/swelling deformation-resistant adaptations are simply demonstrated. Meanwhile, the features of different strategies to prepare EAPHs as well as the strategies of simultaneously attaining multienvironmental adaptability are reviewed. Then, the applications of extreme EAPHs are summarized, and some meaningful works are well introduced. Finally, the issues and future outlooks of PH environment adaptation research are elucidated.
Collapse
Affiliation(s)
- Meijun Chen
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Weiyi Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Junjun Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Pengshan Guo
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Xin Liu
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| |
Collapse
|
17
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
18
|
Lu H, Zhang Y, Tian T, Li X, Wu J, Yang H, Huang H. Preparation and properties of Sanxan gel based fertilizer for water retention and slow-release. Int J Biol Macromol 2023; 238:124104. [PMID: 36934818 DOI: 10.1016/j.ijbiomac.2023.124104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The advent of gel fertilizers has benefited agriculture and the environment. This study utilized sanxan, a novel polysaccharide, as a carrier and loaded it with urea to create sanxan gel fertilizer (SGF), thus creating a new, effective gel fertilizer. Water retention and sustained release ability of SGF were evaluated, and crop experiments were carried out. The results showed that, SGF that content 2.0 % solution of sanxan and loaded 20 g g-1 of urea were prepared by heating-cooling method. The water-retention ratio of SGF was attained at 56.4 g g-1 for 10 h. The urea releases of SGF in water have a more significant persistence than pure urea. In addition, wheat growth was promoted by SGF, compared with pure urea, the biomass of wheat shoot and root increased 27.4 % and 62.2 % during 20 days, respectively. Consequently, SGF has the ability to retain water and slowly release nutrition, which was an ideal carrier for managing water and urea. The SGF developed in this study provides data support and theoretical basis for the application of sanxan gel in agriculture and the environment.
Collapse
Affiliation(s)
- Hegang Lu
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Yu Zhang
- Hebei Xinhe Biochemical Co. LTD, Xinhe 055650, China.
| | - Tian Tian
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Xiaoyan Li
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Jiang Wu
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Hongpeng Yang
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Haidong Huang
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
19
|
Sarmah D, Borah M, Mandal M, Karak N. Swelling induced mechanically tough starch-agar based hydrogel as a control release drug vehicle for wound dressing applications. J Mater Chem B 2023; 11:2927-2936. [PMID: 36912351 DOI: 10.1039/d2tb02775e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
In recent years, polysaccharide-based hydrogels have received increased attention due to their inherent biodegradability, biocompatibility, and non-toxicity. The feasibility of using polysaccharides for the synthesis of hydrogels is dependent on their noteworthy mechanical strength and cell compatibility, which are required for practical applications, especially for biomedical uses. In this study, we demonstrate a facile synthetic route for the construction of a mechanically tough, biocompatible, and biodegradable hydrogel using polysaccharides such as starch and agar. A synthetic monomer-free hydrogel was synthesized using epichlorohydrin as a cross-linker, and a mechanical strength of 9.49 ± 1.29-6.16 ± 0.37 MPa was achieved. The introduction of agar into the hydrogel resulted in agar dose-dependent swelling-induced mechanical strength. Moreover, along with incredible mechanical strength, the hydrogel also exhibited prominent cell viability against human embryonic kidney cells. In addition, the hydrogel showed good encapsulation efficiency for antibacterial drugs like ciprofloxacin hydrochloride hydrate, with controlled releasing ability over a sustained period. The antibacterial activity of the encapsulated drug was observed against Staphylococcus aureus and Bacillus subtilis bacterial strains. Thus, the studied hydrogel with loaded drug exhibited all the required qualities to be utilized as a promising candidate in wound dressing applications.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
20
|
Sarmah D, Rather MA, Sarkar A, Mandal M, Sankaranarayanan K, Karak N. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Int J Biol Macromol 2023; 237:124206. [PMID: 36990413 DOI: 10.1016/j.ijbiomac.2023.124206] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with the controlled releasing ability of the encapsulated drug.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kamatchi Sankaranarayanan
- Biophysics-Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
21
|
