1
|
Polini F, Budai R. Multimodal transcutaneous auricular vagus nerve stimulation: An option in the treatment of sleep bruxism in a "polyvagal" context. Cranio 2024; 42:779-787. [PMID: 35322755 DOI: 10.1080/08869634.2022.2055866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To consider the possible role of the vagus nerve (VN) in the pathophysiology of sleep bruxism (SB) and introduce a multimodal protocol of transcutaneous auricular stimulation of the VN in the treatment of SB patients. METHODS Ten patients with SB underwent four sessions of electric transcutaneous auricular vagus nerve stimulation (ta-VNS) in specific auricular areas. The patients were advised to manually stimulate the same areas between sessions. Masticatory muscle activity and sleep parameters were measured by a polysomnography (PSG) before and after the treatment. Heart rate variability (HRV) parameters were measured during each stimulation. RESULTS PSG analysis revealed a statistically significant reduction in tonic SB index and tonic contraction time. HRV parameters showed a statistically significant increase in mean values of the vagal tone after each session of stimulation. No side effect was reported. CONCLUSION The stimulation of the VN might have a role in the treatment of SB.
Collapse
Affiliation(s)
- Francesco Polini
- Maxillofacial Surgery Clinic, University Hospital of Udine, Udine, Italy
| | - Riccardo Budai
- Neurophysiopathology Operative Unit, University Hospital of Udine, Udine, Italy
| |
Collapse
|
2
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. Sci Rep 2024; 14:24391. [PMID: 39420188 PMCID: PMC11487125 DOI: 10.1038/s41598-024-72179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Grants
- R01 MH126971 NIMH NIH HHS
- federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF) in the Center for Behavioral Brain Sciences (CBBS, ZS/2016/04/78113)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – ProjectID 425899994 – Sonderforschungsbereiche 1436 (SFB 1436)
- Human Brain Project, Specific Grant Agreement 3 (SGA3), Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Sonderforschungsbereiche 1315 (SFB 1315).
- Center for Behavioral Brain Sciences (CBBS) NeuroNetzwerk 17
- the German Federal Ministry of Education and Research (BMBF, funding code 01ED2102B) under the aegis of the EU Joint Programme – Neurodegenerative Disease Research (JPND)
- Sonderforschungsbereich 1315, Project B06, Sonderforschungsbereich 1436
- Project A08, ARUK SRF2018B-004
- CBBS Neural Network (CBBS, ZS/2016/04/78113)
- NIH R01MH126971
- Otto-von-Guericke-Universität Magdeburg (3121)
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Calida Pereira
- Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Camargo L, Pacheco-Barrios K, Gianlorenço AC, Menacho M, Choi H, Song JJ, Fregni F. Evidence of bottom-up homeostatic modulation induced taVNS during emotional and Go/No-Go tasks. Exp Brain Res 2024; 242:2069-2081. [PMID: 38963558 DOI: 10.1007/s00221-024-06876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Bilateral transcutaneous auricular vagus nerve stimulation (taVNS) - a non-invasive neuromodulation technique - has been investigated as a safe and feasible technique to treat many neuropsychiatric conditions. such as epilepsy, depression, anxiety, and chronic pain. Our aim is to investigate the effect of taVNS on neurophysiological processes during emotional and Go/No-Go tasks, and changes in frontal alpha asymmetry. We performed a randomized, double-blind, sham-controlled trial with 44 healthy individuals who were allocated into two groups (the active taVNS group and the sham taVNS group). Subjects received one session of taVNS (active or sham) for 60 min. QEEG was recorded before and after the interventions, and the subjects were assessed while exposed to emotional conditions with sad and happy facial expressions, followed by a Go/No-Go trial. The results demonstrated a significant increase in N2 amplitude in the No-Go condition for the active taVNS post-intervention compared to the sham taVNS after adjusting by handedness, mood, and fatigue levels (p = 0.046), significantly reduced ERD during sad conditions after treatment (p = 0.037), and increased frontal alpha asymmetry towards the right frontal hemisphere during the emotional task condition (p = 0.046). Finally, we observed an interesting neural signature in this study that suggests a bottom-up modulation from brainstem/subcortical to cortical areas as characterized by improved lateralization of alpha oscillations towards the frontal right hemisphere, and changes in ERP during emotional and Go/No-Go tasks that suggests a better subcortical response to the tasks. Such bottom-up effects may mediate some of the clinical effects of taVNS.
Collapse
Affiliation(s)
- Lucas Camargo
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
| | - Kevin Pacheco-Barrios
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Anna Carolyna Gianlorenço
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Maryela Menacho
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- Neurive Co., Ltd, Gimhae, Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd, Gimhae, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America.
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ludwig M, Pereira C, Keute M, Düzel E, Betts MJ, Hämmerer D. Evaluating phasic transcutaneous vagus nerve stimulation (taVNS) with pupil dilation: the importance of stimulation intensity and sensory perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605407. [PMID: 39131302 PMCID: PMC11312456 DOI: 10.1101/2024.07.27.605407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive method to modulate physiological markers of noradrenergic activity of the Locus Coeruleus (LC), such as pupil dilation, is increasingly more discussed. However, taVNS studies show high heterogeneity of stimulation effects. Therefore, a taVNS setup was established here to test different frequencies (10 Hz and 25 Hz) and intensities (3 mA and 5 mA) during phasic stimulation (3 s) with time-synchronous recording of pupil dilation in younger adults. Specifically, phasic real taVNS and higher intensity led to increased pupil dilation, which is consistent with phasic invasive VNS studies in animals. The results also suggest that the influence of intensity on pupil dilation may be stronger than that of frequency. However, there was an attenuation of taVNS-induced pupil dilation when differences in perception of sensations were considered. Specifically, pupil dilation during phasic stimulation increased with perceived stimulation intensity. The extent to which the effect of taVNS induces pupil dilation and the involvement of sensory perception in the stimulation process are discussed here and require more extensive research. Additionally, it is crucial to strive for comparable stimulation sensations during systematic parameter testing in order to investigate possible effects of phasic taVNS on pupil dilation in more detail.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Calida Pereira
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Keute
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Psychology, University of Innsbruck
| |
Collapse
|
5
|
Vitale V, Bindi F, Velloso Alvarez A, de la Cuesta-Torrado M, Sala G, Sgorbini M. Transcutaneous Auricular Vagal Nerve Stimulation in Healthy Non-Sedated Horses: A Feasibility Study. Vet Sci 2024; 11:241. [PMID: 38921988 PMCID: PMC11209208 DOI: 10.3390/vetsci11060241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to evaluate the feasibility of transcutaneous auricular vagal nerve stimulation (tAVNS) in healthy horses and its effect on heart rate variability (HRV). The study comprised three phases: the selection of mares, their acclimatization to the tAVNS, and the stimulation phase. Stimulation was performed with two electrodes positioned on the right pinna. The settings were 0.5 mA, 250 μs, and 25 Hz for pulse amplitude, pulse width, and pulse frequency, respectively. HRV was analysed before (B1), during (T), and after (B2) the tAVNS. From the 44 mares initially included, only 7 completed the three phases. In these mares, the heart rate (HR) was significantly lower, and frequency domain parameters showed an increased parasympathetic tone in B2 compared with B1. However, in 3/7 mares, the HR was significantly higher during T compared with B1 and B2, compatible with a decreased parasympathetic tone, while in 4/7 mares, the HR was significantly lower and the parasympathetic nervous system index was significantly higher during T and B2 compared with B1. The tAVNS is an economical and easy procedure to perform and has the potential to stimulate vagal activity; however, it was poorly tolerated in the mares included in this study.
Collapse
Affiliation(s)
- Valentina Vitale
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - Francesca Bindi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| | - Ana Velloso Alvarez
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - María de la Cuesta-Torrado
- Department of Animal Medicine and Surgery, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain; (A.V.A.); (M.d.l.C.-T.)
| | - Giulia Sala
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56122 Pisa, Italy; (F.B.); (G.S.); (M.S.)
| |
Collapse
|
6
|
Yang Y, Zhang R, Zhong Z, Li J, Feng Y. Efficacy of transauricular vagus nerve stimulation for the treatment of chemotherapy-induced painful peripheral neuropathy: a randomized controlled exploratory study. Neurol Sci 2024; 45:2289-2300. [PMID: 38063922 DOI: 10.1007/s10072-023-07229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/26/2023] [Indexed: 04/17/2024]
Abstract
BACKGROUND Chemotherapy-induced painful peripheral neuropathy (CIPN) is a common adverse event in cancer patients, and there is still a lack of effective treatment. Transauricular vagal nerve stimulation (taVNS) is a minimally invasive treatment, but there are few reports regarding its efficacy for CIPN. OBJECTIVE To investigate the efficacy and possible mechanism of taVNS in patients with CIPN. METHODS Twenty-seven patients with CIPN were randomly divided into a taVNS group (n = 14) and a sham stimulation (SS) group (n = 13). A numerical rating scale (NRS) for pain, NCICTCAE 4.0 (neurotoxicity classification), quantitative sensory test (QST), Short-Form-Health Survey-12 (SF-12), and Athens Insomnia Scale (AIS) were administered before the intervention (D-10) and on the day after the intervention (D0), and the inflammatory cytokines in plasma were also measured. The NRS, NCI-CTCAE 4.0, SF-12, and AIS were administered again at D30 and D90. RESULTS Compared with the SS group, the NRS and AIS in the taVNS group were significantly lower at D0. The impact lasted until D30. There were no statistically significant differences in the NRS and AIS between the 2 groups at D90. On D30, the mental component score of the SF-12 was significantly higher in the taVNS group than in the SS group. No adverse events were found. There was no significant difference in QST and plasma inflammatory cytokines between the 2 groups. CONCLUSION taVNS can relieve chemotherapy-induced neuropathic pain in the short term, can improve sleep status and quality of life, and is expected to become a novel clinical treatment method for CIPN.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Pain Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ran Zhang
- Department of Anesthesiology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zhifang Zhong
- Department of Pain Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jun Li
- Department of Pain Medicine, Peking University People's Hospital, Beijing, People's Republic of China.
