1
|
Dietrich J, Kang A, Tielemans B, Verleden SE, Khalil H, Länger F, Bruners P, Mentzer SJ, Welte T, Dreher M, Jonigk DD, Ackermann M. The role of vascularity and the fibrovascular interface in interstitial lung diseases. Eur Respir Rev 2025; 34:240080. [PMID: 39909504 PMCID: PMC11795288 DOI: 10.1183/16000617.0080-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Interstitial lung disease (ILD) is a clinical term that refers to a diverse group of non-neoplastic lung diseases. This group includes idiopathic and secondary pulmonary entities that are often associated with progressive pulmonary fibrosis. Currently, therapeutic approaches based on specific structural targeting of pulmonary fibrosis are limited to nintedanib and pirfenidone, which can only slow down disease progression leading to a lower mortality rate. Lung transplantation is currently the only available curative treatment, but it is associated with high perioperative mortality. The pulmonary vasculature plays a central role in physiological lung function, and vascular remodelling is considered a hallmark of the initiation and progression of pulmonary fibrosis. Different patterns of pulmonary fibrosis commonly exhibit detectable pathological features such as morphomolecular changes, including intussusceptive and sprouting angiogenesis, vascular morphometry, broncho-systemic anastomoses, and aberrant angiogenesis-related gene expression patterns. Dynamic cellular interactions within the fibrovascular interface, such as endothelial activation and endothelial-mesenchymal transition, are also observed. This review aims to summarise the current clinical, radiological and pathological diagnostic algorithm for different ILDs, including usual interstitial pneumonia/idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, alveolar fibroelastosis/pleuroparenchymal fibroelastosis, hypersensitivity pneumonitis, systemic sclerosis-related ILD and coronavirus disease 2019 injury. It emphasises an interdisciplinary clinicopathological perspective. Additionally, the review covers current therapeutic strategies and knowledge about associated vascular abnormalities.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Birger Tielemans
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Edegem, Belgium
- Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Hassan Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| | - Maximilian Ackermann
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| |
Collapse
|
2
|
Zaytseva AV, Karelina NR, Bedyaev EV, Vavilov PS, Sesorova IS, Mironov AA. During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis. Int J Mol Sci 2024; 25:10322. [PMID: 39408652 PMCID: PMC11476829 DOI: 10.3390/ijms251910322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The mechanisms responsible for the growth and development of vascular beds in intestinal villi during postnatal ontogenesis remain enigmatic. For instance, according to the current consensus, in the sprouting type of angiogenesis, there is no blood flow in the rising capillary sprout. However, it is known that biomechanical forces resulting from blood flow play a key role in these processes. Here, we present evidence for the existence of the intussusception type of angiogenesis during the postnatal development of micro-vessel patterns in the intestinal villi of rats. This process is based on the high-level flattening of blood capillaries on the flat surfaces of intestinal villi, contacts among the opposite apical plasma membrane of endothelial cells in the area of inter-endothelial contacts, or the formation of bridges composed of blood leucocytes or local microthrombi. We identified factors that, in our opinion, ensure the splitting of the capillary lumen and the formation of two parallel vessels. These phenomena are in agreement with previously described features of intussusception angiogenesis.
Collapse
Affiliation(s)
- Anna V. Zaytseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Natalia R. Karelina
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Eugeny V. Bedyaev
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Pavel S. Vavilov
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
3
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Díaz-Flores L, Gutiérrez R, Pino García M, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Álvarez-Argüelles H. Intussusceptive angiogenesis facilitated by microthrombosis has an important example in angiolipoma. An ultrastructural and immunohistochemical study. Histol Histopathol 2023; 38:29-46. [PMID: 35775452 DOI: 10.14670/hh-18-488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The microvasculature of angiolipoma frequently presents thrombi. Our objectives are to assess whether intussusceptive angiogenesis (IA) participates in vasculature formation in non-infiltrating angiolipoma and, if so, to explore how thrombi are involved in the IA process. For this purpose, we studied angiolipoma specimens (n: 52), using immunohistochemistry, and confocal and electron microscopy. The results showed the presence of folds and pillars, hallmarks of IA, dividing the vessel lumen. Folds showed a cover formed by reoriented endothelial cells from the vessel wall, or from newly formed folds, and a core initially formed by thrombus fragments (clot components as transitional core), which was replaced by extracellular matrix and invaginating pericytes establishing numerous peg-and-socket junctions with endothelial cells (mature core). A condensed plasmatic electron-dense material surrounded and connected folds and pillars with each other and with the vascular wall, which suggests a clot role in fold/pillar arrangement. In conclusion, we contribute to IA participation in capillary network formation in angiolipoma and the immunohistochemical and ultrastructural events by which microthrombosis facilitates IA. Therefore, in addition to the histogenesis of angiolipoma, we provide an easily obtainable substrate for future studies on clot component action in IA, of clinical and therapeutic interest.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab-Hospiten Hospitals, Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
5
|
Pandita A, Ekstrand M, Bjursten S, Zhao Z, Fogelstrand P, Le Gal K, Ny L, Bergo MO, Karlsson J, Nilsson JA, Akyürek LM, Levin MC, Borén J, Ewald AJ, Mostov KE, Levin M. Intussusceptive Angiogenesis in Human Metastatic Malignant Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2023-2038. [PMID: 34400131 PMCID: PMC8579244 DOI: 10.1016/j.ajpath.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-induced, phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cells were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, in vitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation in vitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.
Collapse
Affiliation(s)
- Ankur Pandita
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matias Ekstrand
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara Bjursten
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Zhiyuan Zhao
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Fogelstrand
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristell Le Gal
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Karlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Levent M Akyürek
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andrew J Ewald
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland; Department of Oncology, Cancer Invasion and Metastasis Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Keith E Mostov
- Departments of Anatomy and Biochemistry/Biophysics, University of California, San Francisco, California
| | - Max Levin
- Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Pasut A, Becker LM, Cuypers A, Carmeliet P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021; 24:311-326. [PMID: 34061284 PMCID: PMC8169404 DOI: 10.1007/s10456-021-09797-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is characterized by a remarkable level of plasticity, which is the driving force not only of physiological repair/remodeling of adult tissues but also of pathological angiogenesis. The resulting heterogeneity of endothelial cells (ECs) makes targeting the endothelium challenging, no less because many EC phenotypes are yet to be identified and functionally inventorized. Efforts to map the vasculature at the single-cell level have been instrumental to capture the diversity of EC types and states at a remarkable depth in both normal and pathological states. Here, we discuss new EC subtypes and functions emerging from recent single-cell studies in health and disease. Interestingly, such studies revealed distinct metabolic gene signatures in different EC phenotypes, which deserve further consideration for therapy. We highlight how this metabolic targeting strategy could potentially be used to promote (for tissue repair) or block (in tumor) angiogenesis in a tissue or even vascular bed-specific manner.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
7
|
Zhang N, Hu L, Liu J, Yang W, Li Y, Pan J. Wnt Signaling Regulates the Lymphatic Endothelial Transdifferentiation of Adipose-Derived Stromal Cells In Vitro. Cell Reprogram 2021; 23:117-126. [PMID: 33780637 DOI: 10.1089/cell.2020.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lymphedema is a chronic, progressive disease that causes pain as well as heavy economic burdens to patients. Reconstruction of the impaired lymphatic system is the key to treat lymphedema. Currently, there is no cure, but mesenchymal stromal cells show promising potential for lymphatic endothelial regeneration. Adipose-derived stromal cells (ADSCs) have been proved to support lymphangiogenesis both in vivo and in vitro. However, the mechanism in vascular endothelial growth factor C-induced (VEGF-C-induced) lymphatic endothelial transdifferentiation of ADSCs remains unknown. In this study, we show a novel link between the Wingless and int-1 (Wnt) pathway and the lymphatic endothelial differentiation process. We used LiCl to activate Wnt and DKK-1 to inhibit Wnt. Compared with the Wnt inhibition group and the control groups, the Wnt activation group produced more lymphatic endothelial cell (LEC)-related mRNA and proteins. Besides, Wnt-activated ADSCs formed longer tubes in two-dimensional culture and promoted the growth of lymphatic vessels in a three-dimensional transwell ADSC-LEC co-culture system. Our results demonstrated that activation of Wnt during the lymphatic endothelial transdifferentiation of ADSCs would enhance the efficacy of VEGF-C treatment. We anticipate our assay to expand our knowledge of Wnt in cell transdifferentiation and lay a foundation for future efforts to explore a novel and effective ADSC-based therapy for lymphedema.
