1
|
Singh A, Gong S, Vu A, Li S, Obenaus A. Social deficits mirror delayed cerebrovascular dysfunction after traumatic brain injury. Acta Neuropathol Commun 2024; 12:126. [PMID: 39107831 PMCID: PMC11304659 DOI: 10.1186/s40478-024-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury (dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. Vascular morphology and function improved prior to the late decrements in social function and our correlations strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can guide future therapeutics.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
- Department of Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, 120 Walter P Martin Research Center, Torrance, California, 90502, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Steven Gong
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Anh Vu
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Scott Li
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA.
- Division of Biomedical Sciences, 206 SOM Research Bldg, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Kasprowicz M, Hendler M, Ziółkowski A, Nasr N, Czosnyka M. Analysis of phase shift between pulse oscillations of macro- and microvascular cerebral blood flow in patients with traumatic brain injury. Acta Neurochir (Wien) 2024; 166:321. [PMID: 39093519 PMCID: PMC11297107 DOI: 10.1007/s00701-024-06209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE After a traumatic brain injury (TBI), monitoring of both macrovascular and microvascular blood circulation can potentially yield a better understanding of pathophysiology of potential secondary brain lesions. We investigated the changes in phase shift (PS) between cardiac-induced oscillations of cerebral blood flow (CBF) measured at macro (ultrasound Doppler) and microvascular (laser Doppler) level. Further we assessed the impact of intracranial pressure (ICP) on PS in TBI patients. A secondary aim was to compare PS to TCD-derived cerebral arterial time constant (τ), a parameter that reflects the circulatory transit time. METHODS TCD blood flow velocities (FV) in the middle cerebral artery, laser Doppler blood microcirculation flux (LDF), arterial blood pressure (ABP), and ICP were monitored in 29 consecutive patients with TBI. Eight patients were excluded because of poor-quality signals. For the remaining 21 patients (median age = 23 (Q1: 20-Q3: 33); men:16,) data were retrospectively analysed. PS between the fundamental harmonics of FV and LDF signals was determined using spectral analysis. τ was estimated as a product of cerebrovascular resistance and compliance, based on the mathematical transformation of FV and ABP, ICP pulse waveforms. RESULTS PS was negative (median: -26 (Q1: -38-Q3: -15) degrees) indicating that pulse LDF at a heart rate frequency lagged behind TCD pulse. With rising mean ICP, PS became more negative (R = -0.51, p < 0.019) indicating that delay of LDF pulse increases. There was a significant correlation between PS and cerebrovascular time constant (R = -0.47, p = 0.03). CONCLUSIONS Pulse divergence between FV and LDF became greater with elevated ICP, likely reflecting prolonged circulatory travel time.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Marta Hendler
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Arkadiusz Ziółkowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Poitiers, France
- Laboratoire de Neurosciences Expérimentales Et Cliniques, INSERM U-1084, University of Poitiers, Poitiers, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
van Hameren G, Aboghazleh R, Parker E, Dreier JP, Kaufer D, Friedman A. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 2024; 20:408-425. [PMID: 38886512 DOI: 10.1038/s41582-024-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.
