1
|
Sultan ZW, Najac M, Raman IM. Control of action potential afterdepolarizations in the inferior olive by inactivating A-type currents through K V4 channels. J Physiol 2024. [PMID: 39303148 DOI: 10.1113/jp286818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Neurons of the inferior olive (IO) fire action potentials with large, long-lasting afterdepolarizations (ADPs). Broader ADPs support more spikes in climbing fibre axons and evoke longer bursts of complex spikes in Purkinje cells, which affect the magnitude and sign of cerebellar synaptic plasticity. In the present study, we investigated the ionic mechanisms that regulate IO action potential waveforms by making whole-cell recordings in brainstem slices from C57BL6/J mice. IO spikes evoked from rest had ADPs of ∼30 ms. After 500-ms hyperpolarizations, however, evoked action potentials were brief (1-2 ms), lacking ADPs altogether. Because such preconditioning should maximally recruit depolarizing Ih and T-type currents and minimize repolarizing Ca-dependent currents known to shape the ADP, the rapid action potential downstroke suggested additional, dominant recovery of voltage-gated K currents at negative voltages. Under voltage clamp, outward currents evoked from -98 mV included large, voltage-gated, rapidly inactivating 'A-type' K currents. These currents had a steep availability curve with half-inactivation at -85 mV, suitable for recruitment by small hyperpolarizations. The fast decay time constant increased with depolarization, as is typical of KV4 channels. The KV4 channel blocker AmmTx3 almost eliminated inactivating currents and broadened action potentials evoked from strongly negative potentials by ∼8-fold. Optogenetic stimulation of inhibitory cerebellar nucleo-olivary terminals hyperpolarized IO cells sufficiently to abolish the ADP. The data support the idea that currents through KV4 channels control action potential waveforms in IO cells, shortening ADPs during synaptic inhibition or troughs of membrane potential oscillations, thereby controlling the number of climbing fibre action potentials that propagate to the cerebellum. KEY POINTS: Neurons in the mouse inferior olive (IO) express a large, inactivating, voltage-gated A-type K current carried by KV4 channels. IO action potentials evoked from rest have large, long afterdepolarizations that disappear with pre-spike hyperpolarizations of 5-15 mV. The steep voltage-sensitivity and rapid recovery of KV4 channels regulates the duration of the afterdepolarization over more than one order of magnitude. Factors such as synaptic inhibition are sufficient to recruit KV4 channels and eliminate afterdepolarization (ADP). By controlling the ADP, KV4 channels can set the number of climbing fibre action potentials relayed to the cerebellum and regulate plasticity implicated in motor learning.
Collapse
Affiliation(s)
- Ziyad W Sultan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Morrison LM, Huang H, Handler HP, Fu M, Bushart DD, Pappas SS, Orr HT, Shakkottai VG. Increased intrinsic membrane excitability is associated with hypertrophic olivary degeneration in spinocerebellar ataxia type 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563657. [PMID: 37961407 PMCID: PMC10634770 DOI: 10.1101/2023.10.23.563657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
One of the characteristic areas of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. In addition to its vulnerability in SCAs, the IO is also susceptible to a distinct pathology known as hypertrophic olivary degeneration (HOD). Clinically, HOD has been exclusively observed after lesions in the brainstem disrupt inhibitory afferents to the IO. Here, for the first time, we describe HOD in another context: spinocerebellar ataxia type 1 (SCA1). Using the genetically-precise SCA1 knock-in mouse model (SCA1-KI; both sexes used), we assessed SCA1-associated changes in IO neuron structure and function. Concurrent with degeneration, we found that SCA1-KI IO neurons are hypertrophic, exhibiting early dendrite lengthening and later somatic expansion. Unlike in previous descriptions of HOD, we observed no clear loss of IO inhibitory innervation; nevertheless, patch-clamp recordings from brainstem slices reveal that SCA1-KI IO neurons are hyperexcitable. Rather than synaptic disinhibition, we identify increases in intrinsic membrane excitability as the more likely mechanism underlying this novel SCA1 phenotype. Specifically, transcriptome analysis indicates that SCA1-KI IO hyperexcitability is associated with a reduced medullary expression of ion channels responsible for spike afterhyperpolarization (AHP) in IO neurons - a result that has a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These results reveal membrane excitability as a potential link between disparate causes of IO degeneration, suggesting that HOD can result from any cause, intrinsic or extrinsic, that increases excitability of the IO neuron membrane.