Collapse
Affiliation(s)
- Nian Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liru Hu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyuan Liu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Ackermann M, Mentzer SJ, Kolb M, Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: everything in and out of flow. Eur Respir J 2020; 56:13993003.03147-2020. [PMID: 33008942 PMCID: PMC7530910 DOI: 10.1183/13993003.03147-2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany .,Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
10
|
Ogino R, Hayashida K, Yamakawa S, Morita E. Adipose-Derived Stem Cells Promote Intussusceptive Lymphangiogenesis by Restricting Dermal Fibrosis in Irradiated Tissue of Mice. Int J Mol Sci 2020; 21:ijms21113885. [PMID: 32485955 PMCID: PMC7312745 DOI: 10.3390/ijms21113885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive treatment for lymphatic disorders. Adipose-derived stem cells (ADSCs) have been reported to promote lymphatic regeneration in lymphedema models, but the mechanisms underlying the therapeutic effects remain unclear. Here, we tested the therapeutic effects of ADSC transplantation on lymphedema using a secondary lymphedema mouse model. The model was established in C57BL/6J mice by x-irradiation and surgical removal of the lymphatic system in situ. The number of lymphatic vessels with anti-lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) immunoreactivity increased significantly in mice subjected to transplantation of 7.5 × 105 ADSCs. X-irradiation suppressed lymphatic vessel dilation, which ADSC transplantation could mitigate. Proliferative cell nuclear antigen staining showed increased lymphatic endothelial cell (LEC) and extracellular matrix proliferation. Picrosirius red staining revealed normal collagen fiber orientation in the dermal tissue after ADSC transplantation. These therapeutic effects were not related to vascular endothelial growth factor (VEGF)-C expression. Scanning electron microscopy revealed structures similar to the intraluminal pillar during intussusceptive angiogenesis on the inside of dilated lymphatic vessels. We predicted that intussusceptive lymphangiogenesis occurred in lymphedema. Our findings indicate that ADSC transplantation contributes to lymphedema reduction by promoting LEC proliferation, improving fibrosis and dilation capacity of lymphatic vessels, and increasing the number of lymphatic vessels via intussusceptive lymphangiogenesis.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Dermatology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan; (R.O.); (E.M.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;
- Correspondence: ; Tel.: +81-853-20-2210; Fax: +81-853-21-8317
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan; (R.O.); (E.M.)
| |
Collapse
|
11
|
Díaz-Flores L, Gutiérrez R, Gayoso S, García MP, González-Gómez M, Díaz-Flores L, Sánchez R, Carrasco JL, Madrid JF. Intussusceptive angiogenesis and its counterpart intussusceptive lymphangiogenesis. Histol Histopathol 2020; 35:1083-1103. [PMID: 32329808 DOI: 10.14670/hh-18-222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intussusceptive angiogenesis (IA) is currently considered an important alternative and complementary form of sprouting angiogenesis (SA). Conversely, intussusceptive lymphangiogenesis (IL) is in an initial phase of study. We compare their morphofunctional characteristics, since many can be shared by both processes. To that end, the following aspects are considered: A) The concept of IA and IL as the mechanism by which blood and lymphatic vessels split, expand and remodel through transluminal pillar formations (hallmarks of intussusception). B) Terminology and historical background, with particular reference to the group of Burri, including Djonov and Patan, who initiated and developed the vessel intussusceptive concept in blood vessels. C) Incidence in normal (e.g. in the sinuses of developing lymph nodes) and pathologic conditions, above all in vessel diseases, such as dilated veins in hemorrhoidal disease, intravascular papillary endothelial hyperplasia (IPEH), sinusoidal hemangioma, lobular capillary hemangioma, lymphangiomas/lymphatic malformations and vascular transformation of lymph nodes. D) Differences and complementarity between vessel sprouting and intussusception. E) Characteristics of the cover (endothelial cells) and core (connective tissue components) of pillars and requirements for pillar identification. F) Structures involved in pillar formation, including endothelial contacts of opposite vessel walls, interendothelial bridges, merged adjacent capillaries, vessel loops and spilt pillars. G) Structures resulting from pillars with intussusceptive microvascular growth, arborization, remodeling and segmentation (compartmentalization). H) Influence of intussusception in the morphogenesis of vessel tumors/ pseudotumors; and I) Hemodynamic and molecular control of vessel intussusception, including VEGF, PDGF BB, Hypoxia, Notch, Endoglobin and Nitric oxide.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - S Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M P García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - M González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - R Sánchez
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
12
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|
13
|
Ackermann M, Stark H, Neubert L, Schubert S, Borchert P, Linz F, Wagner WL, Stiller W, Wielpütz M, Hoefer A, Haverich A, Mentzer SJ, Shah HR, Welte T, Kuehnel M, Jonigk D. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J 2020; 55:13993003.00933-2019. [PMID: 31806721 DOI: 10.1183/13993003.00933-2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The pathogenetic role of angiogenesis in interstitial lung diseases (ILDs) is controversial. This study represents the first investigation of the spatial complexity and molecular motifs of microvascular architecture in important subsets of human ILD. The aim of our study was to identify specific variants of neoangiogenesis in three common pulmonary injury patterns in human ILD.We performed comprehensive and compartment-specific analysis of 24 human lung explants with usual intersitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) and alveolar fibroelastosis (AFE) using histopathology, microvascular corrosion casting, micro-comupted tomography based volumetry and gene expression analysis using Nanostring as well as immunohistochemistry to assess remodelling-associated angiogenesis.Morphometrical assessment of vessel diameters and intervascular distances showed significant differences in neoangiogenesis in characteristically remodelled areas of UIP, NSIP and AFE lungs. Likewise, gene expression analysis revealed distinct and specific angiogenic profiles in UIP, NSIP and AFE lungs.Whereas UIP lungs showed a higher density of upstream vascularity and lower density in perifocal blood vessels, NSIP and AFE lungs revealed densely packed alveolar septal blood vessels. Vascular remodelling in NSIP and AFE is characterised by a prominent intussusceptive neoangiogenesis, in contrast to UIP, in which sprouting of new vessels into the fibrotic areas is characteristic. The molecular analyses of the gene expression provide a foundation for understanding these fundamental differences between AFE and UIP and give insight into the cellular functions involved.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany .,Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Helge Stark
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Paul Borchert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Friedemann Linz
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Willi L Wagner
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Stiller
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mark Wielpütz
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Anne Hoefer
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,Dept of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Harshit R Shah
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| |
Collapse
|
14
|
Esteban S, Clemente C, Koziol A, Gonzalo P, Rius C, Martínez F, Linares PM, Chaparro M, Urzainqui A, Andrés V, Seiki M, Gisbert JP, Arroyo AG. Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via TSP1/nitric oxide axis. EMBO Mol Med 2020; 12:e10862. [PMID: 31793743 PMCID: PMC7005619 DOI: 10.15252/emmm.201910862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