Collapse
Affiliation(s)
- Gerben van Hameren
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ellen Parker
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Cell Biology, Cognitive and Brain Sciences, Zelman Inter-Disciplinary Center of Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
5
|
Kalyani P, Lippa SM, Werner JK, Amyot F, Moore CB, Kenney K, Diaz-Arrastia R. Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1629-1640. [PMID: 37697134 PMCID: PMC10684467 DOI: 10.1007/s13311-023-01430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Multiple phase III randomized controlled trials (RCTs) for pharmacologic interventions in traumatic brain injury (TBI) have failed despite promising results in experimental models. The heterogeneity of TBI, in terms of pathomechanisms and impacted brain structures, likely contributes to these failures. Biomarkers have been recommended to identify patients with relevant pathology (predictive biomarkers) and confirm target engagement and monitor therapy response (pharmacodynamic biomarkers). Our group focuses on traumatic cerebrovascular injury as an understudied endophenotype of TBI and is validating a predictive and pharmacodynamic imaging biomarker (cerebrovascular reactivity; CVR) in moderate-severe TBI. We aim to extend these studies to milder forms of TBI to determine the optimal dose of sildenafil for maximal improvement in CVR. We will conduct a phase II dose-finding study involving 160 chronic TBI patients (mostly mild) using three doses of sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor. The study measures baseline CVR and evaluates the effect of escalating sildenafil doses on CVR improvement. A 4-week trial of thrice daily sildenafil will assess safety, tolerability, and clinical efficacy. This dual-site 4-year study, funded by the Department of Defense and registered in ClinicalTrials.gov (NCT05782244), plans to launch in June 2023. Biomarker-informed RCTs are essential for developing effective TBI interventions, relying on an understanding of underlying pathomechanisms. Traumatic microvascular injury (TMVI) is an attractive mechanism which can be targeted by vaso-active drugs such as PDE-5 inhibitors. CVR is a potential predictive and pharmacodynamic biomarker for targeted interventions aimed at TMVI. (Trial registration: NCT05782244, ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Priyanka Kalyani
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| | - Sara M Lippa
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - J Kent Werner
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Franck Amyot
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
| | - Carol B Moore
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Kimbra Kenney
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
8
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
9
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
10
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
11
|
Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway. Mol Neurobiol 2022; 59:3665-3677. [PMID: 35362812 DOI: 10.1007/s12035-022-02815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Direct current electric field (DCEF) steers the migration of various neural cells. Microglia, as macrophage of the central nervous system (CNS), however, have not been reported to engage in electrotaxis. Here, we applied electric fields to an in vitro environment and found directional migration of BV2 microglia toward the cathode, in a DCEF strength-dependent manner. Transcriptome analysis then revealed significant changes in the mitogen-activated protein kinase cascades. In terms of mechanism, DCEF coordinated microglia movement by regulating the ERK/GSK3β/cofilin signaling pathway, and PMA (protein kinase C activator) reversed cell migration through intervention of the ERK/GSK3β/cofilin axis. Meanwhile, LiCl (GSK3β inhibitor) showed similar functions to PMA in the electrotaxis of microglia. Furthermore, pharmacological and genetic suppression of GSK3β or cofilin also modulated microglia directional migration under DCEF. Collectively, we discovered the electrotaxis of BV2 microglia and the essential role of the ERK/GSK3β/cofilin axis in regulating cell migration via modulation of F-actin redistribution. This research highlights new insight toward mediating BV2 directional migration and provides potential direction for novel therapeutic strategies of CNS diseases.
Collapse
|
12
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Guo R, Wang X, Fang Y, Chen X, Chen K, Huang W, Chen J, Hu J, Liang F, Du J, Dordoe C, Tian X, Lin L. rhFGF20 promotes angiogenesis and vascular repair following traumatic brain injury by regulating Wnt/β-catenin pathway. Biomed Pharmacother 2021; 143:112200. [PMID: 34649342 DOI: 10.1016/j.biopha.2021.112200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
The pathology of cerebrovascular disorders takes an important role in traumatic brain injury (TBI) by increasing intracranial pressure. Fibroblast growth factor 20 (FGF20) is a brain-derived neurotrophic factor, that has been shown to play an important role in the survival of dopaminergic neurons and the treatment of Parkinson's disease (PD). However, little is known about the role of FGF20 in the treatment of TBI and its underlying mechanism. The purpose of this study was to evaluate the protective effect of recombinant human FGF20 (rhFGF20) on protecting cerebral blood vessels after TBI. In this study, we indicated that rhFGF20 could reduce brain edema, Evans blue penetration and upregulated the expression of blood-brain barrier (BBB)-related tight junction (TJ) proteins, exerting a protective effect on the BBB in vivo after TBI. In the TBI repair phase, rhFGF20 promoted angiogenesis, neurological and cognitive function recovery. In tumor necrosis factor-α (TNF-α)-induced human brain microvascular endothelial cells (hCMEC/D3), an in vitro BBB disruption model, rhFGF20 reversed the impairment in cell migration and tube formation induced by TNF-α. Moreover, in both the TBI mouse model and the in vitro model, rhFGF20 increased the expression of β-catenin and GSK3β, which are the two key regulators in the Wnt/β-catenin signaling pathway. In addition, the Wnt/β-catenin inhibitor IWR-1-endo significantly reversed the effects of rhFGF20. These results indicate that rhFGF20 may prevent vascular repair and angiogenesis through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingting Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xianxi Tian