| | - Yi Feng
- Department of Pain Medicine, Peking University People's Hospital, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Teckentrup V, Kroemer NB. Mechanisms for survival: vagal control of goal-directed behavior. Trends Cogn Sci 2024; 28:237-251. [PMID: 38036309 DOI: 10.1016/j.tics.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
9
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
10
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics (Basel) 2023; 12:1347. [PMID: 37760644 PMCID: PMC10525519 DOI: 10.3390/antibiotics12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.
Collapse
Affiliation(s)
- Nicholas Biniaz-Harris
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
| | - Mara Kuvaldina
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
12
|
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN. Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Hum Neurosci 2023; 17:1152064. [PMID: 37457500 PMCID: PMC10342206 DOI: 10.3389/fnhum.2023.1152064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been recognized as a useful neuromodulation tool to target the central nervous system by electrical stimulation of peripheral nerves. Activation of the nucleus of the solitary tract (NTS) in the brainstem by vagal afferent nerve fibers allows for modulation of various higher order brain regions, including limbic and cerebral cortex structures. Along with neurological and psychiatric indications, clinical and preclinical studies suggest that VNS can improve memory. While the underlying mechanisms to improve memory with VNS involve brain areas, such as the prefrontal cortex and processes including alertness and arousal, here we focus on VNS-induced memory improvements related to the hippocampus, the main area implicated in memory acquisition. In addition, we detail research demonstrating that a targeted approach to VNS can modify memory outcomes and delve into the molecular mechanisms associated with these changes. These findings indicate that a greater understanding of VNS mechanisms while also considering stimulation parameters, administration site, timing in relation to training, and sex-specific factors, may allow for optimal VNS application to enhance memory.
Collapse
Affiliation(s)
- Laura K. Olsen
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ernesto Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Aerospace Physiology, Wright-Patterson Air Force Base, OH, United States
- Consortium of Universities of the Washington Metropolitan Area, Washington, DC, United States
| | - Lindsey K. McIntire
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Infoscitex Corporation, Dayton, OH, United States
| | - Candice N. Hatcher-Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
| |
Collapse
|
13
|
Sant'Anna FM, Resende RCL, Sant'Anna LB, Couceiro SLM, Pinto RBS, Sant'Anna MB, Chao LW, Szeles JC, Kaniusas E. Auricular vagus nerve stimulation: a new option to treat inflammation in COVID-19? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230345. [PMID: 37283364 DOI: 10.1590/1806-9282.20230345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 06/08/2023]
Affiliation(s)
- Fernando Mendes Sant'Anna
- Universidade Federal do Rio de Janeiro - Macaé (RJ), Brazil
- Hospital Santa Izabel - Cabo Frio (RJ), Brazil
| | | | | | | | | | | | - Liaw Wen Chao
- Universidade de São Paulo, Hospital das Clínicas - São Paulo (SP), Brazil
| | - Jozsef Constantin Szeles
- Medical University of Vienna, Department of Surgery, Division of Vascular Surgery - Vienna, Austria
| | - Eugenijus Kaniusas
- Vienna Universit y of Technology, Institute of Biomedical Electronics, Faculty of Electrical Engineering and Information Technology - Vienna, Austria
| |
Collapse
|
14
|
Messina R, Christensen RH, Cetta I, Ashina M, Filippi M. Imaging the brain and vascular reactions to headache treatments: a systematic review. J Headache Pain 2023; 24:58. [PMID: 37221469 DOI: 10.1186/s10194-023-01590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Neuroimaging studies have made an important contribution to our understanding of headache pathophysiology. This systematic review aims to provide a comprehensive overview and critical appraisal of mechanisms of actions of headache treatments and potential biomarkers of treatment response disclosed by imaging studies. MAIN BODY We performed a systematic literature search on PubMed and Embase databases for imaging studies investigating central and vascular effects of pharmacological and non-pharmacological treatments used to abort and prevent headache attacks. Sixty-three studies were included in the final qualitative analysis. Of these, 54 investigated migraine patients, 4 cluster headache patients and 5 patients with medication overuse headache. Most studies used functional magnetic resonance imaging (MRI) (n = 33) or molecular imaging (n = 14). Eleven studies employed structural MRI and a few used arterial spin labeling (n = 3), magnetic resonance spectroscopy (n = 3) or magnetic resonance angiography (n = 2). Different imaging modalities were combined in eight studies. Despite of the variety of imaging approaches and results, some findings were consistent. This systematic review suggests that triptans may cross the blood-brain barrier to some extent, though perhaps not sufficiently to alter the intracranial cerebral blood flow. Acupuncture in migraine, neuromodulation in migraine and cluster headache patients, and medication withdrawal in patients with medication overuse headache could promote headache improvement by reverting headache-affected pain processing brain areas. Yet, there is currently no clear evidence for where each treatment acts, and no firm imaging predictors of efficacy. This is mainly due to a scarcity of studies and heterogeneous treatment schemes, study designs, subjects, and imaging techniques. In addition, most studies used small sample sizes and inadequate statistical approaches, which precludes generalizable conclusions. CONCLUSION Several aspects of headache treatments remain to be elucidated using imaging approaches, such as how pharmacological preventive therapies work, whether treatment-related brain changes may influence therapy effectiveness, and imaging biomarkers of clinical response. In the future, well-designed studies with homogeneous study populations, adequate sample sizes and statistical approaches are needed.
Collapse
Affiliation(s)
- R Messina
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - R H Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - I Cetta
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - M Filippi
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
15
|
Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, Pinin-Osorio C, Lopez M. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci 2023; 17:1096865. [PMID: 37051148 PMCID: PMC10083261 DOI: 10.3389/fnins.2023.1096865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTranscutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes.Methods20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset.ResultsDuring active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes.DiscussionOur results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.
Collapse
Affiliation(s)
- Iñaki G. Gurtubay
- Department of Neurophysiology, University Hospital of Navarre, Pamplona, Spain
- Navarrabiomed Biomedical Research Centre, Pamplona, Spain
- *Correspondence: Iñaki G. Gurtubay,
| | | | | | | | - David Calvo
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Asturias, Spain
| | - Pedro Bermejo
- Neurologist, Translational Medicine UCB Pharma, Brussels, Belgium
| | | | - Miguel Lopez
- Xana Smart Neurostimulation, Epalinges, Switzerland
| |
Collapse
|
16
|
Shemonti AS, Plebani E, Biscola NP, Jaffey DM, Havton LA, Keast JR, Pothen A, Dundar MM, Powley TL, Rajwa B. A novel statistical methodology for quantifying the spatial arrangements of axons in peripheral nerves. Front Neurosci 2023; 17:1072779. [PMID: 36968498 PMCID: PMC10034020 DOI: 10.3389/fnins.2023.1072779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
A thorough understanding of the neuroanatomy of peripheral nerves is required for a better insight into their function and the development of neuromodulation tools and strategies. In biophysical modeling, it is commonly assumed that the complex spatial arrangement of myelinated and unmyelinated axons in peripheral nerves is random, however, in reality the axonal organization is inhomogeneous and anisotropic. Present quantitative neuroanatomy methods analyze peripheral nerves in terms of the number of axons and the morphometric characteristics of the axons, such as area and diameter. In this study, we employed spatial statistics and point process models to describe the spatial arrangement of axons and Sinkhorn distances to compute the similarities between these arrangements (in terms of first- and second-order statistics) in various vagus and pelvic nerve cross-sections. We utilized high-resolution transmission electron microscopy (TEM) images that have been segmented using a custom-built high-throughput deep learning system based on a highly modified U-Net architecture. Our findings show a novel and innovative approach to quantifying similarities between spatial point patterns using metrics derived from the solution to the optimal transport problem. We also present a generalizable pipeline for quantitative analysis of peripheral nerve architecture. Our data demonstrate differences between male- and female-originating samples and similarities between the pelvic and abdominal vagus nerves.