Pathological angiogenesis contributes to cancer progression and chronic inflammatory diseases. In inflammatory bowel disease, the microvasculature expands by intussusceptive angiogenesis (IA), a poorly characterized mechanism involving increased blood flow and splitting of pre-existing capillaries. In this report, mice lacking the protease MT1-MMP in endothelial cells (MT1iΔEC ) presented limited IA in the capillary plexus of the colon mucosa assessed by 3D imaging during 1% DSS-induced colitis. This resulted in better tissue perfusion, preserved intestinal morphology, and milder disease activity index. Combined in vivo intravital microscopy and lentiviral rescue experiments with in vitro cell culture demonstrated that MT1-MMP activity in endothelial cells is required for vasodilation and IA, as well as for nitric oxide production via binding of the C-terminal fragment of MT1-MMP substrate thrombospondin-1 (TSP1) to CD47/αvβ3 integrin. Moreover, TSP1 levels were significantly higher in serum from IBD patients and in vivo administration of an anti-MT1-MMP inhibitory antibody or a nonamer peptide spanning the αvβ3 integrin binding site in TSP1 reduced IA during mouse colitis. Our results identify MT1-MMP as a new actor in inflammatory IA and a promising therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Sergio Esteban
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Clemente
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| | - Agnieszka Koziol
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pilar Gonzalo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Cristina Rius
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Fernando Martínez
- Bioinformatics UnitCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Pablo M Linares
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - María Chaparro
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Ana Urzainqui
- Immunology DepartmentFIB‐Hospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)MadridSpain
| | - Vicente Andrés
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBER‐CV)MadridSpain
| | - Motoharu Seiki
- Division of Cancer Cell ResearchInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Javier P Gisbert
- Gastroenterology UnitHospital Universitario de La PrincesaInstituto de Investigación Sanitaria Princesa (IIS‐IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER‐EHD)Universidad Autónoma de MadridMadridSpain
| | - Alicia G Arroyo
- Vascular Pathophysiology AreaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigaciones Biológicas (CIB‐CSIC)MadridSpain
| |
Collapse
|
15
|
Díaz-Flores L, Gutiérrez R, García MDP, Carrasco JL, Sáez FJ, Díaz-Flores L, González-Gómez M, Madrid JF. Intussusceptive Lymphangiogenesis in Lymphatic Malformations/Lymphangiomas. Anat Rec (Hoboken) 2019; 302:2003-2013. [PMID: 31228317 DOI: 10.1002/ar.24204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/10/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
Intussusception in lymphatic vessels has received less attention than in blood vessels. In tumors and pseudotumors of blood vessels with intravascular papillary structures, including sinusoidal hemangioma and intravascular papillary endothelial hyperplasia, we observed exuberant intussusceptive angiogenesis, as well as the similarity between papillae (term used by pathologists) and pillars/folds (hallmarks of intussusceptive angiogenesis). A similar response could be expected in lymphangiomas (lymphatic malformations and reactive processes rather than tumors) with papillae. The aim of this work is to assess whether papillae/pillars/folds and associated structures (vessel loops and septa) are present in lymphangiomas, and to establish the characteristics and formation of these structures. For this purpose, we selected lymphangiomas with intraluminal papillae (n = 18), including cystic, cavernous, circumscriptum, and progressive types, of which two cases of each type with a greater number of papillae were used for serial histologic sections and immunohistochemistry. The studies showed a) dilated lymphatic spaces giving rise to lymphatic-lymphatic vascular loops, which dissected and encircled perilymphatic structures (interstitial tissue structures/ITSs and pillars/posts), b) ITSs and pillars, surrounded by anti-podoplanin-positive endothelial cells, protruding into the lymphatic spaces (papillary aspect), and c) splitting, remodeling, linear arrangement, and fusion of papillae/pillars/folds, forming papillary networks and septa. In conclusion, as occurs in blood vessel diseases, the development of lymphatic vessel loops, papillae/pillars/folds, and septa (segmentation) supports intussusceptive lymphangiogenesis and suggests a piecemeal form of intussusception. This intussusceptive lymphangiogenesis in lymphatic diseases can provide a basis for further studies of lymphatic intussusception in other conditions, with clinical and therapeutic implications. Anat Rec, 302:2003-2013, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | | | - José L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Francisco J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Juan F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence. "Campus Mare Nostrum", University of Murcia, Espinardo, Spain
| |
Collapse
|
16
|
Intussusceptive lymphangiogenesis in vascular transformation of lymph node sinuses. Acta Histochem 2019; 121:392-399. [PMID: 30850131 DOI: 10.1016/j.acthis.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Numerous lymphatic anastomosing channels in the lymph nodes are the most demonstrative finding of the rare lesion termed "vascular transformation of lymph node sinuses" (VTS). The mechanism of lymphatic vessel formation in VTS has not been studied. Vessel intussusception contributes to vascular expansion, and intraluminal pillars/posts, interstitial tissue structures or larger pillars (ITSs) and folds are the hallmarks of this process in blood vessels. The aim of this work is to assess whether these hallmarks of intussusception occur in VTS lymphatic vessels, indicating intussusceptive lymphangiogenesis. For this purpose, specimens of five cases of VTS were used for serial histological sections, immunohistochemistry and immunofluorescence in confocal microscopy, which enabled us to demonstrate the 3D image that defines the pillars. The studies showed a) meshworks of lymphatic vessels, which form complex loops, resembling sinuses of lymph nodes, b) presence of intralymphatic pillars, ITSs and folds, with a cover of lymphatic endothelial cells expressing podoplanin and a varying-sized connective core (e.g. collagen), and c) increase of vessel meshwork and linear arrangement, splitting and fusion of ITSs, pillars and folds, with remodelling and segmentation. In conclusion, the development of lymphatic vessel loops, ITSs, pillars and folds with segmentation in VTS supports intussusceptive lymphangiogenesis. This mechanism of intussusception is of interest because it participates in VTS histogenesis, contributes to general knowledge of intussusceptive lymphangiogenesis, which has received less attention than intussusception in blood vessels, and provides a basis for further studies in other lymphatic conditions.
Collapse
|
17
|
Amic F, Drmic D, Bilic Z, Krezic I, Zizek H, Peklic M, Klicek R, Pajtak A, Amic E, Vidovic T, Rakic M, Milkovic Perisa M, Horvat Pavlov K, Kokot A, Tvrdeic A, Boban Blagaic A, Zovak M, Seiwerth S, Sikiric P. Bypassing major venous occlusion and duodenal lesions in rats, and therapy with the stable gastric pentadecapeptide BPC 157, L-NAME and L-arginine. World J Gastroenterol 2018; 24:5366-5378. [PMID: 30598581 PMCID: PMC6305534 DOI: 10.3748/wjg.v24.i47.5366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether duodenal lesions induced by major venous occlusions can be attenuated by BPC 157 regardless nitric oxide (NO) system involvement.
METHODS Male Wistar rats underwent superior anterior pancreaticoduodenal vein (SAPDV)-ligation and were treated with a bath at the ligated SAPDV site (BPC 157 10 μg, 10 ng/kg per 1 mL bath/rat; L-NAME 5 mg/kg per 1 mL bath/rat; L-arginine 100 mg/kg per 1 mL bath/rat, alone and/or together; or BPC 157 10 μg/kg instilled into the rat stomach, at 1 min ligation-time). We recorded the vessel presentation (filled/appearance or emptied/disappearance) between the 5 arcade vessels arising from the SAPDV on the ventral duodenum side, the inferior anterior pancreaticoduodenal vein (IAPDV) and superior mesenteric vein (SMV) as bypassing vascular pathway to document the duodenal lesions presentation; increased NO- and oxidative stress [malondialdehyde (MDA)]-levels in duodenum.