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 315020, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
14
|
Wälchli T, Bisschop J, Miettinen A, Ulmann-Schuler A, Hintermüller C, Meyer EP, Krucker T, Wälchli R, Monnier PP, Carmeliet P, Vogel J, Stampanoni M. Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat Protoc 2021; 16:4564-4610. [PMID: 34480130 DOI: 10.1038/s41596-021-00587-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The formation of new blood vessels and the establishment of vascular networks are crucial during brain development, in the adult healthy brain, as well as in various diseases of the central nervous system. Here, we describe a step-by-step protocol for our recently developed method that enables hierarchical imaging and computational analysis of vascular networks in postnatal and adult mouse brains. The different stages of the procedure include resin-based vascular corrosion casting, scanning electron microscopy, synchrotron radiation and desktop microcomputed tomography imaging, and computational network analysis. Combining these methods enables detailed visualization and quantification of the 3D brain vasculature. Network features such as vascular volume fraction, branch point density, vessel diameter, length, tortuosity and directionality as well as extravascular distance can be obtained at any developmental stage from the early postnatal to the adult brain. This approach can be used to provide a detailed morphological atlas of the entire mouse brain vasculature at both the postnatal and the adult stage of development. Our protocol allows the characterization of brain vascular networks separately for capillaries and noncapillaries. The entire protocol, from mouse perfusion to vessel network analysis, takes ~10 d.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arttu Miettinen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Eric P Meyer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Thomas Krucker
- Novartis Institutes for BioMedical Research Inc, Emeryville, CA, USA
| | - Regula Wälchli
- Department of Dermatology, Pediatric Skin Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
16
|
Haber M, Amyot F, Lynch CE, Sandsmark DK, Kenney K, Werner JK, Moore C, Flesher K, Woodson S, Silverman E, Chou Y, Pham D, Diaz-Arrastia R. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1924-1938. [PMID: 33444092 PMCID: PMC8327117 DOI: 10.1177/0271678x20985156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.
Collapse
Affiliation(s)
- Margalit Haber
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Cillian E Lynch
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kelley Flesher
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah Woodson
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
18
|
Mughal A, Sackheim AM, Sancho M, Longden TA, Russell S, Lockette W, Nelson MT, Freeman K. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1313-1327. [PMID: 33050826 PMCID: PMC8142130 DOI: 10.1177/0271678x20962594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) acutely impairs dynamic regulation of local cerebral blood flow, but long-term (>72 h) effects on functional hyperemia are unknown. Functional hyperemia depends on capillary endothelial cell inward rectifier potassium channels (Kir2.1) responding to potassium (K+) released during neuronal activity to produce a regenerative, hyperpolarizing electrical signal that propagates from capillaries to dilate upstream penetrating arterioles. We hypothesized that TBI causes widespread disruption of electrical signaling from capillaries-to-arterioles through impairment of Kir2.1 channel function. We randomized mice to TBI or control groups and allowed them to recover for 4 to 7 days post-injury. We measured in vivo cerebral hemodynamics and arteriolar responses to local stimulation of capillaries with 10 mM K+ using multiphoton laser scanning microscopy through a cranial window under urethane and α-chloralose anesthesia. Capillary angio-architecture was not significantly affected following injury. However, K+-induced hyperemia was significantly impaired. Electrophysiology recordings in freshly isolated capillary endothelial cells revealed diminished Ba2+-sensitive Kir2.1 currents, consistent with a reduction in channel function. In pressurized cerebral arteries isolated from TBI mice, K+ failed to elicit the vasodilation seen in controls. We conclude that disruption of endothelial Kir2.1 channel function impairs capillary-to-arteriole electrical signaling, contributing to altered cerebral hemodynamics after TBI.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sheila Russell
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Warren Lockette
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Department of Surgery, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Veksler R, Vazana U, Serlin Y, Prager O, Ofer J, Shemen N, Fisher AM, Minaeva O, Hua N, Saar-Ashkenazy R, Benou I, Riklin-Raviv T, Parker E, Mumby G, Kamintsky L, Beyea S, Bowen CV, Shelef I, O'Keeffe E, Campbell M, Kaufer D, Goldstein LE, Friedman A. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 2021; 143:1826-1842. [PMID: 32464655 PMCID: PMC7297017 DOI: 10.1093/brain/awaa140] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood–brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood–brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.