Collapse
Affiliation(s)
| | - Emanuele Plebani
- Department of Computer & Information Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah M. Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Janet R. Keast
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Alex Pothen
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - M. Murat Dundar
- Department of Computer & Information Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Hemodynamic responses to low-level transcutaneous auricular nerve stimulation in young volunteers. IBRO Neurosci Rep 2023; 14:154-159. [PMID: 36824666 PMCID: PMC9941060 DOI: 10.1016/j.ibneur.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Objectives The aim of this study was to characterize cardiovascular autonomic responses during two constant current intensities below sensory threshold of transcutaneous auricular nerve stimulation (taNS). On this basis, a protocol for taNS with autonomic modulatory potential could be proposed. Subjects and methods We included 26 men and 24 women, mean age 26. Data were collected during three randomly allocated 20-minute right tragus stimulation sessions - a) no-stimulation (sham), b) 90 µA (arbitrary), and c) 130 µA (near the lowest sensory threshold in majority). Stimulation was 20 Hz, rectangular pulse width of 2 ms, duty cycle 2-second on/off. To assess autonomic responses, we continuously recorded ECG, non-invasive arterial blood pressure (BP) and thoracic impedance cardiography data. Ten-minute data were compared. Fast Fourier transform of RR intervals was performed on 10-minute recordings as well. Low frequency and high frequency power spectra were calculated. Friedman test or one-way ANOVA for repeated measurements and Mann-Whitney or Wilcoxon's signed-rank test, or t-test were carried out. P < 0.05 was considered significant. Results At 130 µA stimulation, cardiac output significantly decreased (p < 0.05), driven by significant heart rate drop in women, and stroke volume and contractility drop in men, pointing to a gender-related autonomic responses. We observed no significant changes in BP, or variability parameters. Significantly higher body size and BP were found in men, as expected. Conclusions It seems that tested taNS protocol has a potential for cardiac autonomic modulation in majority of young healthy men as well as women. Further studies are however needed to prove the therapeutic potential of this stimulation protocol in different patient groups.
Collapse
|
18
|
Forte G, Favieri F, Leemhuis E, De Martino ML, Giannini AM, De Gennaro L, Casagrande M, Pazzaglia M. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants. PeerJ 2022; 10:e14447. [PMID: 36438582 PMCID: PMC9686410 DOI: 10.7717/peerj.14447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) stimulating the auricular branch of the vagus nerve along a well-defined neuroanatomical pathway, has promising therapeutic efficacy. Potentially, taVNS can modulate autonomic responses. Specifically, taVNS can induce more consistent parasympathetic activation and may lead to increased heart rate variability (HRV). However, the effects of taVNS on HRV remain inconclusive. Here, we investigated changes in HRV due to brief alteration periods of parasympathetic-vagal cardiac activity produced by taVNS on the cymba as opposed to control administration via the helix. Materials and Methods We compared the effect of 10 min of active stimulation (i.e., cymba conchae) to sham stimulation (i.e., helix) on peripheral cardiovascular response, in 28 healthy young adults. HRV was estimated in the time domain and frequency domain during the overall stimulation. Results Although active-taVNS and sham-taVNS stimulation did not differ in subjective intensity ratings, the active stimulation of the cymba led to vagally mediated HRV increases in both the time and frequency domains. Differences were significant between active-taVNS and both sham-taVNS and resting conditions in the absence of stimulation for various HRV parameters, but not for the low-frequency index of HRV, where no differences were found between active-taVNS and sham-taVNS conditions. Conclusion This work supports the hypothesis that taVNS reliably induces a rapid increase in HRV parameters when auricular stimulation is used to recruit fibers in the cymba compared to stimulation at another site. The results suggest that HRV can be used as a physiological indicator of autonomic tone in taVNS for research and potential therapeutic applications, in line with the established effects of invasive VNS. Knowledge of the physiological effect of taVNS short sessions in modulating cardiovagal processing is essential for enhancing its clinical use.
Collapse
Affiliation(s)
- Giuseppe Forte
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Francesca Favieri
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Erik Leemhuis
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Luisa De Martino
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | | | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Casagrande
- Dipartimento di Psicologia Clinica, Dinamica e Salute, University of Roma “La Sapienza”, Rome, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
19
|
Brenner B, Ericson T, Kohan L. Advances in Non-Invasive Neuromodulation. Curr Pain Headache Rep 2022; 26:709-717. [PMID: 36074256 DOI: 10.1007/s11916-022-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Pain medicine is rapidly expanding. The gap in treatment for patients with chronic pain in between traditional conservative therapy and major invasive surgery is closing. Neuromodulation is one therapeutic area that has continued to show promise for treatment of chronic pain. Our aim is to review updates in non-invasive neuromodulation (NIN) techniques as an adjunct for various chronic pain conditions. RECENT FINDINGS Overall, the literature suggests that NIN techniques such as tCDS, TMS, TENS, tVNS, and HIFUS/LIFUS have utility in treating various types of chronic pain and have a promising future. There is a better understanding of the mechanistic basis for pain relief from NIN, as well as refinement in technology improving NIN therapy success. Future studies will need to focus on continuing to refine protocols for optimal benefit from NIN as well as implementing larger RCTs to improve the quality of data being generated in the field.
Collapse
Affiliation(s)
- Brian Brenner
- Department of Anesthesiology, Division of Pain Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tyler Ericson
- Department of Anesthesiology, Division of Pain Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lynn Kohan
- Department of Anesthesiology, Division of Pain Medicine, University of Virginia, Charlottesville, VA, USA.
- Pain Management Center, Fontaine Research Park, Third Floor, 545 Ray C Hunt Dr., Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Wang Y, Li L, Li S, Fang J, Zhang J, Wang J, Zhang Z, Wang Y, He J, Zhang Y, Rong P. Toward Diverse or Standardized: A Systematic Review Identifying Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve in Nomenclature. Neuromodulation 2022; 25:366-379. [PMID: 35396069 DOI: 10.1111/ner.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES After 20 years of development, there is confusion in the nomenclature of transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN). We performed a systematic review of transcutaneous stimulation of ABVN in nomenclature. MATERIALS AND METHODS A systematic search of the literature was carried out, using the bibliographic search engine PubMed. The search covered articles published up until June 11, 2020. We recorded the full nomenclature and abbreviated nomenclature same or similar to transcutaneous stimulation of ABVN in the selected eligible studies, as well as the time and author information of this nomenclature. RESULTS From 261 studies, 67 full nomenclatures and 27 abbreviated nomenclatures were finally screened out, transcutaneous vagus nerve stimulation and tVNS are the most common nomenclature, accounting for 38.38% and 42.06%, respectively. In a total of 97 combinations of full nomenclatures and abbreviations, the most commonly used nomenclature for the combination of transcutaneous vagus nerve stimulation and tVNS, accounting for 30.28%. Interestingly, the combination of full nomenclatures and abbreviations is not always a one-to-one relationship, there are ten abbreviated nomenclatures corresponding to transcutaneous vagus nerve stimulation, and five full nomenclatures corresponding to tVNS. In addition, based on the analysis of the usage habits of nomenclature in 21 teams, it is found that only three teams have fixed habits, while other different teams or the same team do not always use the same nomenclature in their paper. CONCLUSIONS The phenomenon of confusion in the nomenclature of transcutaneous stimulation of ABVN is obvious and shows a trend of diversity. The nomenclature of transcutaneous stimulation of ABVN needs to become more standardized in the future.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Bolz A, Bolz LO. Technical aspects and future approaches in transcutaneous vagus nerve stimulation (tVNS). Auton Neurosci 2022; 239:102956. [DOI: 10.1016/j.autneu.2022.102956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
22
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system - Emphasis on the somato-visceral interface. Auton Neurosci 2021; 236:102887. [PMID: 34634680 PMCID: PMC8627476 DOI: 10.1016/j.autneu.2021.102887] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Due to its pivotal role in autonomic networks, the vagus attracts continuous interest from both basic scientists and clinicians. In particular, recent advances in vagus nerve stimulation strategies and their application to pathological conditions beyond epilepsy provide a good opportunity to recall basic features of vagal peripheral and central anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents. Thus, the vagus system participates significantly in what may be defined as "somato-visceral interface".
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
23
|
Human intracranial recordings reveal distinct cortical activity patterns during invasive and non-invasive vagus nerve stimulation. Sci Rep 2021; 11:22780. [PMID: 34815529 PMCID: PMC8611055 DOI: 10.1038/s41598-021-02307-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Vagus nerve stimulation (VNS) is being used increasingly to treat a wide array of diseases and disorders. This growth is driven in part by the putative ability to stimulate the nerve non-invasively. Despite decades of use and a rapidly expanding application space, we lack a complete understanding of the acute effects of VNS on human cortical neurophysiology. Here, we investigated cortical responses to sub-perceptual threshold cervical implanted (iVNS) and transcutaneous auricular (taVNS) vagus nerve stimulation using intracranial neurophysiological recordings in human epilepsy patients. To understand the areas that are modulated by VNS and how they differ depending on invasiveness and stimulation parameters, we compared VNS-evoked neural activity across a range of stimulation modalities, frequencies, and amplitudes. Using comparable stimulation parameters, both iVNS and taVNS caused subtle changes in low-frequency power across broad cortical networks, which were not the same across modalities and were highly variable across participants. However, within at least some individuals, it may be possible to elicit similar responses across modalities using distinct sets of stimulation parameters. These results demonstrate that both invasive and non-invasive VNS cause evoked changes in activity across a set of highly distributed cortical networks that are relevant to a diverse array of clinical, rehabilitative, and enhancement applications.