RESULTS Unlike the severe course in the SAPDV-ligated controls, after BPC 157 application, the rats exhibited strong attenuation of the mucosal lesions and serosal congestion, improved vessel presentation, increased interconnections, increased branching by more than 60% from the initial value, the IAPDV and SMV were not congested. Interestingly, after 5 min and 30 min of L-NAME and L-arginine treatment alone, decreased mucosal and serosal duodenal lesions were observed; their effect was worsened at 24 h, and no effect on the collateral vessels and branching was seen. Together, L-NAME+L-arginine antagonized each other’s response, and thus, there was an NO-related effect. With BPC 157, all SAPDV-ligated rats receiving L-NAME and/or L-arginine appeared similar to the rats treated with BPC 157 alone. Also, BPC 157 in SAPDV-ligated rats normalized levels of NO and MDA, two oxidative stress markers, in duodenal tissues.
CONCLUSION BPC 157, rapidly bypassing occlusion, rescued the original duodenal flow through IAPDV to SMV flow, an effect related to the NO system and reduction of free radical formation.
Collapse
Affiliation(s)
- Fedor Amic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Zdenko Bilic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Krezic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Helena Zizek
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Marina Peklic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Robert Klicek
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Alen Pajtak
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Enio Amic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Tinka Vidovic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Mislav Rakic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Marija Milkovic Perisa
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Katarina Horvat Pavlov
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Antonio Kokot
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Ante Tvrdeic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Mario Zovak
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
18
|
Vimalraj S, Saravanan S, Anuradha D, Chatterjee S. Models to investigate intussusceptive angiogenesis: A special note on CRISPR/Cas9 based system in zebrafish. Int J Biol Macromol 2018; 123:1229-1240. [PMID: 30468812 DOI: 10.1016/j.ijbiomac.2018.11.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 01/05/2023]
Abstract
Angiogenesis is a distinct process which follows sprouting angiogenesis (SA) and intussusceptive angiogenesis (IA) forming the basis for various physiological and pathological scenarios. Angiogenesis is a double edged sword exerting both desirable and discernible effects owing to the referred microenvironment. Therapeutic interventions to promote angiogenesis in regenerative medicine is essential to achieve functional syncytium of tissue constructs while, angiogenic inhibition is a key therapeutic target to suppress tumor growth. In the recent years, clustered regularly interspaced short palindromic repeats associated 9 (CRISPR-Cas9) based gene editing approaches have been gaining considerable attention in the field of biomedical research owing to its ease in tailoring targeted genome in living organisms. The Zebrafish model, with adequately high-throughput fitness, is a likely option for genome editing and angiogenesis research. In this review, we focus on the implication of Zebrafish as a model to study IA and furthermore enumerate CRISPR/Cas9 based genome editing in Zebrafish as a candidate for modeling different types of angiogenesis and support its candidature as a model organism.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 044, Tamil Nadu, India.
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | | | - Suvro Chatterjee
- Centre for Biotechnology, Anna University, Chennai 600 044, Tamil Nadu, India
| |
Collapse
|
19
|
Vimalraj S, Pichu S, Pankajam T, Dharanibalan K, Djonov V, Chatterjee S. Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 2018; 82:48-58. [PMID: 30439561 DOI: 10.1016/j.niox.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/19/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the formation of new blood vessels that occurs by two distinct processes following sprouting angiogenesis (SA) and intussusceptive angiogenesis (IA). Nitric oxide (NO) is known for its pro-angiogenic functions. However, no clear mechanisms are delineated on its role in promoting angiogenesis in reparative wound healing. We propose that NO regulates SA to IA transition and vice versa in wound milieu. We have used three models which include a new chick embryo extra-vasculature (CEV) burn wound model, adult Tie2-GFP transgenic Zebrafish caudal fin regeneration model and Zebrafish skin wound model to study the mechanisms underlying behind the role of NO in wound healing. Wounds created in CEV were treated with NO donor (Spermine NONOate (SPNO)), NOS inhibitor (L-nitro-l-arginine-methyl ester (l-NAME)), NaNO2, NaNO3, and beetroot juice, a nitrite-rich juice respectively and the pattern of wound healing was assessed. Morphological and histological techniques tracked the wound healing at the cellular level, and the molecular changes were investigated by using real-time RT-PCR gene expression analysis. The result concludes that NO donor promotes wound healing by activating SA at an early phase of healing while NOS inhibitor induces wound healing via IA. At the later phase of wound healing NO donor followed IA while NOS inhibitor failed to promote wound repair. The current work underpinned a differential regulation of NO on angiogenesis in wound milieu and this study would provide new insights in designing therapeutics for promoting wound repair.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai-600025, India; Vascular Biology Lab, AU-KBC Research Centre and Department of Biotechnology, MIT Campus, Anna University, Chennai, India.
| | - Sivakamasundari Pichu
- Vascular Biology Lab, AU-KBC Research Centre and Department of Biotechnology, MIT Campus, Anna University, Chennai, India
| | - Thyagarajan Pankajam
- Vascular Biology Lab, AU-KBC Research Centre and Department of Biotechnology, MIT Campus, Anna University, Chennai, India
| | - Kasiviswanathan Dharanibalan
- Vascular Biology Lab, AU-KBC Research Centre and Department of Biotechnology, MIT Campus, Anna University, Chennai, India
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Buehlstrasse 26, CH-3012 Berne, Switzerland
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre and Department of Biotechnology, MIT Campus, Anna University, Chennai, India.
| |
Collapse
|
20
|
Vascular architecture in free flaps: Analysis of vessel morphology and morphometry in murine free flaps. Microvasc Res 2018; 118:128-136. [PMID: 29577940 DOI: 10.1016/j.mvr.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
The aim of this study was to analyze the development of vascular architecture as well as vascular morphometry and morphology of anastomosed microvascular free flaps. Free pectoral skin flaps were raised in 25 rats and anastomosed to the femoral vessels in the groin region. CD31 immunohistology was performed after 3, 7 and 12 d (each 5 animals each) to analyze microvessel density (MVD), microvessel area (MVA) and microvessel size (MVS). Microvascular corrosion casting was performed after 7 and 12 d (5 animals each) to analyze vessel diameter (VD), intervascular distance (IVD), interbranching distance (IBD), and branching angle (BA). Further on, sprout and pillar density as hallmarks of sprouting and intussusceptive angiogenesis were analyzed. Pectoral skin isles from the contralateral side served as controls. A significantly increased MVD was found after 7 and 12 d (p each <0.001). MVA was significantly increased after 3, 7 and 12 d (p each <0.001) and a significantly increased MVS was analyzed after 3 and 7 d (p each <0.001). VD and IVD were significantly increased after 7 and 12 d (p each <0.001). For IBD, a significantly increase was measured after 7 d (p < 0.001). For IBA, sprout and pillar density, no significant differences were found (p each ≥0.05). Significant changes in the vascular architecture of free flaps after successful microvascular anastomosis were seen. Since there was no evidence for sprout and pillar formation within the free flaps, the increased MVD and flap revascularization might be induced by the receiving site.
Collapse
|
21
|
Duzel A, Vlainic J, Antunovic M, Malekinusic D, Vrdoljak B, Samara M, Gojkovic S, Krezic I, Vidovic T, Bilic Z, Knezevic M, Sever M, Lojo N, Kokot A, Kolovrat M, Drmic D, Vukojevic J, Kralj T, Kasnik K, Siroglavic M, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 in the treatment of colitis and ischemia and reperfusion in rats: New insights. World J Gastroenterol 2017; 23:8465-8488. [PMID: 29358856 PMCID: PMC5752708 DOI: 10.3748/wjg.v23.i48.8465] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/31/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To provide new insights in treatment of colitis and ischemia and reperfusion in rats using stable gastric pentadecapeptide BPC 157.