Collapse
Affiliation(s)
- Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Serlin
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Neurology Residency Training Program, McGill University, Montreal, QC, Canada
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Shemen
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrew M Fisher
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Ning Hua
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Psychology and the School of Social-work, Ashkelon Academic College, Israel
| | - Itay Benou
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tammy Riklin-Raviv
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ellen Parker
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Griffin Mumby
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Steven Beyea
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Ilan Shelef
- Department of Medical Imaging, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniela Kaufer
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lee E Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| |
Collapse
|
20
|
Cheng H, Di G, Gao CC, He G, Wang X, Han YL, Sun LA, Zhou ML, Jiang X. FTY720 Reduces Endothelial Cell Apoptosis and Remodels Neurovascular Unit after Experimental Traumatic Brain Injury. Int J Med Sci 2021; 18:304-313. [PMID: 33390799 PMCID: PMC7757143 DOI: 10.7150/ijms.49066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China
| | - Guoyuan He
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Xue Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Le-An Sun
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| |
Collapse
|
21
|
Hu Y, Seker B, Exner C, Zhang J, Plesnila N, Schwarzmaier SM. Longitudinal Characterization of Blood-Brain Barrier Permeability after Experimental Traumatic Brain Injury by In Vivo 2-Photon Microscopy. J Neurotrauma 2020; 38:399-410. [PMID: 33012249 DOI: 10.1089/neu.2020.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vasogenic brain edema (VBE) formation remains an important factor determining the fate of patients with traumatic brain injury (TBI). The spatial and temporal development of VBE, however, remains poorly understood because of the lack of sufficiently sensitive measurement techniques. To close this knowledge gap, we directly visualized the full time course of vascular leakage after TBI by in vivo 2-photon microscopy (2-PM). Male C57BL/6 mice (n = 6/group, 6-8 weeks old) were assigned randomly to sham operation or brain trauma by controlled cortical impact. A cranial window was prepared, and tetramethylrhodamine-dextran (TMRM, MW 40,000 Da) was injected intravenously to visualize blood plasma 4 h, 24 h, 48 h, 72 h, or seven days after surgery or trauma. Three regions with increasing distance to the primary contusion were investigated up to a depth of 300 μm by 2-PM. No TMRM extravasation was detected in sham-operated mice, while already 4 h after TBI vascular leakage was significantly increased (p < 0.05 vs. sham) and reached its maximum at 48 h after injury. Vascular leakage was most pronounced in the vicinity of the contusion. The rate of extravasation showed a biphasic pattern, peaking 4 h and 48-72 h after trauma. Taken together, longitudinal quantification of vascular leakage after TBI in vivo demonstrates that VBE formation after TBI develops in a biphasic manner suggestive of acute and delayed mechanisms. Further studies using the currently developed dynamic in vivo imaging modalities are needed to investigate these mechanisms and potential therapeutic strategies in more detail.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Burcu Seker
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carina Exner
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Junping Zhang
- First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Department of Anesthesiology, Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
22
|
Viscusi ER, Viscusi AR. Blood-brain barrier: mechanisms governing permeability and interaction with peripherally acting μ-opioid receptor antagonists. Reg Anesth Pain Med 2020; 45:688-695. [PMID: 32723840 PMCID: PMC7476292 DOI: 10.1136/rapm-2020-101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) describes the unique properties of endothelial cells (ECs) that line the central nervous system (CNS) microvasculature. The BBB supports CNS homeostasis via EC-associated transport of ions, nutrients, proteins and waste products between the brain and blood. These transport mechanisms also serve as physiological barriers to pathogens, toxins and xenobiotics to prevent them from contacting neural tissue. The mechanisms that govern BBB permeability pose a challenge to drug design for CNS disorders, including pain, but can be exploited to limit the effects of a drug to the periphery, as in the design of the peripherally acting μ-opioid receptor antagonists (PAMORAs) used to treat opioid-induced constipation. Here, we describe BBB physiology, drug properties that affect BBB penetrance and how data from randomized clinical trials of PAMORAs improve our understanding of BBB permeability.