Collapse
Affiliation(s)
- Logan M. Morrison
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoran Huang
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210 USA
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Hillary P. Handler
- Molecular Diagnostics Laboratory, University of Minnesota Fairview Medical Center, Minneapolis, MN 55455, USA
| | - Min Fu
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David D. Bushart
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G. Shakkottai
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Chiu YT, Deutch AY, Wang W, Schmitz GP, Huang KL, Kocak DD, Llorach P, Bowyer K, Liu B, Sciaky N, Hua K, Chen C, Mott SE, Niehaus J, DiBerto JF, English J, Walsh JJ, Scherrer G, Herman MA, Wu Z, Wetsel WC, Roth BL. A suite of engineered mice for interrogating psychedelic drug actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559347. [PMID: 37808655 PMCID: PMC10557740 DOI: 10.1101/2023.09.25.559347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.
Collapse
Affiliation(s)
- Yi-Ting Chiu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ariel Y. Deutch
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Wei Wang
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Karen Lu Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - D. Dewran Kocak
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Pierre Llorach
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kasey Bowyer
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kunjie Hua
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah E. Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jesse Niehaus
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Justin English
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jessica J. Walsh
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC 27599, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhuhao Wu
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Luo Y, Chao Y, Owusu-Mensah RNA, Zhang J, Hirata T, Sugihara I. Neurogenic timing of the inferior olive subdivisions is related to the olivocerebellar projection topography. Sci Rep 2023; 13:7114. [PMID: 37130860 PMCID: PMC10154309 DOI: 10.1038/s41598-023-33497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
The olivocerebellar projection is organized into an intricate topographical connection from the inferior olive (IO) subdivisions to the longitudinally-striped compartments of cerebellar Purkinje Cells (PCs), to play an essential role in cerebellar coordination and learning. However, the central mechanisms for forming topography need to be clarified. IO neurons and PCs are generated during overlapping periods of a few days in embryonic development. Therefore, we examined whether their neurogenic timing is specifically involved in the olivocerebellar topographic projection relationship. First, we mapped neurogenic timing in the entire IO by using the neurogenic-tagging system of neurog2-CreER (G2A) mice and specific labeling of IO neurons with FoxP2. IO subdivisions were classified into three groups depending on their neurogenic timing range. Then, we examined the relationships in the neurogenic-timing gradient between IO neurons and PCs by labeling topographic olivocerebellar projection patterns and PC neurogenic timing. Early, intermediate, and late groups of IO subdivisions projected to late, intermediate, and early groups of the cortical compartments, respectively, except for a few particular areas. The results indicated that the olivocerebellar topographic relationship is essentially arranged according to the reverse neurogenic-timing gradients of the origin and target.
Collapse
Affiliation(s)
- Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yuhan Chao
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Richard Nana Abankwah Owusu-Mensah
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Jingyun Zhang
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tatsumi Hirata
- Brain Function Lab, National Institute of Genetics, 1111 Yata, Mishima-shi, Shizuoka-ken, 411-8540, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
6
|
Dorgans K, Guo D, Kurima K, Wickens J, Uusisaari MY. Designing AAV Vectors for Monitoring the Subtle Calcium Fluctuations of Inferior Olive Network in vivo. Front Cell Neurosci 2022; 16:825056. [PMID: 35573836 PMCID: PMC9093741 DOI: 10.3389/fncel.2022.825056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors, used as vehicles for gene transfer into the brain, are a versatile and powerful tool of modern neuroscience that allow identifying specific neuronal populations, monitoring and modulating their activity. For consistent and reproducible results, the AAV vectors must be engineered so that they reliably and accurately target cell populations. Furthermore, transgene expression must be adjusted to sufficient and safe levels compatible with the physiology of studied cells. We undertook the effort to identify and validate an AAV vector that could be utilized for researching the inferior olivary (IO) nucleus, a structure gating critical timing-related signals to the cerebellum. By means of systematic construct generation and quantitative expression profiling, we succeeded in creating a viral tool for specific and strong transfection of the IO neurons without adverse effects on their physiology. The potential of these tools is demonstrated by expressing the calcium sensor GCaMP6s in adult mouse IO neurons. We could monitor subtle calcium fluctuations underlying two signatures of intrinsic IO activity: the subthreshold oscillations (STOs) and the variable-duration action potential waveforms both in-vitro and in-vivo. Further, we show that the expression levels of GCaMP6s allowing such recordings are compatible with the delicate calcium-based dynamics of IO neurons, inviting future work into the network dynamics of the olivo-cerebellar system in behaving animals.