METHODS Medication [BPC 157, L-NAME, L-arginine (alone/combined), saline] was bath at the blood deprived colon segment. During reperfusion, medication was BPC 157 or saline. We recorded (USB microscope camera) vessel presentation through next 15 min of ischemic colitis (IC-rats) or reperfusion (removed ligations) (IC + RL-rats); oxidative stress as MDA (increased (IC- and IC + RL-rats)) and NO levels (decreased (IC-rats); increased (IC + RL-rats)) in colon tissue. IC + OB-rats [IC-rats had additional colon obstruction (OB)] for 3 d (IC + OB-rats), then received BPC 157 bath.
RESULTS Commonly, in colon segment (25 mm, 2 ligations on left colic artery and vein, 3 arcade vessels within ligated segment), in IC-, IC + RL-, IC + OB-rats, BPC 157 (10 μg/kg) bath (1 mL/rat) increased vessel presentation, inside/outside arcade interconnections quickly reappeared, mucosal folds were preserved and the pale areas were small and markedly reduced. BPC 157 counteracted worsening effects induced by L-NAME (5 mg) and L-arginine (100 mg). MDA- and NO-levels were normal in BPC 157 treated IC-rats and IC + RL-rats. In addition, on day 10, BPC 157-treated IC + OB-rats presented almost completely spared mucosa with very small pale areas and no gross mucosal defects; the treated colon segment was of normal diameter, and only small adhesions were present.
CONCLUSION BPC 157 is a fundamental treatment that quickly restores blood supply to the ischemically injured area and rapidly activates collaterals. This effect involves the NO system.
Collapse
Affiliation(s)
- Antonija Duzel
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Josipa Vlainic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Antunovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Dominik Malekinusic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Borna Vrdoljak
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Mariam Samara
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Slaven Gojkovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Ivan Krezic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Tinka Vidovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Zdenko Bilic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Mario Knezevic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Sever
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Nermin Lojo
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marijan Kolovrat
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Jaksa Vukojevic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Tamara Kralj
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Katarina Kasnik
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Siroglavic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| |
Collapse
|
22
|
Kelly P, Denver P, Satchell SC, Ackermann M, Konerding MA, Mitchell CA. Microvascular ultrastructural changes precede cognitive impairment in the murine APPswe/PS1dE9 model of Alzheimer's disease. Angiogenesis 2017; 20:567-580. [PMID: 28741167 PMCID: PMC5660145 DOI: 10.1007/s10456-017-9568-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023]
Abstract
Cerebral and systemic organ microvascular pathologies coexist with human Alzheimer's disease (AD) neuropathology. In this study, we hypothesised that both cerebral and systemic microvascular pathologies exist in 4- to 5-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice prior to the onset of cognitive impairment. To assess this we examined recognition memory in both wild-type and APP/PS1 mice using the object recognition task (ORT; n = 11 per group) and counted thioflavin-S-positive plaques in brain (n = 6 per group). Vascular casts of brain, liver, spleen and kidneys were examined using scanning electron microscopy (n = 6 per group), and the urinary albumin-to-creatinine ratio (uACR; n = 5 per group) was measured as an index of glomerular permeability. Murine recognition memory was intact, as demonstrated by a significant preference for the novel object in the ORT paradigm. Brain sections of wild-type mice were devoid of thioflavin-S positivity, whereas age-matched APP/PS1 mice had an average of 0.88 ± 0.22 thioflavin-S-positive plaques in the cortex, 0.42 ± 0.17 plaques in the dentate gyrus and 0.30 ± 0.07 plaques in the cornus ammonis 1 region. The profiles of casted cerebral capillaries of wild-type mice were smooth and regular in contrast to those of APP/PS1 mice which demonstrate characteristic (0.5-4.6 μm) 'tags'. APP/PS1 mice also had a significantly reduced hepatic vessel number (p = 0.0002) and an increase in the number of splenic microvascular pillars (p = 0.0231), in the absence of changes in either splenic microvascular density (p = 0.3746) or glomerular ultrastructure. The highly significant reduction in uACR in APP/PS1 mice compared to wild-type (p = 0.0079) is consistent with glomerular microvascular dysfunction. These findings highlight early microvascular pathologies in 4- to 5-month-old APP/PS1 transgenic mice and may indicate an amenable target for pharmacological intervention in AD.
Collapse
Affiliation(s)
- Patricia Kelly
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Paul Denver
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | | | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Moritz A Konerding
- Institute of Functional and Clinical Anatomy, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
23
|
De Paepe ME, V Benny MK, Priolo L, Luks FI, Shapiro S. Florid Intussusceptive-like Microvascular Dysangiogenesis in a Preterm Lung. Pediatr Dev Pathol 2017; 20:432-439. [PMID: 28812466 DOI: 10.1177/1093526616686455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cellular mechanisms underlying the microvascular dysangiogenesis of bronchopulmonary dysplasia (chronic lung disease of the newborn) remain largely undetermined. We report unusual pulmonary vascular findings in a 27-week-gestation male newborn who died on the second day of life from intractable respiratory failure, following a pregnancy complicated by prolonged membrane rupture and persistent severe oligohydramnios. As expected, postmortem examination revealed pulmonary hypoplasia (lung/body weight ratio: 2.23%; 10th percentile for 27 weeks: 2.59%). In addition, lung microscopy revealed complex networks of non-sprouting, tortuous, and bulbously dilated capillaries, randomly distributed in widened airspace septa. Anti-smooth muscle actin immunohistochemistry demonstrated immunoreactive central densities within capillary lumina, suggestive of intravascular pillar formation. The plexus-forming, non-sprouting type of angiogenesis and apparent transluminal pillar formation are consistent with intussusceptive ("longitudinal splitting") angiogenesis. In concordance with previous observations made in human fetal lung xenografts, these findings support the notion that human postcanalicular lungs have the capacity to switch from sprouting to non-sprouting, intussusceptive-like angiogenesis, possibly representing an adaptive response activated by hemodynamic flow alterations and/or hypoxia. The possible relationship between the intussusceptive-like vascular changes observed in this case and the microvascular dysangiogenesis characteristic of bronchopulmonary dysplasia remains to be determined.