Bai W, Ji B, Fan L, Peng Q, Liu Q, Song J. Preparation and Characterization of a Novel Cassava Starch-Based Phosphorus Releasing Super-Absorbent Polymer, and Optimization of the Performance of Water Absorption and Phosphorus Release. Polymers (Basel) 2023; 15:1233. [PMID: 36904473 PMCID: PMC10007282 DOI: 10.3390/polym15051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
To prepare a novel cassava starch-based phosphorus releasing super-absorbent polymer (CST-PRP-SAP), the single factor and orthogonal experiment were applied to analyze the effects of different reaction conditions on the absorption and phosphorus release capacities of CST-PRP-SAP samples. The structural and morphological characteristics of the cassava starch (CST), powdered rock phosphate (PRP), cassava starch-based super-absorbent polymer (CST-SAP) and CST-PRP-SAP samples were all compared with various technologies, such as the Fourier transform infrared spectroscopy and X-ray diffraction pattern, etc. The results showed that the CST-PRP-SAP samples had good performances of water retention and phosphorus release which were synthesized, such as the reaction temperature, starch content, P2O5 content, crosslinking agent, initiator, neutralization degree, and acrylamide content, which were 60 °C, 20% w/w, 10% w/w, 0.02% w/w, 0.6% w/w, 70% w/w, and 15% w/w, respectively. The water absorbency of CST-PRP-SAP was almost larger than that of the CST-SAP sample with a P2O5 content of 5.0% and 7.5%, and they all gradually decreased after three consecutive water absorption cycles. The CST-PRP-SAP sample could maintain about 50% of the initial water content after 24 h, even at the temperature of 40 °C. The swelling process of CST-PRP-SAP conformed to the non-Fickian diffusion, which was determined by the diffusion of water molecules and the relaxation process of polymer chain segments. The cumulative phosphorus release amount and release rate of the CST-PRP-SAP samples were increased with the increasing PRP content and the decreasing neutralization degree. After a 216 h immersion, the cumulative phosphorus release amount and release rate of the CST-PRP-SAP samples with different PRP contents were increased by 17.4 and 3.7 times, respectively. The rough surface of the CST-PRP-SAP sample after swelling was beneficial to the performance of water absorption and phosphorus release. The crystallization degree of PRP in the CST-PRP-SAP system was decreased and most of the PRP existed in the form of physical filling, and the available phosphorus content was increased to a certain extent. It was concluded that the CST-PRP-SAP synthesized in this study has excellent properties of continuous water absorption and retention with functions of promotion and the slow-release phosphorus.
Collapse
Affiliation(s)
- Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyi Ji
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Liaoning Province Modern Agricultural Production Base and Construction Engineering Center, Shenyang 110032, China
| | - Liren Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 300057, China
| | - Qin Peng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 300057, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
23
|
Malik S, Chaudhary K, Malik A, Punia H, Sewhag M, Berkesia N, Nagora M, Kalia S, Malik K, Kumar D, Kumar P, Kamboj E, Ahlawat V, Kumar A, Boora K. Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition. Polymers (Basel) 2022; 15:polym15010161. [PMID: 36616513 PMCID: PMC9824677 DOI: 10.3390/polym15010161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2022] Open
Abstract
With an increasing population, world agriculture is facing many challenges, such as climate change, urbanization, the use of natural resources in a sustainable manner, runoff losses, and the accumulation of pesticides and fertilizers. The global water shortage is a crisis for agriculture, because drought is one of the natural disasters that affect the farmers as well as their country's social, economic, and environmental status. The application of soil amendments is a strategy to mitigate the adverse impact of drought stress. The development of agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial priority. Superabsorbent polymers (SAPs) can be used as an amendment for soil health improvement, ultimately improving water holding capacity and plant available water. These are eco-friendly and non-toxic materials, which have incredible water absorption ability and water holding capacity in the soil because of their unique biochemical and structural properties. Polymers can retain water more than their weight in water and achieve approximately 95% water release. SAP improve the soil like porosity (0.26-6.91%), water holding capacity (5.68-17.90%), and reduce nitrogen leaching losses from soil by up to 45%. This review focuses on the economic assessment of the adoption of superabsorbent polymers and brings out the discrepancies associated with the influence of SAPs application in the context of different textured soil, presence of drought, and their adoption by farmers.