Collapse
|
24
|
Ludwig M, Wienke C, Betts MJ, Zaehle T, Hämmerer D. Current challenges in reliably targeting the noradrenergic locus coeruleus using transcutaneous auricular vagus nerve stimulation (taVNS). Auton Neurosci 2021; 236:102900. [PMID: 34781120 DOI: 10.1016/j.autneu.2021.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), as a non-invasive brain stimulation technique may influence the locus coeruleus-norepinephrine system (LC-NE system) via modulation of the Vagus Nerve (VN) which projects to the LC. Few human studies exist examining the effects of taVNS on the LC-NE system and studies to date assessing the ability of taVNS to target the LC yield heterogeneous results. The aim of this review is to present an overview of the current challenges in assessing effects of taVNS on LC function and how translational approaches spanning animal and human research can help in this regard. A particular emphasis of the review discusses how the effects of taVNS may be influenced by changes in structure and function of the LC-NE system across the human lifespan and in disease.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Matthew J Betts
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Innsbruck; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
25
|
de Gurtubay IG, Bermejo P, Lopez M, Larraya I, Librero J. Evaluation of different vagus nerve stimulation anatomical targets in the ear by vagus evoked potential responses. Brain Behav 2021; 11:e2343. [PMID: 34551214 PMCID: PMC8613407 DOI: 10.1002/brb3.2343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Electrical auricular vagus nerve stimulation (taVNS) is an emerging therapy. Stimuli are transported to brainstem nuclei, whereby its multiple projections reach to many subcortical and cortical areas, thus allowing the neuromodulation of several systemic physiological processes. We aim to define the best auricular target for taVNS through vagus somatosensory evoked potential (VSEP) elicited stimulating different auricular areas with different electrode sizes. METHODS Twenty-six subjects were enrolled. Three stimulation areas were studied: simultaneous cymba and cavum (CC), cymba (C) and earlobe (L); and two electrode sizes: extra-large (X) and small (S). We studied the effect of five combinations (CCX, CCS, CS, LX and LS) on VSEP´s latency and amplitude, and sensory and pain threshold (Pt) using a lineal mixed model regression analysis. We used CS combination, used in a commercial device, as reference model. RESULTS Valid VSEP were obtained for CCX, CCS and CS but not in LX and LS. Both CCS and CCX tests showed significant amplitude increases. The same effect was observed in CCX using CCS as reference. Significant increases in Pt were found for CCX and LX. The same effect was observed in CCX using LX as reference. CONCLUSION The results suggest that CC and C areas are active targets for taVNS but not for earlobe, as anatomical data support. Considering that amplitude reflects the synchronized electrical activity generated, we conclude the most effective topography is the simultaneous stimulation of cymba and concha. The use of X-sized electrodes increases the amplitudes and makes the stimulation more comfortable.
Collapse
Affiliation(s)
| | - Pedro Bermejo
- Department of Neurology, Puerta de Hierro Hospital, Madrid, Spain.,Walden Medical Neurodigital Therapies, Gijón, Spain
| | - Miguel Lopez
- Walden Medical Neurodigital Therapies, Gijón, Spain
| | | | - Julian Librero
- Biomedical Research Centre of the Government of Navarre, Pamplona, Spain
| |
Collapse
|
26
|
Kreisberg E, Esmaeilpour Z, Adair D, Khadka N, Datta A, Badran BW, Bremner JD, Bikson M. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimul 2021; 14:1419-1430. [PMID: 34517143 PMCID: PMC8608747 DOI: 10.1016/j.brs.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transcutaneous auricular Vagus Nerve Stimulation (taVNS) applies low-intensity electrical current to the ear with the intention of activating the auricular branch of the Vagus nerve. The sensitivity and selectivity of stimulation applied to the ear depends on current flow pattern produced by a given electrode montage (size and placement). OBJECTIVE We compare different electrodes designs for taVNS considering both the predicted peak electric fields (sensitivity) and their spatial distribution (selectivity). METHODS Based on optimized high-resolution (0.47 mm) T1 and T2 weighted MRI, we developed an anatomical model of the left ear and the surrounding head tissues including brain, CSF/meninges, skull, muscle, blood vessels, fat, cartilage, and skin. The ear was further segmented into 6 regions of interest (ROI) based on various nerve densities: cavum concha, cymba concha, crus of helix, tragus, antitragus, and earlobe. A range of taVNS electrode montages were reproduced spanning varied electrodes sizes and placements over the tragus, cymba concha, earlobe, cavum concha, and crus of helix. Electric field across the ear (from superficial skin to cartilage) for each montage at 1 mA or 2 mA taVNS, assuming an activation threshold of 6.15 V/m, 12.3 V/m or 24.6 V/m was predicted using a Finite element method (FEM). Finally, considering every ROI, we calculated the sensitivity and selectivity of each montage. RESULTS Current flow patterns through the ear were highly specific to the electrode montage. Electric field was maximal at the ear regions directly under the electrodes, and for a given total current, increases with decreasing electrode size. Depending on the applied current and nerves threshold, activation may also occur in the regions between multiple anterior surface electrodes. Each considered montage was selective for one or two regions of interest. For example, electrodes across the tragus restricted significant electric field to the tragus. Stimulation across the earlobe restricted significant electric field to the earlobe and the antitragus. Because of this relative selectivity, use of control ear montages in experimental studies, support testing of targeting. Relative targeting was robust across assumptions of activation threshold and tissue properties. DISCUSSION Computational models provide additional insight on how details in electrode shape and placement impact sensitivity (how much current is needed) and selectivity (spatial distribution), thereby supporting analysis of existing approaches and optimization of new devices. Our result suggest taVNS current patterns and relative target are robust across individuals, though (variance in) axon morphology was not represented.
Collapse
Affiliation(s)
- Erica Kreisberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, USA, The City College of the City University of New York, New York, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, And the Atlanta VA Medical Center, Decatur, Atlanta, GA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
27
|
Széles JC, Kampusch S, Thürk F, Clodi C, Thomas N, Fichtenbauer S, Schwanzer C, Schwarzenberger S, Neumayer C, Kaniusas E. Bursted auricular vagus nerve stimulation alters heart rate variability in healthy subjects. Physiol Meas 2021; 42. [PMID: 34496357 DOI: 10.1088/1361-6579/ac24e6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
Objective.Recent research suggests that percutaneous auricular vagus nerve stimulation (pVNS) beneficially modulates the autonomic nervous system (ANS). Bursted pVNS seems to be efficient for nerve excitation. Bursted pVNS effects on cardiac autonomic modulation are not disclosed yet.Approach.For the first time, the present study evaluates the effect of pVNS on cardiac autonomic modulation in healthy subjects (n = 9) using two distinct bursted stimulation patterns (biphasic and triphasic stimulation) and heart rate variability analysis (HRV). Stimulation was delivered via four needle electrodes in vagally innervated regions of the right auricle. Each of the two bursted stimulation patterns was applied twice in randomized order over four consecutive stimulation sessions per subject.Main results.Bursted pVNS did not change heart rate, blood pressure, and inflammatory parameters in study subjects. pVNS significantly increased the standard deviation of heart inter-beat intervals, from 46.39 ± 10.4 ms to 63.46 ± 22.47 ms (p < 0.05), and the total power of HRV, from 1475.7 ± 616.13 ms2to 3190.5 ± 2037.0 ms2(p < 0.05). The high frequency (HF) power, the low frequency (LF) power, and theLF/HFratio did not change during bursted pVNS. Both stimulation patterns did not show any significant differences in cardiac autonomic modulation. Stimulation intensity to reach a tingling sensation was significantly lower in triphasic compared to biphasic stimulation (p< 0.05). Bursted stimulation was well tolerated.Significance.Bursted pVNS seems to affect cardiac autonomic modulation in healthy subjects, with no difference between biphasic and triphasic stimulation, the latter requiring lower stimulation intensities. These findings foster implementation of more efficient pVNS stimulation.