Collapse
Affiliation(s)
- Monique E De Paepe
- 1 Department of Pathology, Women and Infants Hospital of Rhode Island, USA.,2 Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Rhode Island, USA
| | | | - Lauren Priolo
- 3 Department of Pediatrics, Women and Infants Hospital of Rhode Island, USA
| | - Francois I Luks
- 4 Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island, USA
| | - Svetlana Shapiro
- 1 Department of Pathology, Women and Infants Hospital of Rhode Island, USA
| |
Collapse
|
24
|
Díaz-Flores L, Gutiérrez R, García MDP, Sáez FJ, Díaz-Flores L, Madrid JF. Piecemeal Mechanism Combining Sprouting and Intussusceptive Angiogenesis in Intravenous Papillary Formation Induced by PGE2 and Glycerol. Anat Rec (Hoboken) 2017; 300:1781-1792. [PMID: 28340517 DOI: 10.1002/ar.23599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
Recently, we demonstrated that in human intravascular papillary endothelial hyperplasia (IPEH), vein wall vascularization occurs in association with myriad papillae, a large part of which formed in the vascularized vein wall. Previously, using an animal model, we observed that PGE2 and glycerol administration around the femoral vein originates intense vascularization of the vein wall from its intimal endothelial cells (ECs). This vascularization is similar to that in IPEH. The aim of this study is to assess the mechanism of papillary formation, using this model after demonstrating papillary development in neo-vascularized femoral vein walls. In semithin and ultrathin sections, the sequential vascular and papillary development was as follows: (a) activation of vein intimal ECs, (b) sprouting of intimal ECs towards the vein media layer and microvessel development, (c) interconnection between neighboring microvessels originated elementary loops, which encircled vein wall components and formed papillae. The encircling ECs formed the papillary cover, and the encircled component formed the core. The papillae showed a similar structure to that of folds and pillars in intussusceptive angiogenesis, and (d) origin of secondary and complex loop systems by interconnection of neighboring elementary loops and by splitting of papillae by new loops, with abundant papillary development. In conclusion, the results support a piecemeal angiogenic mechanism in papillary formation, with association of sprouting and intussusceptive types of angiogenesis. Further studies are needed to assess whether the intravascular papillae described in several pathologic processes, including vessel tumors, such as Dabska's tumor, retiform hemangioendothelioma, and angiosarcoma, follow a similar mechanism. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1781-1792, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M Del Pino García
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.,Department of Pathology, Hospiten® Hospitals, Tenerife, Spain
| | - Francisco J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Juan F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence. "Campus Mare Nostrum," University of Murcia, Espinardo, Spain
| |
Collapse
|
25
|
Pabst AM, Krüger M, Blatt S, Ziebart T, Rahimi-Nedjat R, Goetze E, Walter C. Angiogenesis in the Development of Medication-Related Osteonecrosis of the Jaws: An Overview. Dent J (Basel) 2016; 5:dj5010002. [PMID: 29563407 PMCID: PMC5806993 DOI: 10.3390/dj5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/24/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
Medication-related osteonecrosis of the jaws (MR-ONJ) is one of the most relevant side effects of bisphosphonate therapy; it is clinically defined as a non-healing wound in combination with an avascular and necrotic jaw within ongoing bisphosphonate therapy or after completed bisphosphonate therapy. Different theories concerning the development of MR-ONJ have been reported, while the exact pathophysiology is still unknown. Recent studies have increasingly focused on angiogenesis and revascularization concerning MR-ONJ pathophysiology, which seems to be a relevant factor in the development of MR-ONJ and a possible and promising point of action for MR-ONJ prevention and therapy. Therefore, and with respect to the different aspects and specific forms of angiogenesis, the enclosed review summarizes the possible role of angiogenesis and revascularization in the pathophysiology of MR-ONJ. Special focus is given to the strong negative influence of bisphosphonates on progenitor and mature endothelial cells in vitro as well as on microvessel sprouting in vitro and in vivo, which might result in overall reduced wound healing of oral soft and hard tissues, and therefore in an exposed and avascular jaw from a clinical viewpoint. Further, it will be summarized whether and in what way the aspect of angiogenesis might be used for possible MR-ONJ prevention and therapy.
Collapse
Affiliation(s)
- Andreas Max Pabst
- Department of Oral- and Maxillofacial Surgery, General Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany.
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | - Maximilian Krüger
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | - Sebastian Blatt
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | - Thomas Ziebart
- Department of Oral- and Maxillofacial Surgery, University Clinic, Georg-Voigt-Straße 3, 35039 Marburg, Germany.
| | - Roman Rahimi-Nedjat
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | - Elisabeth Goetze
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | - Christian Walter
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany.
- Oral and Maxillofacial Surgery, Mediplus Clinic, Haifa-Allee 20, 55128 Mainz, Germany.
| |
Collapse
|
26
|
Pabst AM, Krüger M, Sagheb K, Ziebart T, Jacobs C, Blatt S, Goetze E, Walter C. The influence of geranylgeraniol on microvessel sprouting after bisphosphonate substitution in an in vitro 3D-angiogenesis assay. Clin Oral Investig 2016; 21:771-778. [PMID: 27170294 DOI: 10.1007/s00784-016-1842-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/24/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Recent studies focused on angiogenesis in the pathophysiology of bisphosphonate-associated osteonecrosis of the jaws (BP-ONJ) and identified geranylgeraniol (GGOH) as a feasible option for BP-ONJ therapy. This study investigated the influence of GGOH on microvessel sprouting after BP-incubation in vitro. MATERIALS AND METHODS Ten experimental set-ups were randomly designed in an in vitro 3D-angiogenesis assay. Two groups included HUVEC cell spheroids with and without (±) GGOH substitution as controls and eight groups pairwise contained either clodronate or the nitrogen-containing bisphosphonates (N-BP) ibandronate, pamidronate, and zoledronate ± GGOH. The size of the cell spheroids including the outbranching sprouts (SpS) as well as the density (SpD) and length of the sprouts (SpL) were analyzed by a grid system after 0, 24, 48, and 72 h. RESULTS For controls and NN-BP clodronate, no significant differences at any tested parameter and any point of measurement could be detected within the experimental set-ups ± GGOH (p each ≥0.05). For N-BP ibandronate, the experimental set-ups +GGOH showed a significantly increased SpS, SpD, and SpL after 48 and 72 h (p each ≤0.002) compared to the experimental set-ups -GGOH. For N-BPs pamidronate and zoledronate, the experimental set-ups + GGOH demonstrated a significantly increased SpS, SpD, and SpL after 24, 48, and 72 h (p each ≤0.001) compared to the experimental set-ups -GGOH. CONCLUSIONS The strong negative influence of N-BPs on microvessel sprouting could be significantly reversed by GGOH. CLINICAL RELEVANCE Since supportive therapeutic options for BP-ONJ are lacking, GGOH might be a promising substitute for BP-ONJ prevention and therapy.
Collapse
Affiliation(s)
- A M Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr, 170, 56072, Koblenz, Germany. .,Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany.
| | - M Krüger
- Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - K Sagheb
- Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - T Ziebart
- Department of Oral and Maxillofacial Surgery, University Clinic, Georg-Voigt-Straße 3, 35039, Marburg, Germany
| | - C Jacobs
- Department of Orthodontics, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - S Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - E Goetze
- Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - C Walter
- Department of Oral and Maxillofacial Surgery, University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
27
|
Kelly P, McClean PL, Ackermann M, Konerding MA, Hölscher C, Mitchell CA. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with Liraglutide™. Microcirculation 2015; 22:133-45. [PMID: 25556713 DOI: 10.1111/micc.12186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Cerebral microvascular impairments occurring in AD may reduce Aβ peptide clearance and impact upon circulatory ultrastructure and function. We hypothesized that microvascular pathologies occur in organs responsible for systemic Aβ peptide clearance in a model of AD and that Liraglutide (Victoza(®)) improves vessel architecture. METHODS Seven-month-old APP/PS1 and age-matched wild-type mice received once-daily intraperitoneal injections of either Liraglutide or saline (n = 4 per group) for eight weeks. Casts of cerebral, splenic, hepatic, and renal microanatomy were analyzed using SEM. RESULTS Casts from wild-type mice showed regularly spaced microvasculature with smooth lumenal profiles, whereas APP/PS1 mice revealed evidence of microangiopathies including cerebral microanuerysms, intracerebral microvascular leakage, extravasation from renal glomerular microvessels, and significant reductions in both splenic sinus density (p = 0.0286) and intussusceptive microvascular pillars (p = 0.0412). Quantification of hepatic vascular ultrastructure in APP/PS1 mice revealed that vessel parameters (width, length, branching points, intussusceptive pillars and microaneurysms) were not significantly different from wild-type mice. Systemic administration of Liraglutide reduced the incidence of cerebral microanuerysms and leakage, restored renal microvascular architecture and significantly increased both splenic venous sinus number (p = 0.0286) and intussusceptive pillar formation (p = 0.0129). CONCLUSION Liraglutide restores cerebral, splenic, and renal architecture in APP/PS1 mice.