Collapse
Affiliation(s)
- Shweta Malik
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Kautilya Chaudhary
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Chandigarh Group of Business, Department of Agriculture, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
- Correspondence: (A.M.); (H.P.)
| | - Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Chandigarh Group of Business, Department of Sciences, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
- Correspondence: (A.M.); (H.P.)
| | - Meena Sewhag
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Neelam Berkesia
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Mehak Nagora
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sonika Kalia
- Chandigarh Group of Business, Department of Sciences, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| | - Kamla Malik
- Department of Microbiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Deepak Kumar
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Pardeep Kumar
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ekta Kamboj
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Vishal Ahlawat
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Abhishek Kumar
- Department Pathology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Kavita Boora
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| |
Collapse
|
24
|
Adjuik TA, Nokes SE, Montross MD, Wendroth O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers (Basel) 2022; 14:polym14214721. [PMID: 36365717 PMCID: PMC9656743 DOI: 10.3390/polym14214721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.
Collapse
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Ole Wendroth
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40503, USA
| |
Collapse
|
25
|
Skrzypczak D, Gil F, Izydorczyk G, Mikula K, Gersz A, Hoppe V, Chojnacka K, Witek-Krowiak A. Innovative bio-waste-based multilayer hydrogel fertilizers as a new solution for precision agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116002. [PMID: 36104889 DOI: 10.1016/j.jenvman.2022.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of the research work was to present a multilayer hydrogel capsule with controlled nutrient release properties as an innovative fertilizer designed for sustainable agriculture. Preparation of the capsules included the following steps: sorption of micronutrients (Cu, Mn, Zn) on eggshells (1) and their immobilization in sodium alginate, with the crosslinking agent being the NPK solution (2). The capsules were coated with an additional layer of a mixture of biopolymers (0.79% alginate, 0.24% carboxymethylcellulose and 8.07% starch)by means of dipping and spraying techniques. The biocomposites were characterized by limited (<10% within 100 h for the structures encapsulated by the dipping method) release of fertilizer ions (except for small K+ ions). The hydrogel fertilizer formulations were analyzed for physicochemical properties such as macro- and micronutrient content, surface morphology analysis, coating structure evaluation, mechanical properties, swelling and drying kinetics. High nutrient bioavailability was confirmed in vitro (extraction in water and neutral ammonium citrate). Germination and pot tests have revealed that the application of multicomponent hydrogel fertilizers increases the length of cucumber roots by 20%, compared to the commercial product.
Collapse
Affiliation(s)
- Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland.
| | - Filip Gil
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| | - Aleksandra Gersz
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| | - Viktoria Hoppe
- Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia, 50-370, Poland
| |
Collapse
|
26
|
Sun Y, Yang W, Shi H, Tanveer SK, Hai J. Past, present, and future perspectives of biodegradable films for soil: A 30-year systematic review. Front Bioeng Biotechnol 2022; 10:1006388. [PMID: 36324902 PMCID: PMC9621393 DOI: 10.3389/fbioe.2022.1006388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Based on the Web of Science Core Collection (WOSCC) database, the academic works published in the past 30 years on biodegradable films for soil were analyzed. In order to ensure the rigor of this experiment, this paper is based on the mathematical double matrix model VOS Viewer software and CiteSpace software. This work shows that publications of biodegradable films for soil are increasing year by year; polymer science is the hottest subject in the field of biodegradable films for soil; China and the United States are the countries with the most significant number of publications in this field, has an important position; Washington State University is the most published institution. This study further identifies and reveals the essential characteristics, research strength, knowledge structure, main research fields, and research hotspots in the late stage of the field of biodegradable films for soil and introduces the Activity Index (AI) and the Attractive Index (AAI), thereby assessing trends and performance in different countries. The paper also further illustrates the importance of biodegradable films by presenting field trials using biodegradable films on different plants. The research in the field of biodegradable films for soil is divided into four categories: “The research field of degradation,” “The effect of biodegradable film on soil,” “Performance and mechanism of the biodegradable film,” and “Effects of biodegradable film on crop growth and development.”. The study can be seen as a microcosm of the development of biodegradable films for soils, which will help researchers quickly identify their general patterns. Readers can better understand the changes and development trends in this field in the past 30 years and provide references for future research.