Collapse
Affiliation(s)
- Kevin Dorgans
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Da Guo
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kiyoto Kurima
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Marylka Yoe Uusisaari
| |
Collapse
|
7
|
Baizer JS, Webster CJ, Witelson SF. Individual variability in the size and organization of the human arcuate nucleus of the medulla. Brain Struct Funct 2021; 227:159-176. [PMID: 34613435 DOI: 10.1007/s00429-021-02396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
The arcuate nucleus (Arc) of the medulla is found in almost all human brains and in a small percentage of chimpanzee brains. It is absent in the brains of other mammalian species including mice, rats, cats, and macaque monkeys. The Arc is classically considered a precerebellar relay nucleus, receiving input from the cerebral cortex and projecting to the cerebellum via the inferior cerebellar peduncle. However, several studies have found aplasia of the Arc in babies who died of SIDS (Sudden Infant Death Syndrome), and it was suggested that the Arc is the locus of chemosensory neurons critical for brainstem control of respiration. Aplasia of the Arc, however, has also been reported in adults, suggesting that it is not critical for survival. We have examined the Arc in closely spaced Nissl-stained sections in thirteen adult human cases to acquire a better understanding of the degree of variability of its size and location in adults. We have also examined immunostained sections to look for neurochemical compartments in this nucleus. Caudally, neurons of the Arc are ventrolateral to the pyramidal tracts (py); rostrally, they are ventro-medial to the py and extend up along the midline. In some cases, the Arc is discontinuous, with a gap between sections with the ventrolaterally located and the ventromedially located neurons. In all cases, there is some degree of left-right asymmetry in Arc position, size, and shape at all rostro-caudal levels. Somata of neurons in the Arc express calretinin (CR), neuronal nitric oxide synthase (nNOS), and nonphosphorylated neurofilament protein (NPNFP). Calbindin (CB) is expressed in puncta whereas there is no expression of parvalbumin (PV) in somata or puncta. There is also immunostaining for GAD and GABA receptors suggesting inhibitory input to Arc neurons. These properties were consistent among cases. Our data show differences in location of caudal and rostral Arc neurons and considerable variability among cases in the size and shape of the Arc. The variability in size suggests that "hypoplasia" of the Arc is difficult to define. The discontinuity of the Arc in many cases suggests that establishing aplasia of the Arc requires examination of many closely spaced sections through the brainstem.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA.
| | - Charles J Webster
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
8
|
Two-Photon Laser Ablation and In Vivo Wide-Field Imaging of Inferior Olive Neurons Revealed the Recovery of Olivocerebellar Circuits in Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168357. [PMID: 34444107 PMCID: PMC8391264 DOI: 10.3390/ijerph18168357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
The cerebellum, a brain region with a high degree of plasticity, is pivotal in motor control, learning, and cognition. The cerebellar reserve is the capacity of the cerebellum to respond and adapt to various disorders via resilience and reversibility. Although structural and functional recovery has been reported in mammals and has attracted attention regarding treatments for cerebellar dysfunction, such as spinocerebellar degeneration, the regulatory mechanisms of the cerebellar reserve are largely unidentified, particularly at the circuit level. Herein, we established an optical approach using zebrafish, an ideal vertebrate model in optical techniques, neuroscience, and developmental biology. By combining two-photon laser ablation of the inferior olive (IO) and long-term non-invasive imaging of "the whole brain" at a single-cell resolution, we succeeded in visualization of the morphological changes occurring in the IO neuron population and showed at a single-cell level that structural remodeling of the olivocerebellar circuit occurred in a relatively short period. This system, in combination with various functional analyses, represents a novel and powerful approach for uncovering the mechanisms of the cerebellar reserve, and highlights the potential of the zebrafish model to elucidate the organizing principles of neuronal circuits and their homeostasis in health and disease.
Collapse
|
9
|
Kapitza C, Chunder R, Scheller A, Given KS, Macklin WB, Enders M, Kuerten S, Neuhuber WL, Wörl J. Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens. Int J Mol Sci 2021; 22:ijms22063233. [PMID: 33810144 PMCID: PMC8004938 DOI: 10.3390/ijms22063233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.
Collapse
Affiliation(s)
- Christopher Kapitza
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Anja Scheller
- University of Saarland, Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), 66421 Homburg, Germany;
| | - Katherine S. Given
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.S.G.); (W.B.M.)