Collapse
Affiliation(s)
- Patricia Kelly
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
29
|
Abstract
Microvascularity and angiogenesis play a pivotal role during normal growth and in a variety of pathological conditions such as inflammation, tumor growth, macular degeneration, and tissue regeneration. Vascular corrosion casting has been established as a method to analyze and evaluate two- and three-dimensionally the morphology and architecture of blood vessels of organs and tissues, such as tumors, brains, embryos, or the chorioallantoic membrane. Microvascular casts may be further dissected for visualizing and quantifying vascular morphology using scanning electron microscopy (SEM), micro computed tomographic (μCT) imaging, or synchrotron radiation-based micro computed tomographic (SRμCT) imaging.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Department of Oral and Maxillofacial Surgery, Institute of Functional and Clinical Anatomy, University Medical Center Mainz, Mainz, Germany
| | | |
Collapse
|
30
|
Bowel perfusion measured with dynamic contrast-enhanced ultrasound predicts treatment outcome in patients with Crohn's disease. Inflamm Bowel Dis 2014; 20:2029-37. [PMID: 25185684 PMCID: PMC4213134 DOI: 10.1097/mib.0000000000000159] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To improve management of patients with Crohn's disease (CD), objective measurements of the degree of local inflammation in the gastrointestinal wall are needed. Increased microvessel density and perfusion are typical features of acute inflammation and can be estimated with contrast-enhanced ultrasound (CEUS). The aim of the study was to investigate whether CEUS can provide prognostic information about patients treated medically for an acute exacerbation of CD. METHODS Fourteen patients with CD who received medical treatment for acute exacerbation with systemic steroids or tumor necrosis factor-α inhibitors were prospectively recruited. The patients were examined with clinical scoring, blood tests, and CEUS at time 0, 1, 3, and 12 months after initiation of the treatment. Outcome was treatment efficacy or treatment failure defined as change in medical treatment after 1 month or later. The perfusion analysis was performed with a commercially available software program that analyzes the contrast intensity in a selected area, fits the data to a standardized time-intensity curve, and derives several relative perfusion parameters. RESULTS Six of the 14 patients had treatment failure during the study period. There was a significant difference between the groups for peak contrast enhancement (P = 0.013), rate of wash-in (P = 0.020) and wash-out (P = 0.008), and the area under the time-intensity curve in the wash-in phase (0.013) at the examination 1 month after the start of treatment. CONCLUSIONS Perfusion analysis of the intestinal wall with CEUS 1 month after starting treatment in patients with CD can provide prognostic information regarding treatment efficacy.
Collapse
|
31
|
Belle J, Ysasi A, Bennett RD, Filipovic N, Nejad MI, Trumper DL, Ackermann M, Wagner W, Tsuda A, Konerding MA, Mentzer SJ. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane. Microvasc Res 2014; 95:60-7. [PMID: 24984292 PMCID: PMC4188740 DOI: 10.1016/j.mvr.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 01/10/2023]
Abstract
Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p<0.01). The morphometric analysis of intravital microscopy and scanning electron microscopy (SEM) images demonstrated that the increase vessel density was a result of an increase in interbranch distance (p<0.01) and a decrease in bifurcation angles (p<0.01); there was no significant increase in conducting vessel number (p>0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM.
Collapse
Affiliation(s)
- Janeil Belle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nenad Filipovic
- Faculty of Mechanical Engineering, University of Kragujevac, Serbia
| | - Mohammad Imani Nejad
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Trumper
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Willi Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Moritz A Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17:499-509. [PMID: 24668225 DOI: 10.1007/s10456-014-9428-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
Abstract
Intussusceptive angiogenesis is a dynamic intravascular process capable of dramatically modifying the structure of the microcirculation. The distinctive structural feature of intussusceptive angiogenesis is the intussusceptive pillar--a cylindrical microstructure that spans the lumen of small vessels and capillaries. The extension of the intussusceptive pillar appears to be a mechanism for pruning redundant or inefficient vessels, modifying the branch angle of bifurcating vessels and duplicating existing vessels. Despite the biological importance and therapeutic potential, intussusceptive angiogenesis remains a mystery, in part, because it is an intravascular process that is unseen by conventional light microscopy. Here, we review several fundamental questions in the context of our current understanding of both intussusceptive and sprouting angiogenesis. (1) What are the physiologic signals that trigger pillar formation? (2) What endothelial and blood flow conditions specify pillar location? (3) How do pillars respond to the mechanical influence of blood flow? (4) What biological influences contribute to pillar extension? The answers to these questions are likely to provide important insights into the structure and function of microvascular networks.
Collapse
|
33
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
34
|
Ackermann M, Houdek JP, Gibney BC, Ysasi A, Wagner W, Belle J, Schittny JC, Enzmann F, Tsuda A, Mentzer SJ, Konerding MA. Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization. Angiogenesis 2013; 17:541-51. [PMID: 24150281 PMCID: PMC4061467 DOI: 10.1007/s10456-013-9399-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022]
Abstract
In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneumonectomy. Analysis of microvascular corrosion casting demonstrated spatially heterogenous vascular densitities which were in line with the perivascular and subpleural compensatory growth pattern observed in anti-PCNA-stained lung sections. Within these regions an expansion of the vascular plexus with increased pillar formations and sprouting angiogenesis, originating both from pre-existing bronchial and pulmonary vessels was observed. Also, type II pneumocytes and alveolar macrophages were seen to participate actively in alveolar neo-angiogenesis after pneumonectomy. 3D-visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy showed the appearance of double-layered vessels and bud-like alveolar baskets as have already been described in normal lung development. Scanning electron microscopy data of microvascular architecture also revealed a replication of perialveolar vessel networks through septum formation as already seen in developmental alveolarization. In addition, the appearance of pillar formations and duplications on alveolar entrance ring vessels in mature alveoli are indicative of vascular remodeling. These findings indicate that sprouting and intussusceptive angiogenesis are pivotal mechanisms in adult lung alveolarization after pneumonectomy. Various forms of developmental neoalveolarization may also be considered to contribute in compensatory lung regeneration.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ultrastructural changes in blood vessels in epidermal growth factor treated experimental cutaneous wound model. Pathol Res Pract 2013; 209:710-5. [PMID: 24011796 DOI: 10.1016/j.prp.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 01/12/2023]
Abstract
This study investigates the impact of epidermal growth factor (EGF) on blood vessels, specifically on the development of intussusceptive angiogenesis in cutaneous wound healing. Excisional wounds were formed on both sides of the medulla spinalis in dorsal location of the rats. The control and EGF-treated groups were divided into two groups with respect to sacrifice day: 5 d and 7 d. EGF was topically applied to the EGF-treated group once a day. The wound tissue was removed from rats, embedded in araldite and paraffin, and then examined under transmission electron and light microscopes. The ultrastructural signs of intussusceptive angiogenesis, such as intraluminal protrusion of endothelial cells and formation of the contact zone of opposite endothelial cells, were observed in the wound. Our statistical analyses, based on light microscopy observations, also confirm that EGF treatment induces intussusceptive angiogenesis. Moreover, we found that induction of EGF impact on intussusceptive angiogenesis is higher on the 7th day of treatment than on the 5th day. This implies that the duration of EGF treatment is important. This research clarifies the effects of EGF on the vessels and proves that EGF induces intussusceptive angiogenesis, being a newer model with respect to sprouting type.
Collapse
|
36
|
Nylund K, Jirik R, Mezl M, Leh S, Hausken T, Pfeffer F, Ødegaard S, Taxt T, Gilja OH. Quantitative contrast-enhanced ultrasound comparison between inflammatory and fibrotic lesions in patients with Crohn's disease. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1197-1206. [PMID: 23643057 DOI: 10.1016/j.ultrasmedbio.2013.01.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to determine whether there are differences in absolute blood flow between patients with Crohn's disease with inflammation or fibrosis using contrast-enhanced ultrasound. Eighteen patients with fibrotic disease and 19 patients with inflammation were examined. Video sequences of contrast data were analyzed using a pharmacokinetic model to extract the arterial input and tissue residue functions with a custom software, enabling calculation of the absolute values for mean transit time, blood volume and flow. Feasibility of the examination was 89%. The fibrosis group had lower blood volume (0.9 vs. 3.4 mL per 100 mL tissue; p = 0.001) and flow (22.6 vs. 45.3 mL/min per 100 mL tissue; p = 0.003) compared with the inflammation group. There was no significant difference in mean transit time (3.9 vs. 5.5 s). In conclusion, absolute perfusion measurement in the gastrointestinal wall using contrast-enhanced ultrasound is feasible. There seems to be reduced blood volume and blood flow in patients with fibrotic disease.