Collapse
Affiliation(s)
- Jozsef C Széles
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Kampusch
- SzeleSTIM GmbH, Vienna, Austria.,Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
| | - Florian Thürk
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
| | - Christian Clodi
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Norbert Thomas
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Severin Fichtenbauer
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
| | - Christian Schwanzer
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
| | | | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
28
|
Kara M, Bitik O, Üstün GG, Ülkir M, Sargon MF, Aksu AE. A supportive donor nerve for long-term facial paralysis: Anatomical analysis of the posterior auricular nerve and micro-anatomical comparison with zygomatic nerve. J Plast Reconstr Aesthet Surg 2021; 75:773-781. [PMID: 34776387 DOI: 10.1016/j.bjps.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/17/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The posterior auricular nerve (PAN) is an inspiring candidate for the additional axonal source in long-term facial paralysis to improve the functional results of the cross-facial nerve (FN) graft technique. However, no studies have analyzed the PAN's axonal load and its microscopic anatomy to assess its utilization in facial reanimation. The present study aims to examine the anatomical and microscopic features of the PAN to analyze its feasibility as a donor nerve. METHODS The bilateral facial side of 14 fresh frozen adult human cadavers was examined for the study. The PAN's anatomical course was recorded, and nerve specimens from the PAN and zygomatic nerve (ZN) were obtained to compare their microscopic anatomy and axon counts using a light microscope and transmission electron microscope. RESULTS The PAN's average branching distance and its course length were 5.8 ± 2.69 mm and 59.2 ± 5.85, respectively. The mean number of myelinated axons was 600.28 ± 69.97 in the PAN and 728.85 ± 166.31 in the ZN. This difference between the two nerves was statistically significant (p = 0.002). However, considering the gender variable, the mean axon counts of PAN and ZN were statistically similar for face sides and their average. Furthermore, the ultrastructural anatomy of both nerves was similar in electron microscopic evaluation. CONCLUSIONS The present study confirms that the PAN is a proper candidate to be a supportive donor nerve due to its isolated site, consistent anatomical course, convenient ultrastructural anatomy as well as axonal load.
Collapse
Affiliation(s)
- Murat Kara
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozan Bitik
- Special Practise, Next Level Business Center, Ankara, Turkey
| | - Galip Gencay Üstün
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ülkir
- Department of Anatomy, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University Faculty of Medicine, Ankara, Turkey
| | - Ali Emre Aksu
- Department of Plastic Reconstructive and Aesthetic Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
29
|
Wolf V, Kühnel A, Teckentrup V, Koenig J, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology 2021; 58:e13933. [PMID: 34473846 DOI: 10.1111/psyp.13933] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Non-invasive brain stimulation techniques, such as transcutaneous auricular vagus nerve stimulation (taVNS), have considerable potential for clinical use. Beneficial effects of taVNS have been demonstrated on symptoms in patients with mental or neurological disorders as well as transdiagnostic dimensions, including mood and motivation. However, since taVNS research is still an emerging field, the underlying neurophysiological processes are not yet fully understood, and the replicability of findings on biomarkers of taVNS effects has been questioned. The objective of this analysis was to synthesize the current evidence concerning the effects of taVNS on vagally mediated heart rate variability (vmHRV), a candidate biomarker that has, so far, received most attention in the field. We performed a living Bayesian random effects meta-analysis. To keep the synthesis of evidence transparent and up to date as new studies are being published, we developed a Shiny web app that regularly incorporates new results and enables users to modify study selection criteria to evaluate the robustness of the inference across potential confounds. Our analysis focuses on 16 single-blind studies comparing taVNS versus sham in healthy participants. The meta-analysis provides strong evidence for the null hypothesis (g = 0.014, CIshortest = [-0.103, 0.132], BF01 = 24.678), indicating that acute taVNS does not alter vmHRV compared to sham. To conclude, there is no support for the hypothesis that vmHRV is a robust biomarker for acute taVNS. By increasing transparency and timeliness, the concept of living meta-analyses can lead to transformational benefits in emerging fields such as non-invasive brain stimulation.
Collapse
Affiliation(s)
- Vinzent Wolf
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany.,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Anne Kühnel
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany.,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Alicart H, Heldmann M, Göttlich M, Obst MA, Tittgemeyer M, Münte TF. Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS). Brain Imaging Behav 2021; 15:1886-1897. [PMID: 32926315 PMCID: PMC8413220 DOI: 10.1007/s11682-020-00382-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Present project is concerned with the possibility to modulate the neural regulation of food intake by non-invasive stimulation of the vagus nerve. This nerve carries viscero-afferent information from the gut and other internal organs and therefore serves an important role in ingestive behavior. The electrical stimulation of the vagus nerve (VNS) is a qualified procedure in the treatment of drug-resistant epilepsy and depression. Since weight loss is a known common side effect of VNS treatment in patients with implanted devices, VNS is evaluated as a treatment of obesity. To investigate potential VNS-related changes in the cognitive processing of food-related items, 21 healthy participants were recorded in a 3-Tesla scanner in two counterbalanced sessions. Participants were presented with 72 food pictures and asked to rate how much they liked that food. Before entering the scanner subjects received a 1-h sham or verum stimulation, which was implemented transcutanously with a Cerbomed NEMOS® device. We found significant activations in core areas of the vagal afferent pathway, including left brainstem, thalamus, temporal pole, amygdala, insula, hippocampus, and supplementary motor area for the interaction between ratings (high vs low) and session (verum vs sham stimulation). Significant activations were also found for the main effect of verum compared to sham stimulation in the left inferior and superior parietal cortex. These results demonstrate an effect of tVNS on food image processing even with a preceding short stimulation period. This is a necessary prerequisite for a therapeutic application of tVNS which has to be evaluated in longer-term studies.
Collapse
Affiliation(s)
- Helena Alicart
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), 08097, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, Campus Bellvitge, University of Barcelona, 08097, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Martina A Obst
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max-Planck Institute for Metabolism Research, Cologne, 50931, Cologne, Germany
- Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD) , Cologne, 50931, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany.
| |
Collapse
|
31
|
Mertens A, Carrette S, Klooster D, Lescrauwaet E, Delbeke J, Wadman WJ, Carrette E, Raedt R, Boon P, Vonck K. Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males. Neuromodulation 2021; 25:395-406. [PMID: 35396071 DOI: 10.1111/ner.13488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/16/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES As a potential treatment for epilepsy, transcutaneous auricular vagus nerve stimulation (taVNS) has yielded inconsistent results. Combining transcranial magnetic stimulation with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) can be used to investigate the effect of interventions on cortical excitability by evaluating changes in motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). The goal of this study is to objectively evaluate the effect of taVNS on cortical excitability with TMS-EMG and TMS-EEG. These findings are expected to provide insight in the mechanism of action and help identify more optimal stimulation paradigms. MATERIALS AND METHODS In this prospective single-blind cross-over study, 15 healthy male subjects underwent active and sham taVNS for 60 min, using a maximum tolerated stimulation current. Single and paired pulse TMS was delivered over the right-sided motor hotspot to evaluate MEPs and TEPs before and after the intervention. MEP statistical analysis was conducted with a two-way repeated measures ANOVA. TEPs were analyzed with a cluster-based permutation analysis. Linear regression analysis was implemented to investigate an association with stimulation current. RESULTS MEP and TEP measurements were not affected by taVNS in this study. An association was found between taVNS stimulation current and MEP outcome measures indicating a decrease in cortical excitability in participants who tolerated higher taVNS currents. A subanalysis of participants (n = 8) who tolerated a taVNS current ≥2.5 mA showed a significant increase in the resting motor threshold, decrease in MEP amplitude and modulation of the P60 and P180 TEP components. CONCLUSIONS taVNS did not affect cortical excitability measurements in the overall population in this study. However, taVNS has the potential to modulate specific markers of cortical excitability in participants who tolerate higher stimulation levels. These findings indicate the need for adequate stimulation protocols based on the recording of objective outcome parameters.
Collapse
Affiliation(s)
- Ann Mertens
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Sofie Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Emma Lescrauwaet
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Jean Delbeke
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Wytse Jan Wadman
- Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Sinkovec M, Trobec R, Meglic B. Cardiovascular responses to low-level transcutaneous vagus nerve stimulation. Auton Neurosci 2021; 236:102851. [PMID: 34274638 DOI: 10.1016/j.autneu.2021.102851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
AIMS The aim was to determine cardiovascular responses to an arbitrary protocol of transcutaneous low-level vagus nerve electrical stimulation (tVNS). METHODS Study was performed in 15 male volunteers, mean age 23 years. Data were collected during two sessions - sham stimulation (no stimulation) and stimulation. Each session included one-hour resting phase followed by 15-min autonomic nervous system testing phase (Valsalva, deep breathing, wet-cold face tests), all in supine position. The right tragus stimulation parameters were: 20 Hz, constant current at sensation threshold, 1 ms rectangular pulse width. The ECG, noninvasive arterial blood pressure and thoracic impedance cardiography measurements were recorded and analyzed continuously with the Task Force® Monitor (CNSystems Medizintechnik GmbH, Graz, Ver. 2.2.10.0). t-Test for paired samples, paired Wilcoxon signed-rank, and one-way ANOVA for repeated measurements were carried out. P < 0.05 was considered significant. RESULTS We demonstrated significant reductions of left ventricular contractility and output parameters, a trend for heart rate reduction, and resulting beneficial reduction of left ventricular work load. However, significant increases of blood pressure and total peripheral resistance were recognized, possibly as a reflex response. CONCLUSION It seems that our tVNS protocol has a potential for cardiac autonomic modulation. This gives us opportunity to advance our stimulation parameters with participant-specific adjustments. Further studies are however needed to prove the therapeutic potential of such approach in different patient groups.