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.S.G.); (W.B.M.)
| | - Michael Enders
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
- Department of Neuroanatomy, Institute of Anatomy, University Hospitals Bonn, University Bonn, 53115 Bonn, Germany
| | - Winfried L. Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Jürgen Wörl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
- Correspondence: ; Tel.: +49-913-1852-2870
| |
Collapse
|
10
|
Turecek J, Regehr WG. Cerebellar and vestibular nuclear synapses in the inferior olive have distinct release kinetics and neurotransmitters. eLife 2020; 9:e61672. [PMID: 33259288 PMCID: PMC7707816 DOI: 10.7554/elife.61672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023] Open
Abstract
The inferior olive (IO) is composed of electrically-coupled neurons that make climbing fiber synapses onto Purkinje cells. Neurons in different IO subnuclei are inhibited by synapses with wide ranging release kinetics. Inhibition can be exclusively synchronous, asynchronous, or a mixture of both. Whether the same boutons, neurons or sources provide these kinetically distinct types of inhibition was not known. We find that in mice the deep cerebellar nuclei (DCN) and vestibular nuclei (VN) are two major sources of inhibition to the IO that are specialized to provide inhibitory input with distinct kinetics. DCN to IO synapses lack fast synaptotagmin isoforms, release neurotransmitter asynchronously, and are exclusively GABAergic. VN to IO synapses contain fast synaptotagmin isoforms, release neurotransmitter synchronously, and are mediated by combined GABAergic and glycinergic transmission. These findings indicate that VN and DCN inhibitory inputs to the IO are suited to control different aspects of IO activity.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
11
|
Stonebridge R, Taliano RJ, Velilla TD, Anthony DC. Hypertrophy of the Anterior External Arcuate Fasciculus: A Rare Variant With Implications for the Development of the Arcuate Nucleus. Front Neuroanat 2020; 14:595500. [PMID: 33328906 PMCID: PMC7729007 DOI: 10.3389/fnana.2020.595500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
A rare anatomic variant of a markedly enlarged anterior external arcuate fasciculus (AEAF) on the ventral medullary surface is reported and compared to two controls. The hypertrophic AEAF was nine times larger in diameter than normal, whereas the arcuate nucleus (AN) and inferior olivary nucleus (ION) appeared histologically normal in size and neuronal distribution, and morphometric analysis of the AN confirmed that it was within the normal range. Calbindin-2 (calretinin, CALB2) expression was identified in the AN and in the fibers of the normal AEAF. The hypertrophic AEAF did not contain calbindin-2–expressing fibers. CALB2 expression was also present in the ventrolateral portion of the ION, both in the index case and in one of the control cases. The origin of the additional fibers was not identified; however, the potential origin of these fibers and its implications for the development of the AEAF are discussed.
Collapse
Affiliation(s)
- Renee Stonebridge
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Ross J Taliano
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Terra D Velilla
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States
| | - Douglas C Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, RI, United States.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020; 9:e58613. [PMID: 32639229 PMCID: PMC7438114 DOI: 10.7554/elife.58613] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Sascha du Lac
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurology, Johns Hopkins Medical InstituteBaltimoreUnited States
| |
Collapse
|
13
|
Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E, Spanke JK, Bosman LWJ, De Zeeuw CI. Quasiperiodic rhythms of the inferior olive. PLoS Comput Biol 2019; 15:e1006475. [PMID: 31059498 PMCID: PMC6538185 DOI: 10.1371/journal.pcbi.1006475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/28/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output. Activity of the inferior olive, transmitted via climbing fibers to the cerebellum, regulates initiation and amplitude of movements, signals unexpected sensory feedback, and directs cerebellar learning. It is characterized by widespread subthreshold oscillations and synchronization promoted by strong electrotonic coupling. In brain slices, subthreshold oscillations gate which inputs can be transmitted by inferior olivary neurons and which will not—dependent on the phase of the oscillation. We tested whether the subthreshold oscillations had a measurable impact on temporal patterning of climbing fiber activity in intact, awake mice. We did so by recording neural activity of the postsynaptic Purkinje cells, in which complex spike firing faithfully represents climbing fiber activity. For short intervals (<300 ms) many Purkinje cells showed spontaneously rhythmic complex spike activity. However, our experiments designed to evoke conditional responses indicated that complex spikes are not predominantly predicated on stimulus history. Our realistic network model of the inferior olive explains the experimental observations via continuous phase modulations of the subthreshold oscillations under the influence of synaptic fluctuations. We conclude that complex spike activity emerges from a quasiperiodic rhythm that is stabilized by electrotonic coupling between its dendrites, yet dynamically influenced by the status of their synaptic inputs.