Collapse
Affiliation(s)
- Yitao Sun
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Hongxia Shi
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Jiangbo Hai,
| |
Collapse
|
27
|
Jungsinyatam P, Suwanakood P, Saengsuwan S. Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157050. [PMID: 35780891 DOI: 10.1016/j.scitotenv.2022.157050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
This work aims to explore the suitable crosslinker type for synthesizing multicomponent biodegradable hydrogels of cassava starch (CSt) grafted with acrylic acid (AA) semi-interpenetrated by natural rubber (NR)/polyvinyl alcohol (PVA) blend (CSt-g-PAA/NR/PVA, CSB semi-IPN hydrogel) as coating membranes for slow-release urea fertilizers. Three crosslinker types (ethylene glycol dimethacrylate (EGDMA), glutaraldehyde (GA) and N,N'- methylene-bis-acrylamide (MBA)) were employed to investigate their influences on the properties of CSB semi-IPN hydrogels. The results revealed that the different crosslinkers clearly exhibited different water-retention capacity, biodegradation, slow release and plant growth performance of the CSB semi-IPN hydrogels. The CSB-G2 hydrogel (crosslinked with GA at 2 wt%) remained higher water-retention at 30 days (20.2 %), greater rate of degradation (1.37 %/day) and better biosafety (OD600 = 2.26) compared to CSB-M2 and CSB-E2 hydrogels. After urea pellets were coated by CSB hydrogels and wax layers (UCSBw formulation), the urea release rates from the UCSBw-M2, UCSBw-E2 and UCSBw-G2 formulations in 30 days were 67.7 %, 68.7 % and 78.3 %, respectively, corresponding well with swelling ratio and pore size. Besides, the UCSBw-G2 formulation yielded the greater plant growth performance (height, leaf length and product weight) than other two formulations and commercial fertilizer. In conclusion, GA is the suitable crosslinker for synthesizing the CSB-g-PAA/NR/PVA hydrogels with high water-retention, excellent biodegradation, less negative impact on environments, acceptable slow-release rate, good biosafety and reasonable price for slow-release fertilizers.
Collapse
Affiliation(s)
- Patchareepon Jungsinyatam
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Pitchayaporn Suwanakood
- Department of Bioscience, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand.
| |
Collapse
|
28
|
Jariwala H, Santos RM, Lauzon JD, Dutta A, Wai Chiang Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53967-53995. [PMID: 35624378 DOI: 10.1007/s11356-022-20890-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizers play an essential role in increasing crop yield, maintaining soil fertility, and provide a steady supply of nutrients for plant requirements. The excessive use of conventional fertilizers can cause environmental problems associated with nutrient loss through volatilization in the atmosphere, leaching to groundwater, surface run-off, and denitrification. To mitigate environmental issues and improve the longevity of fertilizer in soil, controlled release fertilizers (CRFs) have been developed. The application of CRFs can reduce the loss of nutrients, provide higher nutrient use efficiency, and improve soil health simultaneously to achieve the goals of climate-smart agricultural (CSA) practices. The major findings of this review paper are (1) CRFs can prevent direct exposure of fertilizer granule to soil and prevent loss of nutrients such as nitrate and nitrous oxide emissions; (2) CRFs are less affected by the change in environmental parameters, and that can increase longevity in soil compared to conventional fertilizers; and (3) CRFs can maintain required soil nitrogen levels, increase water retention, reduce GHG emissions, lead to optimum pH for plant growth, and increase soil organic matter content. This paper could give good insights into the ongoing development and future perspectives of CRFs for CSA practices.