Collapse
Affiliation(s)
- Matjaz Sinkovec
- Department of Cardiology, University Medical Center Ljubljana, Zaloška c. 7, 1000 Ljubljana, Slovenia.
| | - Roman Trobec
- Department of Communication Systems, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Bernard Meglic
- Department of Neurology, University Medical Center Ljubljana, Zaloška c. 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS One 2021; 16:e0254480. [PMID: 34252124 PMCID: PMC8274876 DOI: 10.1371/journal.pone.0254480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background Transcutaneous auricular Vagal Nerve Stimulation (taVNS) is a non-invasive neurostimulation technique with potential analgesic effects. Several studies based on subjective behavioral responses suggest that taVNS modulates nociception differently with either pro-nociceptive or anti-nociceptive effects. Objective This study aimed to characterize how taVNS alters pain perception, by investigating its effects on event-related potentials (ERPs) elicited by different types of spinothalamic and lemniscal somatosensory stimuli, combined with quantitative sensory testing (detection threshold and intensity ratings). Methods We performed 3 experiments designed to study the time-dependent effects of taVNS and compare with standard cervical VNS (cVNS). In Experiment 1, we assessed the effects of taVNS after 3 hours of stimulation. In Experiment 2, we focused on the immediate effects of the duty cycle (OFF vs. ON phases). Experiments 1 and 2 included 22 and 15 healthy participants respectively. Both experiments consisted of a 2-day cross-over protocol, in which subjects received taVNS and sham stimulation sequentially. In addition, subjects received a set of nociceptive (thermonociceptive CO2 laser, mechanical pinprick) and non-nociceptive (vibrotactile, cool) stimuli, for which we recorded detection thresholds, intensity of perception and ERPs. Finally, in Experiment 3, we tested 13 epileptic patients with an implanted cVNS by comparing OFF vs. ON cycles, using a similar experimental procedure. Results Neither taVNS nor cVNS appeared to modulate the cerebral and behavioral aspects of somatosensory perception. Conclusion The potential effect of taVNS on nociception requires a cautious interpretation, as we found no objective change in behavioral and cerebral responses to spinothalamic and lemniscal somatosensory stimulations.
Collapse
|
34
|
Steidel K, Krause K, Menzler K, Strzelczyk A, Immisch I, Fuest S, Gorny I, Mross P, Hakel L, Schmidt L, Timmermann L, Rosenow F, Bauer S, Knake S. Transcutaneous auricular vagus nerve stimulation influences gastric motility: A randomized, double-blind trial in healthy individuals. Brain Stimul 2021; 14:1126-1132. [PMID: 34187756 DOI: 10.1016/j.brs.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been investigated regarding its therapeutic properties in several several conditions such as epilepsy, migraine and major depressive disorder and was shown to access similar neural pathways as invasive vagus nerve stimulation. While the vagus nerve's role in gut motility is physiologically established, the effect of taVNS has scarcely been investigated in humans and yielded conflicting results. Real-time gastric magnetic resonance imaging (rtMRI) is an established reproducible method to investigate gastric motility non-invasively. OBJECTIVE To investigate the influence of taVNS on gastric motility of healthy participants using rtMRI. METHODS We conducted a randomized, double-blind study using high-frequency (HF) stimulation at 25Hz or low-frequency (LF) taVNS at 1Hz after ingestions of a standardized meal in 57 healthy participants. The gastric motility index (GMI) was determined by measuring the amplitude and velocity of the peristaltic waves using rtMRI. RESULTS After HF taVNS, GMI was significantly higher than after LF stimulation (p = 0.005), which was mainly attributable to a higher amplitude of the peristaltic waves (p = 0.003). CONCLUSION We provide evidence that 4-h of taVNS influences gastric motility in healthy human participants for the first time using rtMRI. HF stimulation is associated with higher amplitudes of peristaltic waves in the gastric antrum compared to LF stimulation. Further studies are needed to investigate the effect of different frequencies of taVNS and its therapeutic properties in conditions with impaired gastric motility.
Collapse
Affiliation(s)
- Kenan Steidel
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Kristina Krause
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, CMBB, Philipps-University Marburg, Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Germany
| | - Katja Menzler
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, CMBB, Philipps-University Marburg, Marburg, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Germany; Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Ilka Immisch
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Sven Fuest
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Iris Gorny
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter Mross
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Lukas Hakel
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schmidt
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Lars Timmermann
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, CMBB, Philipps-University Marburg, Marburg, Germany
| | - Felix Rosenow
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Germany
| | - Susanne Knake
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, CMBB, Philipps-University Marburg, Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Germany.
| |
Collapse
|
35
|
Urbin MA, Lafe CW, Simpson TW, Wittenberg GF, Chandrasekaran B, Weber DJ. Electrical stimulation of the external ear acutely activates noradrenergic mechanisms in humans. Brain Stimul 2021; 14:990-1001. [PMID: 34154980 DOI: 10.1016/j.brs.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Transcutaneous stimulation of the external ear is thought to recruit afferents of the auricular vagus nerve, providing a means to activate noradrenergic pathways in the central nervous system. Findings from human studies examining the effects of auricular stimulation on noradrenergic biomarkers have been mixed, possibly relating to the limited and variable parameter space explored to date. OBJECTIVE We tested the extent to which brief pulse trains applied to locations of auricular innervation (canal and concha) elicit acute pupillary responses (PRs) compared to a sham location (lobe). Pulse amplitude and frequency were varied systematically to examine effects on PR features. METHODS Participants (n = 19) underwent testing in three separate experiments, each with stimulation applied to a different external ear location. Perceptual threshold (PT) was measured at the beginning of each experiment. Pulse trains (∼600 ms) consisting of different amplitude (0.0xPT, 0.8xPT, 1.0xPT, 1.5xPT, 2.0xPT) and frequency (25 Hz, 300 Hz) combinations were administered during eye tracking procedures. RESULTS Stimulation to all locations elicited PRs which began approximately halfway through the pulse train and peaked shortly after the final pulse (≤1 s). PR size and incidence increased with pulse amplitude and tended to be greatest with canal stimulation. Higher pulse frequency shortened the latency of PR onset and peak dilation. Changes in pupil diameter elicited by pulse trains were weakly associated with baseline pupil diameter. CONCLUSION (s): Auricular stimulation elicits acute PRs, providing a basis to synchronize neuromodulator release with task-related neural spiking which preclinical studies show is a critical determinant of therapeutic effects. Further work is needed to dissociate contributions from vagal and non-vagal afferents mediating activation of the biomarker.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Charles W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bharath Chandrasekaran
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Mechanical Engineering and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Doshi TL, Staats PS. fMRI in vagus nerve stimulation for migraine: a biomarker-based approach to pain research. Reg Anesth Pain Med 2021; 46:467-468. [PMID: 33589433 DOI: 10.1136/rapm-2020-102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter S Staats
- National Spine and Pain Centers, Atlantic Beach, Florida, USA
| |
Collapse
|
37
|
Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci Bull 2020; 37:853-862. [PMID: 33355897 DOI: 10.1007/s12264-020-00619-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Whether in the West or the East, the connection between the ear and the rest of the body has been explored for a long time. Especially in the past century or more, the relevant theoretical and applied research on the ear has greatly promoted the development of ear therapy, and finally the concept of transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed. The purpose of taVNS is to treat a disease non-invasively by applying electrical current to the cutaneous receptive field formed by the auricular branch of the vagus nerve in the outer ear. In the past two decades, taVNS has been a topic of basic, clinical, and transformation research. It has been applied as an alternative to drug treatment for a variety of diseases. Based on the rapid understanding of the application of taVNS to human health and disease, some limitations in the development of this field have also been gradually exposed. Here, we comprehensively review the origin and research status of the field.
Collapse
|
38
|
Gauthey A, Morra S, van de Borne P, Deriaz D, Maes N, le Polain de Waroux JB. Sympathetic Effect of Auricular Transcutaneous Vagus Nerve Stimulation on Healthy Subjects: A Crossover Controlled Clinical Trial Comparing Vagally Mediated and Active Control Stimulation Using Microneurography. Front Physiol 2020; 11:599896. [PMID: 33343394 PMCID: PMC7744823 DOI: 10.3389/fphys.2020.599896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction: Auricular low-level transcutaneous vagus nerve stimulation (aLL-tVNS) has emerged as a promising technology for cardiac arrhythmia management but is still experimental. In this physiological study, we hypothesized that aLL-tVNS modulated the autonomic nervous balance through a reduction of sympathetic tone and an increase in heart rate variability (HRV). We investigated the muscle sympathetic nerve activity (MSNA) recorded by microneurography during vagally mediated aLL-tVNS and active control on healthy volunteers. Methods: In this crossover, double-blind controlled study, healthy men (N = 28; 27 ± 4 years old) were assigned to aLL-tVNS applied to cymba and lobe (active control) of the right ear. Each participant was randomly allocated to the three sequences (5 Hz, 20 Hz, and active control-5 Hz) during one session. MSNA signal was recorded at rest, during voluntarily apnea and aLL-tVNS. Sympathetic activity was expressed as: 1) number of bursts per minute (burst frequency, BF) and 2) MSNA activity calculated as BF x mean burst amplitude and expressed as changes from baseline (%). RR intervals, HRV parameters and sympathetic activity were analyzed during 5 min-baseline, 10 min-stimulation, and 10 min-recovery periods. Mixed regression models were performed to evaluate cymba-(5—20 Hz) effects on the parameters with stimulation. Results: During apnea and compared to baseline, BF and MSNA activity increased (p = 0.002, p = 0.001, respectively). No stimulation effect on RR intervals and HRV parameters were showed excepted a slightly increase of the LF/HF ratio with stimulation in the cymba-5Hz sequence (coef. ± SE: 0.76 ± 0.32%; p = 0.02). During stimulation, reductions from baseline in BF (Coef. ± SE: −4.8 ± 1.1, p < 0.001) was observed but was not statistically different from that one in the active control. Reduction of MSNA activity was not significantly different between sequences. Conclusion: Acute right cymba aLL-tVNS did not induce any overall effects neither on heart rate, HRV nor MSNA variables on healthy subjects when compared to active control. Interestingly, these findings questioned the role of active controls in medical device clinical trials that implied subjective endpoints.