Collapse
Affiliation(s)
- Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Cullen B. Owens
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jochen K. Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| |
Collapse
|
14
|
Turecek J, Regehr WG. Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release. Neuron 2019; 101:938-949.e4. [PMID: 30733150 DOI: 10.1016/j.neuron.2019.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitter release can be synchronous and occur within milliseconds of action potential invasion, or asynchronous and persist for tens of milliseconds. The molecular determinants of release kinetics remain poorly understood. It has been hypothesized that asynchronous release dominates when fast Synaptotagmin isoforms are far from calcium channels or when specialized sensors, such as Synaptotagmin 7, are abundant. Here we test these hypotheses for GABAergic projections onto neurons of the inferior olive, where release in different subnuclei ranges from synchronous to asynchronous. Surprisingly, neither of the leading hypotheses accounts for release kinetics. Instead, we find that rapid Synaptotagmin isoforms are abundant in subnuclei with synchronous release but absent where release is asynchronous. Viral expression of Synaptotagmin 1 transforms asynchronous synapses into synchronous ones. Thus, the nervous system controls levels of fast Synaptotagmin isoforms to regulate release kinetics and thereby controls the ability of synapses to encode spike rates or precise timing.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Driessen TM, Lee PJ, Lim J. Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. eLife 2018; 7:39981. [PMID: 30507379 PMCID: PMC6292693 DOI: 10.7554/elife.39981] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) affects the cerebellum and inferior olive, though previous research has focused primarily on the cerebellum. As a result, it is unknown what molecular alterations are present in the inferior olive, and whether these changes are found in other affected tissues. This study addresses these questions for the first time using two different SCA1 mouse models. We found that differentially regulated genes in the inferior olive segregated into several biological pathways. Comparison of the inferior olive and cerebellum demonstrates that vulnerable tissues in SCA1 are not uniform in their gene expression changes, and express largely discrete but some commonly enriched biological pathways. Importantly, we also found that brain-region-specific differences occur early in disease initiation and progression, and they are shared across the two mouse models of SCA1. This suggests different mechanisms of degeneration at work in the inferior olive and cerebellum.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Paul J Lee
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Unites States.,Department of Neuroscience, Yale School of Medicine, New Haven, Unites States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Unites States
| |
Collapse
|
16
|
The transgenic mouse line Igsf9- eGFP allows targeted stimulation of inferior olive efferents. J Neurosci Methods 2018; 296:84-92. [DOI: 10.1016/j.jneumeth.2017.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 11/20/2022]
|
17
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Wecker L, Marrero-Rosado B, Engberg ME, Johns BE, Philpot RM. 3-Acetylpyridine neurotoxicity in mice. Neurotoxicology 2016; 58:143-152. [PMID: 27986589 DOI: 10.1016/j.neuro.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
3-acetylpyridine (3-AP) is a metabolic antagonist used in research to decrease levels of nicotinamide (niacinamide) in laboratory animals. The administration of 3-AP followed by nicotinamide to rats leads to the selective destruction of neurons in the medial inferior olive, resulting in a loss of climbing fibers innervating cerebellar Purkinje cells and a consequent ataxia manifest by alterations in both balance and gait. Although 3-AP has also been administered to mice to destroy neurons in the inferior olive, there are limited studies quantifying the consequent effects on balance, and no studies on gait. Further, the relationship between 3-AP-induced lesions of the inferior olive and behavior has not been elucidated. Because 3-AP continues to be used for experiments involving mice, this study characterized the effects of this toxin on both balance and gait, and on the neuronal integrity of several brain regions involved in motor coordination. Results indicate that C57BL/6 mice are less sensitive to the neurotoxic effects of 3-AP than rats, and a dose more than 6.5 times that used for rats produces deficits in both balance and gait comparable to those in rats. This dose led to a significant (p<0.05) loss of NeuN(+) neurons in several subregions of the inferior olive including the rostral medial nucleus, dorsomedial cell column, ventrolateral protrusion, and cap of Kooy. Further, the number of NeuN(+) neurons in these subregions, with the exception of the dorsomedial cell column, was significantly (p<0.05) related to rotorod performance, implicating their involvement in this behavior.
Collapse
Affiliation(s)
- L Wecker
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States.
| | - B Marrero-Rosado
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - M E Engberg
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - B E Johns
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - R M Philpot
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|