Collapse
Affiliation(s)
- Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Rafael M Santos
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - John D Lauzon
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yi Wai Chiang
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
29
|
Bora A, Karak N. Starch and itaconic acid-based superabsorbent hydrogels for agricultural application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Sarmah D, Karak N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr Polym 2022; 289:119428. [DOI: 10.1016/j.carbpol.2022.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
|
31
|
Mohamed RR, Fahim ME, Soliman SMA. Development of hydrogel based on Carboxymethyl cellulose/poly(4-vinylpyridine) for controlled releasing of fertilizers. BMC Chem 2022; 16:52. [PMID: 35820946 PMCID: PMC9277865 DOI: 10.1186/s13065-022-00846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
A novel Carboxymethyl cellulose (CMC) and poly (4-vinylpyridine) (P4VP) hydrogel system is synthesized with different ratios, in the presence of cross-linker N, N,- methylene bis-acrylamide (MBA). The hydrogel is characterized via FTIR spectroscopy, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The FTIR results showed a strong interaction between both CMC, P4VP and the loaded fertilizer. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, biodegradability was investigated in soil to simulate real-world conditions. To determine the best release behavior of urea and calcium nitrate from the hydrogel, fertilizers were loaded with different ratios onto the hydrogel during its formation. Fertilizers release was followed by Atomic absorption spectroscopy to study the release of calcium nitrate and urea. Release kinetic parameters were obtained based on different mathematical models as Zero order, First order, Korsmeyer-Peppas and Higuchi models. The suitable proportionality between the mathematical models used and the fertilizers release was determined based on the correlation coefficients (R2). According to Zero order model urea release showed independent concentration. Based on Korsmeyer-Pappas and Higuchi models with high n value and R2 equals to 0.97. Compared to urea, Ca2+, Zero order and Higuchi have been ignored due to their poor correlation coefficients values as proportion with Ca2+ fertilizer release.
Collapse
Affiliation(s)
- Riham R Mohamed
- Chemistry Department- Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marie E Fahim
- Chemistry Department- Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Soliman M A Soliman
- Chemistry Department- Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
32
|
Hydrogel Application in Urban Farming: Potentials and Limitations—A Review. Polymers (Basel) 2022; 14:polym14132590. [PMID: 35808635 PMCID: PMC9268874 DOI: 10.3390/polym14132590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Urban agriculture plays a vital role in ensuring the self-sufficiency of a great variety of fresh vegetables and nutrients. It promotes a sustainable food system as well as reducing the dependency on imports for the growing population. Urban farming has made it possible for agriculture practices to be implemented anywhere at any time in a sophisticated way. Hydrogel has been introduced in urban agriculture in the past few decades. However, the application of hydrogel in urban agriculture is still being explored in terms of hydrogel types, structure, physical and chemical properties, change due to external factors, and its suitability for different plant species. This review discusses the potentials and limitations of hydrogel in different application conditions. We present the state of knowledge on hydrogel production and crosslinking methods, hydrogel characteristics, water absorption and release mechanisms of hydrogel, hydrogel advantages and limitations, and current and future applications in urban farming.
Collapse
|
33
|
Rahmani P, Shojaei A. Developing tough terpolymer hydrogel with outstanding swelling ability by hydrophobic association cross-linking. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Zhang W, Guo L, Liu Q, Yang M, Chen J, Lei Z. Preparation and properties of a biodegradability superabsorbent composite based on flax cake protein‐g‐poly (acrylic acid)/Kaolinite. J Appl Polym Sci 2022. [DOI: 10.1002/app.51975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenxu Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Lulu Guo
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Qian Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Mei Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Jing Chen
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
35
|
Miransari M, Adham S, Miransari M, Miransari A. The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Appl Microbiol Biotechnol 2022; 106:1895-1904. [PMID: 35190845 DOI: 10.1007/s00253-022-11838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Medicinal plants are important sources of biochemical compounds affecting human health. However, because large areas of the world are subjected to different stresses including salinity, it is important to find methods, which may control the growth and biochemical properties of medicinal plants in such conditions. Another aspect of cropping medicinal plants in saline soils is the alteration of their biochemical properties by stress. Due to the significance of planting medicinal plants in saline soils, the objective of the present review article is to investigate and analyze the physicochemical approaches including soil leaching, organic fertilization, mineral nutrition, ozonated water, magnetism, superabsorbent polymers, and zeolite, which may control the effects of salinity stress on the growth and biochemical properties (production of secondary metabolites) of medicinal plants. In our just-published review article, we investigated the biological approaches, which may affect the growth and biochemical properties of medicinal properties in saline soils. Although salinity stress may induce the production of biochemical products in medicinal plants, the use of physicochemical approaches is also recommendable for the improved growth and biochemical properties of medicinal plants in saline soils. More has yet to be indicated on the use of the physicochemical approaches, which may affect the growth and biochemical properties of medicinal plants in salt stress conditions. KEY POINTS: • Growth and physiological alteration of medicinal plants in salt stress conditions. • The physicochemical approaches of such alteration have been reviewed. • More has yet to be indicated on the approaches, which may affect such properties.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran.