Collapse
Affiliation(s)
- Anaïs Gauthey
- Department of Cardiology, Saint-Luc Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Denis Deriaz
- Department of Biomedical and Preclinical Sciences, Université de Liège, Liège, Belgium
| | - Nathalie Maes
- Department of Biostatistic and Medico-Economic Information, CHU Hospital of Liège, Liège, Belgium
| | | |
Collapse
|
39
|
Van de Steene T, Tanghe E, Tarnaud T, Kampusch S, Kaniusas E, Martens L, Van Holen R, Joseph W. Sensitivity Study of Neuronal Excitation and Cathodal Blocking Thresholds of Myelinated Axons for Percutaneous Auricular Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2020; 67:3276-3287. [DOI: 10.1109/tbme.2020.2982271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations. J Neurosci 2020; 41:320-330. [PMID: 33214317 DOI: 10.1523/jneurosci.1361-20.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
Vagus nerve stimulation (VNS) is widely used to treat drug-resistant epilepsy and depression. While the precise mechanisms mediating its long-term therapeutic effects are not fully resolved, they likely involve locus coeruleus (LC) stimulation via the nucleus of the solitary tract, which receives afferent vagal inputs. In rats, VNS elevates LC firing and forebrain noradrenaline levels, whereas LC lesions suppress VNS therapeutic efficacy. Noninvasive transcutaneous VNS (tVNS) uses electrical stimulation that targets the auricular branch of the vagus nerve at the cymba conchae of the ear. However, the extent to which tVNS mimics VNS remains unclear. Here, we investigated the short-term effects of tVNS in healthy human male volunteers (n = 24), using high-density EEG and pupillometry during visual fixation at rest. We compared short (3.4 s) trials of tVNS to sham electrical stimulation at the earlobe (far from the vagus nerve branch) to control for somatosensory stimulation. Although tVNS and sham stimulation did not differ in subjective intensity ratings, tVNS led to robust pupil dilation (peaking 4-5 s after trial onset) that was significantly higher than following sham stimulation. We further quantified, using parallel factor analysis, how tVNS modulates idle occipital alpha (8-13Hz) activity identified in each participant. We found greater attenuation of alpha oscillations by tVNS than by sham stimulation. This demonstrates that tVNS reliably induces pupillary and EEG markers of arousal beyond the effects of somatosensory stimulation, thus supporting the hypothesis that tVNS elevates noradrenaline and other arousal-promoting neuromodulatory signaling, and mimics invasive VNS.SIGNIFICANCE STATEMENT Current noninvasive brain stimulation techniques are mostly confined to modulating cortical activity, as is typical with transcranial magnetic or transcranial direct/alternating current electrical stimulation. Transcutaneous vagus nerve stimulation (tVNS) has been proposed to stimulate subcortical arousal-promoting nuclei, though previous studies yielded inconsistent results. Here we show that short (3.4 s) tVNS pulses in naive healthy male volunteers induced transient pupil dilation and attenuation of occipital alpha oscillations. These markers of brain arousal are in line with the established effects of invasive VNS on locus coeruleus-noradrenaline signaling, and support that tVNS mimics VNS. Therefore, tVNS can be used as a tool for studying how endogenous subcortical neuromodulatory signaling affects human cognition, including perception, attention, memory, and decision-making; and also for developing novel clinical applications.
Collapse
|
41
|
Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plast 2020; 2020:8841752. [PMID: 32802039 PMCID: PMC7416299 DOI: 10.1155/2020/8841752] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) is regarded as a potential method for recovery in stroke. The effectiveness of taVNS in acute and subacute stroke should be further discussed as previously, only a few small-scale trials have focused on chronic stroke patients. The objective of this study is to investigate the effect and safety of taVNS on upper limb motor function in subacute ischemic stroke patients. Methods Twenty-one subacute ischemia stroke patients with single upper limb motor function impairment were enrolled and randomly assigned to conventional rehabilitation training with real or sham taVNS, delivered for 15 consecutive days. Electrodes were fixed to the cymba conchae of the left ear with or without electrical stimulation. Conventional rehabilitation training was performed immediately after the end of real or sham taVNS by the same therapists. Baseline assessments were performed on day 0 of enrollment, and posttreatment evaluations were performed at 15 days, 4 weeks, and 12 weeks after the first intervention. The assessment included the upper limb Fugl-Meyer assessment (FMA-U), the Wolf motor function test (WMFT), the Functional Independence Measurement (FIM), and Brunnstrom stage. Heart rate (HR) and blood pressure (BP) were measured before and after each taVNS intervention. At the same time, any adverse effects were observed during the procedure. Outcomes were assessed by a blind evaluator. Results There were no significant differences in FMA-U, WMFT, FIM, and Brunnstrom scores between the two groups at baseline (P > 0.05). At the endpoint, the FMA-U, WMFT, and FIM scores were significantly higher than before treatment (P < 0.05), and there was a significantly greater improvement of those measurements in taVNS group compared with sham-taVNS group (P < 0.05). Significant improvements in FMA-U score were found between groups at follow-up. Only one case of skin redness occurred during the study. Conclusions This study revealed that taVNS appeared to be beneficial to the recovery of upper limb motor function in subacute ischemia stroke patients without obvious adverse effects. Trial registration. This trial is registered with ChiCTR1800019635 on 20 November 2018 (http://www.chictr.org.cn/showproj.aspx?proj=32961).
Collapse
|
42
|
Dabiri B, Kampusch S, Geyer SH, Le VH, Weninger WJ, Széles JC, Kaniusas E. High-Resolution Episcopic Imaging for Visualization of Dermal Arteries and Nerves of the Auricular Cymba Conchae in Humans. Front Neuroanat 2020; 14:22. [PMID: 32477074 PMCID: PMC7236887 DOI: 10.3389/fnana.2020.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Therapeutic applications of auricular vagus nerve stimulation (VNS) have drawn recent attention. Since the targeted stimulation process and parameters depend on the electrode–tissue interaction, the lack of structural anatomical information on innervation and vascularization of the auricle restrain the current optimization of stimulation paradigms. For the first time, we employed high-resolution episcopic imaging (HREM) to generate histologic volume data from donated human cadaver ears. Optimal parameters for specimen preparation were evaluated. Anatomical 3D vascular and nerve structures were reconstructed in one sample of an auricular cymba conchae (CC). The feasibility of HREM to visualize anatomical structures was assessed in that diameters, occupied areas, volumes, and mutual distances between auricular arteries, nerves, and veins were registered. The selected region of CC (3 × 5.5 mm) showed in its cross-sections 21.7 ± 2.7 (mean ± standard deviation) arteries and 14.66 ± 2.74 nerve fibers. Identified nerve diameters were 33.66 ± 21.71 μm, and arteries had diameters in the range of 71.58 ± 80.70 μm. The respective occupied area showed a share of, on average, 2.71% and 0.3% for arteries and nerves, respectively, and similar volume occupancy for arteries and nerves. Inter-centroid minimum distance between arteries and nerves was 274 ± 222 μm. The density of vessels and nerves around a point within CC on a given grid was assessed, showing that 50% of all vessels and nerves were found in a radial distance of 1.6–1.8 mm from any of these points, which is strategically relevant when using stimulation needles in the auricle for excitation of nerves. HREM seems suitable for anatomical studies of the human ear. A 3D model of CC was established in the micrometer scale, which forms the basis for future optimization of the auricular VNS. Obviously, the presented single cadaver study needs to be validated by additional anatomical data on the innervation and vascularization of the auricle.