Collapse
Affiliation(s)
- Kim Nylund
- Institute of Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ackermann M, Tsuda A, Secomb TW, Mentzer SJ, Konerding MA. Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvasc Res 2013; 87:75-82. [PMID: 23485588 DOI: 10.1016/j.mvr.2013.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/14/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
Intussusceptive angiogenesis is a developmental process linked to both blood vessel replication and remodeling in development. To investigate the prediction that the process of intussusceptive angiogenesis is associated with vessel angle remodeling in adult mice, we systematically evaluated corrosion casts of the mucosal plexus in mice with trinitrobenzesulfonic acid (TNBS)-induced and dextran sodium sulfate (DSS)-induced colitis. The mice demonstrated a significant decrease in vessel angles in both TNBS-induced and DSS-induced colitis within 4 weeks of the onset of colitis (p<.001). Corrosion casts 28-30 days after DSS treatment were studied for a variety of detailed morphometric changes. The vessel diameter and interbranch distance were significantly increased in the descending colon (p<.05). Also consistent with vessel growth, intervascular distance was decreased in the descending colon (p<.05). In contrast, no statistically significant morphometric changes were noted in the ascending colon. The morphometry of the corrosion casts also demonstrated 1) a similar orientation of the remodeled angles within the XY coordinate plane of the mucosal plexus, and 2) alternating periodicity of remodeled and unremodeled vessel angles. We conclude that inflammation-associated intussusceptive angiogenesis in adult mice is associated with vessel angle remodeling. Further, the morphometry of the vessel angles suggests the influence of blood flow on the location and orientation of remodeled vessels.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
38
|
Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing’s sarcoma A673-xenograft growth and normalize tumor vascular architecture. Angiogenesis 2012; 15:685-95. [DOI: 10.1007/s10456-012-9294-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/04/2012] [Indexed: 11/26/2022]
|
39
|
De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P. Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis. J Vasc Res 2012; 49:390-404. [DOI: 10.1159/000338278] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/13/2012] [Indexed: 12/11/2022] Open
|
40
|
Chamoto K, Gibney BC, Lee GS, Lin M, Collings-Simpson D, Voswinckel R, Konerding MA, Tsuda A, Mentzer SJ. CD34+ progenitor to endothelial cell transition in post-pneumonectomy angiogenesis. Am J Respir Cell Mol Biol 2011; 46:283-9. [PMID: 21921238 DOI: 10.1165/rcmb.2011-0249oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In many species, pneumonectomy triggers compensatory lung growth that results in an increase not only in lung volume, but also in alveolar number. Whether the associated alveolar angiogenesis involves the contribution of blood-borne progenitor cells is unknown. To identify and characterize blood-borne progenitor cells contributing to lung growth after pneumonectomy in mice, we studied wild-type and wild-type/green fluorescence protein (GFP) parabiotic mice after left pneumonectomy. Within 21 days of pneumonectomy, a 3.2-fold increase occurred in the number of lung endothelial cells. This increase in total endothelial cells was temporally associated with a 7.3-fold increase in the number of CD34(+) endothelial cells. Seventeen percent of the CD34(+) endothelial cells were actively proliferating, compared with only 4.2% of CD34(-) endothelial cells. Using wild-type/GFP parabiotic mice, we demonstrated that 73.4% of CD34(+) cells were derived from the peripheral blood. Furthermore, lectin perfusion studies demonstrated that CD34(+) cells derived from peripheral blood were almost uniformly incorporated into the lung vasculature. Finally, CD34(+) endothelial cells demonstrated a similar profile, but had enhanced transcriptional activity relative to CD34(-) endothelial cells. We conclude that blood-borne CD34(+) endothelial progenitor cells, characterized by active cell division and an amplified transcriptional signature, transition into resident endothelial cells during compensatory lung growth.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Thoracic Surgery, Brigham and Women's Hospital, Room 259, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf) 2011; 202:213-23. [PMID: 21535415 DOI: 10.1111/j.1748-1716.2011.02321.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptation of vascular networks to functional demands needs vessel growth, vessel regression and vascular remodelling. Biomechanical forces resulting from blood flow play a key role in these processes. It is well-known that metabolic stimuli, mechanical forces and flow patterns can affect gene expression and remodelling of vascular networks in different ways. For instance, in the sprouting type of angiogenesis related to hypoxia, there is no blood flow in the rising capillary sprout. In contrast, it has been shown that an increase of wall shear stress initiates the splitting type of angiogenesis in skeletal muscle. Otherwise, during development, both sprouting and intussusception act in parallel in building the vascular network, although with differences in spatiotemporal distribution. Thereby, in addition to regulatory molecules, flow dynamics support the patterning and remodelling of the rising vascular tree. Herewith, we present an overview of angiogenic processes with respect to intussusceptive angiogenesis as related to local haemodynamics.
Collapse
|
42
|
Lee GS, Filipovic N, Lin M, Gibney BC, Simpson DC, Konerding MA, Tsuda A, Mentzer SJ. Intravascular pillars and pruning in the extraembryonic vessels of chick embryos. Dev Dyn 2011; 240:1335-43. [PMID: 21448976 DOI: 10.1002/dvdy.22618] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 11/07/2022] Open
Abstract
To investigate the local mechanical forces associated with intravascular pillars and vessel pruning, we studied the conducting vessels in the extraembryonic circulation of the chick embryo. During the development days 13-17, intravascular pillars and blood flow parameters were identified using fluorescent vascular tracers and digital time-series video reconstructions. The geometry of selected vessels was confirmed by corrosion casting and scanning electron microscopy. Computational simulations of pruning vessels suggested that serial pillars form along pre-existing velocity streamlines; blood pressure demonstrated no obvious spatial relationship with the intravascular pillars. Modeling a Reynolds number of 0.03 produced 4 pillars at approximately 20-μm intervals matching the observed periodicity. In contrast, a Reynolds number of 0.06 produced only 2 pillars at approximately 63-μm intervals. Our modeling data indicated that the combination of wall shear stress and gradient of shear predicted the location, direction, and periodicity of developing pillars.
Collapse
Affiliation(s)
- Grace S Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee GS, Filipovic N, Miele LF, Lin M, Simpson DC, Giney B, Konerding MA, Tsuda A, Mentzer SJ. Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:11. [PMID: 20609245 PMCID: PMC2911408 DOI: 10.1186/2040-2384-2-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
The relative contribution of blood flow to vessel structure remains a fundamental question in biology. To define the influence of intravascular flow fields, we studied tissue islands--here defined as intravascular pillars--in the chick chorioallantoic membrane. Pillars comprised 0.02 to 0.5% of the vascular system in 2-dimensional projection and were predominantly observed at vessel bifurcations. The bifurcation angle was generally inversely related to the length of the pillar (R = -0.47, P < .001). The pillar orientation closely mirrored the axis of the dominant vessel with an average variance of 5.62 ± 6.96 degrees (p = .02). In contrast, the variance of pillar orientation relative to nondominant vessels was 36.78 ± 21.33 degrees (p > .05). 3-dimensional computational flow simulations indicated that the intravascular pillars were located in regions of low shear stress. Both wide-angle and acute-angle models mapped the pillars to regions with shear less than 1 dyn/cm2. Further, flow modeling indicated that the pillars were spatially constrained by regions of higher wall shear stress. Finally, the shear maps indicated that the development of new pillars was limited to regions of low shear stress. We conclude that mechanical forces produced by blood flow have both a limiting and permissive influence on pillar development in the chick chorioallantoic membrane.
Collapse
Affiliation(s)
- Grace S Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|