| | - Shirin Adham
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Mahdiar Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Arshia Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| |
Collapse
|
36
|
Choudhary S, Sharma K, Bhatti MS, Sharma V, Kumar V. DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv 2022; 12:4780-4794. [PMID: 35425477 PMCID: PMC8981380 DOI: 10.1039/d1ra08786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
The current study uses the free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology (RSM). A full factorial design was used to obtain the greatest percent swelling (Ps), and key process variables were determined using the Pareto chart. To make the procedure cost-effective, a multiple regression model employing ANOVA projected a linear model with a maximum percentage swelling of 556 at the lowest concentration of all three studied factors. As a result, the sequential experimental design was successful in obtaining two-fold increases in the percentage swelling in a systematic way. An RSM-based central composite design was used to optimize the percentage swelling of the three most important synthesis parameters: initiator concentration, monomer concentration, and crosslinker concentration. The best process conditions are 7.3 mM L−1 initiator, 44 μM L−1 monomer, and 21.6 mM L−1 crosslinker. The effective synthesis of GG-cl-poly(AA) was validated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, field emission scanning electron microscopy (FE-SEM), and 1H-nuclear magnetic resonance. The swelling behavior of GG-cl-poly(AA) in water and saline solutions, as well as its water retention capability, was investigated. In comparison to distilled water, the swelling potential of optimized hydrogel was shown to be significantly reduced in saline solutions. The addition of GG-cl-poly(AA) significantly improved the moisture properties of plant growth media (clay, sandy, and clay–soil combination), implying that it has great potential in moisture stress agriculture. GG-cl-poly(AA) biodegradation was studied by soil burial and vermicomposting methods. The composting approach showed 89.95% deterioration after 22 days, while the soil burial method showed 86.71% degradation after 22 days. The synthesized hydrogel may be beneficial for agricultural applications because of its considerable degradation behaviour, strong water retention capacity, low cost, and environmental friendliness. We use free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology.![]()
Collapse
Affiliation(s)
- Sonal Choudhary
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh, India 160011
| | - Manpreet S. Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| |
Collapse
|
37
|
Stanković B. Effect of the swelling degree on the non-isothermal dehydration kinetics of a poly(acrylic acid)- g-gelatine hydrogel. SOFT MATTER 2021; 17:10383-10393. [PMID: 34749390 DOI: 10.1039/d1sm01139a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The kinetics of non-isothermal dehydration of a poly(acrylic acid)-g-gelatine hydrogel swollen to different swelling degrees is investigated. The thermogravimetric curves are recorded at different heating rates in the interval from 5 K mol-1 to 20 K mol-1 within the temperature range from ambient temperature to 480 K. It is found that all kinetics curves can be described using the Weibull function. Based on the suggested kinetics model, the values of the specific rates are calculated and the values of apparent activation energies are established. Distribution functions of activation energies are obtained. The changes found in the values of Weibull function parameters, dependences of the specific rate on temperature, and apparent activation energies on temperature and the dehydration degree, as well as different activation energy distributions, are explained using the fluctuation model of a hydrogel, as a dynamically disordered system that goes through changes during the dehydration process. The presented results can have both fundamental and practical significance in the fields where the application is based on the ability of the hydrogel to conserve and slowly release water.