Collapse
Affiliation(s)
- Babak Dabiri
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Vienna, Austria
| | - Van Hoang Le
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Jozsef Constantin Széles
- Department for Vascular Surgery, University Clinic for Surgery, Medical University of Vienna, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| |
Collapse
|
43
|
Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci 2020; 14:284. [PMID: 32410932 PMCID: PMC7199464 DOI: 10.3389/fnins.2020.00284] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
Several studies have illustrated that transcutaneous vagus nerve stimulation (tVNS) can elicit therapeutic effects that are similar to those produced by its invasive counterpart, vagus nerve stimulation (VNS). VNS is an FDA-approved therapy for the treatment of both depression and epilepsy, but it is limited to the management of more severe, intervention-resistant cases as a second or third-line treatment option due to perioperative risks involved with device implantation. In contrast, tVNS is a non-invasive technique that involves the application of electrical currents through surface electrodes at select locations, most commonly targeting the auricular branch of the vagus nerve (ABVN) and the cervical branch of the vagus nerve in the neck. Although it has been shown that tVNS elicits hypo- and hyperactivation in various regions of the brain associated with anxiety and mood regulation, the mechanism of action and influence of stimulation parameters on clinical outcomes remains predominantly hypothetical. Suppositions are largely based on correlations between the neurobiology of the vagus nerve and its effects on neural activity. However, tVNS has also been investigated for several other disorders, including tinnitus, migraine and pain, by targeting the vagus nerve at sites in both the ear and the neck. As most of the described methods differ in the parameters and protocols applied, there is currently no firm evidence on the optimal location for tVNS or the stimulation parameters that provide the greatest therapeutic effects for a specific condition. This review presents the current status of tVNS with a focus on stimulation parameters, stimulation sites, and available devices. For tVNS to reach its full potential as a non-invasive and clinically relevant therapy, it is imperative that systematic studies be undertaken to reveal the mechanism of action and optimal stimulation modalities.
Collapse
Affiliation(s)
- Jonathan Y. Y. Yap
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Charlotte Keatch
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Will Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Paul R. Stoddart
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Tatiana Kameneva
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Burger AM, D'Agostini M, Verkuil B, Van Diest I. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 2020; 57:e13571. [PMID: 32202671 DOI: 10.1111/psyp.13571] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/25/2022]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive neurostimulation technique that is currently being tested as a potential treatment for a myriad of neurological and psychiatric disorders. However, the working mechanisms underlying tVNS are poorly understood and it remains unclear whether stimulation activates the vagus nerve for every participant. Finding a biological marker of tVNS is imperative, as it can help guide research on clinical applications and can inform researchers on optimal stimulation sites and parameters to further optimize treatment efficacy. In this narrative review, we discuss five potential biomarkers for tVNS and review currently available evidence for these markers for both invasive and tVNS. While some of these biomarkers hold promise from a theoretical perspective, none of the potential biomarkers provide clear and definitive indications that tVNS increases the vagal activity or augments activity in the locus coeruleus-noradrenaline network. We conclude the review by providing several recommendations for how to tackle the challenges and opportunities when researching potential biomarkers for the effects of tVNS.
Collapse
Affiliation(s)
- Andreas Michael Burger
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium.,Biological Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Martina D'Agostini
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Bart Verkuil
- Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Ilse Van Diest
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 2019; 236:588-611. [PMID: 31742681 DOI: 10.1111/joa.13122] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
The array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation (VNS) being explored as a management option in a number of clinical disorders, such as heart failure, migraine and inflammatory bowel disease. Both invasive (surgically implanted) and non-invasive (transcutaneous) techniques of VNS exist. Transcutaneous VNS (tVNS) delivery systems rely on the cutaneous distribution of vagal afferents, either at the external ear (auricular branch of the vagus nerve) or at the neck (cervical branch of the vagus nerve), thus obviating the need for surgical implantation of a VNS delivery device and facilitating further investigations across a wide range of uses. The concept of electrically stimulating the auricular branch of the vagus nerve (ABVN), which provides somatosensory innervation to several aspects of the external ear, is relatively more recent compared with cervical VNS; thus, there is a relative paucity of literature surrounding its operation and functionality. Despite the increasing body of research exploring the therapeutic uses of auricular transcutaneous VNS (tVNS), a comprehensive review of the cutaneous, intracranial and central distribution of ABVN fibres has not been conducted to date. A review of the literature exploring the neuroanatomical basis of this neuromodulatory therapy is therefore timely. Our review article explores the neuroanatomy of the ABVN with reference to (1) clinical surveys examining Arnold's reflex, (2) cadaveric studies, (3) fMRI studies, (4) electrophysiological studies, (5) acupuncture studies, (6) retrograde tracing studies and (7) studies measuring changes in autonomic (cardiovascular) parameters in response to auricular tVNS. We also provide an overview of the fibre composition of the ABVN and the effects of auricular tVNS on the central nervous system. Cadaveric studies, of which a limited number exist in the literature, would be the 'gold-standard' approach to studying the cutaneous map of the ABVN; thus, there is a need for more such studies to be conducted. Functional magnetic resonance imaging (fMRI) represents a useful surrogate modality for discerning the auricular sites most likely innervated by the ABVN and the most promising locations for auricular tVNS. However, given the heterogeneity in the results of such investigations and the various limitations of using fMRI, the current literature lacks a clear consensus on the auricular sites that are most densely innervated by the ABVN and whether the brain regions secondarily activated by electrical auricular tVNS depend on specific parameters. At present, it is reasonable to surmise that the concha and inner tragus are suitable locations for vagal modulation. Given the therapeutic potential of auricular tVNS, there remains a need for the cutaneous map of the ABVN to be further refined and the effects of various stimulation parameters and stimulation sites to be determined.
Collapse
Affiliation(s)
- Mohsin F Butt
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Ahmed Albusoda
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Adam D Farmer
- Institute of Applied Clinical Sciences, University of Keele, Keele, UK.,Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| | - Qasim Aziz
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| |
Collapse
|
46
|
|
47
|
Kaniusas E, Samoudi AM, Kampusch S, Bald K, Tanghe E, Martens L, Joseph W, Szeles JC. Stimulation Pattern Efficiency in Percutaneous Auricular Vagus Nerve Stimulation: Experimental Versus Numerical Data. IEEE Trans Biomed Eng 2019; 67:1921-1935. [PMID: 31675313 DOI: 10.1109/tbme.2019.2950777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Percutaneous electrical stimulation of the auricular vagus nerve (pVNS) is an electroceutical technology. The selection of stimulation patterns is empirical, which may lead to under-stimulation or over-stimulation. The objective is to assess the efficiency of different stimulation patterns with respect to individual perception and to compare it with numerical data based on in-silico ear models. METHODS Monophasic (MS), biphasic (BS) and triphasic stimulation (TS) patterns were tested in volunteers. Different clinically-relevant perception levels were assessed. In-silico models of the human ear were created with embedded fibers and vessels to assess different excitation levels. RESULTS TS indicates experimental superiority over BS which is superior to MS while reaching different perception levels. TS requires about 57% and 35% of BS and MS magnitude, respectively, to reach the comfortable perception. Experimental thresholds decrease from non-bursted to bursted stimulation. Numerical results indicate a slight superiority of BS and TS over MS while reaching different excitation levels, whereas the burst length has no influence. TS yields the highest number of asynchronous action impulses per stimulation symbol for the used tripolar electrode set-up. CONCLUSION The comparison of experimental and numerical data favors the novel TS pattern. The analysis separates excitatory pVNS effects in the auricular periphery, as accounted by in-silico data, from the combination of peripheral and central pVNS effects in the brain, as accounted by experimental data. SIGNIFICANCE The proposed approach moves from an empirical selection of stimulation patterns towards efficient and optimized pVNS settings.
Collapse
|
48
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
49
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Lechner S, Klonowski W, Varoneckas G, Széles JC, Šarolić A. Current Directions in the Auricular Vagus Nerve Stimulation II - An Engineering Perspective. Front Neurosci 2019; 13:772. [PMID: 31396044 PMCID: PMC6667675 DOI: 10.3389/fnins.2019.00772] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, in silico modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipėda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| |
Collapse
|
50
|
Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 2019; 1454:42-55. [PMID: 31268181 PMCID: PMC6810744 DOI: 10.1111/nyas.14182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
With few effective treatments available, the global rise of metabolic diseases, including obesity, type 2 diabetes mellitus, and cardiovascular disease, seems unstoppable. Likely caused by an obesogenic environment interacting with genetic susceptibility, the pathophysiology of obesity and metabolic diseases is highly complex and involves crosstalk between many organs and systems, including the brain. The vagus nerve is in a key position to bidirectionally link several peripheral metabolic organs with the brain and is increasingly targeted for neuromodulation therapy to treat metabolic disease. Here, we review the basics of vagal functional anatomy and its implications for vagal neuromodulation therapies. We find that most existing vagal neuromodulation techniques either ignore or misinterpret the rich functional specificity of both vagal efferents and afferents as demonstrated by a large body of literature. This lack of specificity of manipulating vagal fibers is likely the reason for the relatively poor beneficial long‐term effects of such therapies. For these therapies to become more effective, rigorous validation of all physiological endpoints and optimization of stimulation parameters as well as electrode placements will be necessary. However, given the large number of function‐specific fibers in any vagal branch, genetically guided neuromodulation techniques are more likely to succeed.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Winfried L Neuhuber
- Institut fur Anatomie und Zellbiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|