Collapse
Affiliation(s)
- Branislav Stanković
- Faculty of Physical Chemistry, University of Belgrade, Studenski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
38
|
Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res 2021; 33:15-40. [PMID: 34603776 PMCID: PMC8464009 DOI: 10.1016/j.jare.2021.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The cumulative influence of global warming, climate abrupt changes, growing population, topsoil erosion is becoming a threatening alarm for facing food challenges and upcoming global water issues. It ultimately affects the production of food in a water-stressed environment and slows down the production with more consumption of fertilizers by plants. The superabsorbent hydrogels (SAHs) have extensive applications in the agricultural field and proved very beneficial for plant growth and soil health. These polymeric materials are remarkably distinct from hygroscopic materials owing to their multidimensional network structure. It retains a lot of water in its 3D network and releases it slowly along with nutrients to plant in stressed environment. AIM OF REVIEW A soil conditioner boosts up the topology, compactness, and mechanical properties (swelling, water retention, and slow nutrient release) of soil. The superabsorbent hydrogel plays an astonishing role in preventing the loss of nutrients during the heavy flow of rainwater from the upper surface of soil because these SAHs absorb water and get swollen to keep water for longer time. The SAHs facilitate the growth of plants with limited use of water and fertilizers. Beyond, it improves the soil health and makes it fertile in horticulture and drought areas. KEY SCIENTIFIC CONCEPT OF REVIEW The SAHs can be synthesized through grafting and cross-linking polymerization to introduce value-added features and extended network structure. The structure of superabsorbent hydrogel entirely based on cross-linking that prompts its use in the agricultural field as a soil conditioner. The properties of a SAHs vary due to its nature of constituents, polymerization process (grafting or cross-linking), and other parameters. The use of SAHs in agricultural field comparatively enhances the swelling rate up to 60-80%, maximum water retaining, and slowly nutrient release to plants for a longer time.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | - Syeda Rubina Gilani
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | | | - Sobia Naseem
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| |
Collapse
|
39
|
Biopolymer Hydrogel Based on Acid Whey and Cellulose Derivatives for Enhancement Water Retention Capacity of Soil and Slow Release of Fertilizers. Polymers (Basel) 2021; 13:polym13193274. [PMID: 34641090 PMCID: PMC8512792 DOI: 10.3390/polym13193274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
This study describes the development of a renewable and biodegradable biopolymer-based hydrogel for application in agriculture and horticulture as a soil conditioning agent and for release of a nutrient or fertilizer. The novel product is based on a combination of cellulose derivatives (carboxymethylcellulose and hydroxyethylcellulose) cross-linked with citric acid, as tested at various concentrations, with acid whey as a medium for hydrogel synthesis in order to utilize the almost unusable by-product of the dairy industry. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, temperature and ion concentration. Its swelling capacity, water retention and biodegradability were investigated in soil to simulate real-world conditions, the latter being monitored by the production of carbon dioxide during the biodegradation process by gas chromatography. Changes in the chemical structure and morphology of the hydrogels during biodegradation were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The ability of the hydrogel to hold and release fertilizers was studied with urea and KNO3 as model substances. The results not only demonstrate the potential of the hydrogel to enhance the quality of soil, but also how acid whey can be employed in the development of a soil conditioning agent and nutrient release products.
Collapse
|
40
|
Renewable Mixed Hydrogels Based on Polysaccharide and Protein for Release of Agrochemicals and Soil Conditioning. SUSTAINABILITY 2021. [DOI: 10.3390/su131810439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The study deals with the combination of biopolymers to develop hydrogels intended for agriculture application. The aim is to propose a renewable and eco-compatible solution to enhance agrochemicals and water efficiency and contribute to maintaining soil fertility. We developed a set of hydrogels based on casein and chitosan for water retention and release of agrochemicals, in particular nitrogen fertilizer urea. The weight ratio of biopolymers, from 0.5 to 2, was investigated to understand the influence of their content on the morphology, swelling, swelling-drying cycles, and water retention in soil. The average content of urea in the hydrogels was 30% of the total weight, and up to 80% was released in the soil in 50 days. The biodegradation of the hydrogels in soil has been investigated by the burial method and monitoring the release of CO2. Results demonstrated that by increasing the content of chitosan, the biodegradation time is prolonged up to 20% in 90 days. The obtained results support the ultimate purpose of the work that the combination of two biopolymers at proper weight ratio could be a valid alternative of the marketed hydrogels with the final goal to promote soil fertility and water retention and prolong biodegradation.
Collapse
|
41
|
Kalendova P, Svoboda L, Hroch J, Honcova P, Drobna H, Slang S. Hydrogels Based on Starch from Various Natural Sources: Synthesis and Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Petra Kalendova
- Faculty of Chemical Technology University of Pardubice Department of Inorganic Technology Doubravice 41 Pardubice 53210 Czech Republic
| | - Ladislav Svoboda
- Faculty of Chemical Technology University of Pardubice Department of Inorganic Technology Doubravice 41 Pardubice 53210 Czech Republic
| | - Jan Hroch
- Faculty of Chemical Technology University of Pardubice Department of Inorganic Technology Doubravice 41 Pardubice 53210 Czech Republic
| | - Pavla Honcova
- Faculty of Chemical Technology University of Pardubice Department of Inorganic Technology Doubravice 41 Pardubice 53210 Czech Republic
| | - Helena Drobna
- Faculty of Chemical Technology University of Pardubice Department of Physical Chemistry Studentska 573 Pardubice 53210 Czech Republic
| | - Stanislav Slang
- Faculty of Chemical Technology University of Pardubice Center of Materials and Nanotechnologies Nam Cs. Legii 565 Pardubice 53002 Czech Republic
| |
Collapse
|
42
|
Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer. Int J Biol Macromol 2021; 182:1893-1905. [PMID: 34081953 DOI: 10.1016/j.ijbiomac.2021.05.191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
In this work, a number of glucose unites in polymeric structure of cellulose was converted to 2,4-dihydroxy-3-(1-hydroxy-2-oxoethoxy)butanal (cellulose containing di aldehyde units (CCDAUs)) by oxidation with sodium periodate, followed by condensation with acetone to produce 5,7-dihydroxy-6-((1-hydroxy-4-oxopent-2-en-1-yl)oxy)hept-3-en-2-one unites (cellulose containing di ene units (CCDEUs)). This modified cellulose was characterized by different methods and applied as a copolymer and grafting agent to synthesize an eco-friendly (CCDEUs-g-poly(AA)/urea) superabsorbent with slow-release urea fertilizer. The created double bonds in C2 and C3 positions of β-d-glucose units increased the linkage between cellulose and acrylic acid, leading to the formation of a strong network for slow-release urea fertilizer. Also, this modification created an expanded network for storage a high amount of water by increasing the cellulose flexibility. The reaction conditions for modification and synthesis of the superabsorbent, the oxidation degree value of glucose units, kinetics models, the effect of different saline solutions, various pH and reswelling time on the water absorbency, water retention capacity, reusability, biodegradability, and slow-release property were investigated. Also, the effect of synthesized CCDEUs-g-poly(AA)/urea on plant growth was tested and excellent results were obtained.
Collapse
|
43
|
Marciano JS, Ferreira RR, de Souza AG, Barbosa RFS, de Moura Junior AJ, Rosa DS. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int J Biol Macromol 2021; 181:112-124. [PMID: 33771541 DOI: 10.1016/j.ijbiomac.2021.03.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Biopolymers are promising materials for water treatment applications due to their abundance, low cost, expandability, and chemical structure. In this work, gelatin hydrogels filled with cellulose in the form of pristine eucalyptus residues (PER) or treated eucalyptus residues (TER) were prepared for adsorption and chromium removal in contaminated water. PER is a lignocellulosic compound, with cellulose, hemicellulose, and lignin, while TER has cellulose as a major component. FT-Raman Spectroscopy and FTIR analysis confirmed the crosslink reaction with glutaraldehyde and indicated that fillers altered the gelatin molecular vibrations and formed new hydrogen bonds, impacting the hydrogels' crystalline structure. The hydrogen bond energy was altered by the cellulosic fillers' addition and resulted in higher thermal stability (~10 °C). Hydrogels presented a Fickian diffusion, where gelatin hydrogel showed the highest swelling ability (466%), and composites showed lower values with the filler content increase. The chromium adsorption capacity presented values between 12 and 13 mg/g, i.e., featuring an excellent removal capacity which is related with hydrogel crosslinked structure and fibers surface hydroxyl groups, highlighting gelatin hydrogel TER 5% with better removal capacity. The developed hydrogels were produced from biomacromolecules with low-cost and potential application in contaminated water.
Collapse
Affiliation(s)
- Jéssica S Marciano
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rafaela R Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Alana G de Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan F S Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
44
|
Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J Control Release 2021; 330:341-361. [DOI: 10.1016/j.jconrel.2020.12.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
|