Collapse
Affiliation(s)
- Eugene R Viscusi
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew R Viscusi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Liu ZH, Chen NY, Tu PH, Wu CT, Chiu SC, Huang YC, Lim SN, Yip PK. DHA Attenuates Cerebral Edema Following Traumatic Brain Injury via the Reduction in Blood-Brain Barrier Permeability. Int J Mol Sci 2020; 21:ijms21176291. [PMID: 32878052 PMCID: PMC7503959 DOI: 10.3390/ijms21176291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) could result in edema and cause an increase in intracranial pressure of the brain resulting in mortality and morbidity. Although there is hyperosmolarity therapy available for this pathophysiological event, it remains controversial. Recently, several groups have shown docosahexaenoic acid (DHA) to improve functional and histological outcomes following brain injury based on reduction of neuroinflammation and apoptosis. However, the effect of DHA on blood-brain barrier (BBB) dysfunction after brain injury has not been fully studied. Here, a controlled cortical impact rat model was used to test the effect of a single dose of DHA administered 30 min post injury. Modified neurological severity score (mNSS) and forelimb asymmetry were used to determine the functional outcomes. Neuroimaging and histology were used to characterize the edema and BBB dysfunction. The study showed that DHA-treated TBI rats had better mNSS and forelimb asymmetry score than vehicle-treated TBI rats. Temporal analysis of edema using MRI revealed a significant reduction in edema level with DHA treatment compared to vehicle in TBI rats. Histological analysis using immunoglobulin G (IgG) extravasation showed that there was less extravasation, which corresponded with a reduction in aquaporin 4 and astrocytic metalloprotease 9 expression, and greater endothelial occludin expression in the peri-contusional site of the TBI rat brain treated with DHA in comparison to vehicle treatment. In conclusion, the study shows that DHA can exert its functional improvement by prevention of the edema formation via prevention of BBB dysfunction after TBI.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
- Correspondence: (Z.-H.L.); (P.K.Y.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Po-hsun Tu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital at Linkou, Taoyuan County 333, Taiwan;
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan; (P.-h.T.); (Y.-C.H.)
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taoyuan County 333, Taiwan;
| | - Ping K. Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Neuroscience, Surgery & Trauma, London E1 2AT, UK
- Correspondence: (Z.-H.L.); (P.K.Y.)
| |
Collapse
|
24
|
Green TRF, Ortiz JB, Wonnacott S, Williams RJ, Rowe RK. The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer's Disease. Front Neurosci 2020; 14:894. [PMID: 32982677 PMCID: PMC7479838 DOI: 10.3389/fnins.2020.00894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - Sue Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
25
|
Zhang B, Gao Y, Li Q, Sun D, Dong X, Li X, Xin W, Zhang J. Effects of Brain-Derived Mitochondria on the Function of Neuron and Vascular Endothelial Cell After Traumatic Brain Injury. World Neurosurg 2020; 138:e1-e9. [DOI: 10.1016/j.wneu.2019.11.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
26
|
Mansor NI, Nordin N, Mohamed F, Ling KH, Rosli R, Hassan Z. Crossing the Blood-Brain Barrier: A Review on Drug Delivery Strategies for Treatment of the Central Nervous System Diseases. Curr Drug Deliv 2020; 16:698-711. [PMID: 31456519 DOI: 10.2174/1567201816666190828153017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/24/2023]
Abstract
Many drugs have been designed to treat diseases of the central nervous system (CNS), especially neurodegenerative diseases. However, the presence of tight junctions at the blood-brain barrier has often compromised the efficiency of drug delivery to target sites in the brain. The principles of drug delivery systems across the blood-brain barrier are dependent on substrate-specific (i.e. protein transport and transcytosis) and non-specific (i.e. transcellular and paracellular) transport pathways, which are crucial factors in attempts to design efficient drug delivery strategies. This review describes how the blood-brain barrier presents the main challenge in delivering drugs to treat brain diseases and discusses the advantages and disadvantages of ongoing neurotherapeutic delivery strategies in overcoming this limitation. In addition, we discuss the application of colloidal carrier systems, particularly nanoparticles, as potential tools for therapy for the CNS diseases.
Collapse
Affiliation(s)
- Nur Izzati Mansor
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farahidah Mohamed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia.,IKOP Sdn. Bhd., Pilot Plant Pharmaceutical Manufacturing, Faculty of Pharmacy, IIUM, Kuantan, Malaysia.,International Institute of Halal Research & Training (INHART), IIUM, Kuala Lumpur, Malaysia
| | - King Hwa Ling
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
27
|
Traumatic brain injury and methamphetamine: A double-hit neurological insult. J Neurol Sci 2020; 411:116711. [DOI: 10.1016/j.jns.2020.116711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
|
28
|
Bashir A, Abebe ZA, McInnes KA, Button EB, Tatarnikov I, Cheng WH, Haber M, Wilkinson A, Barron C, Diaz-Arrastia R, Stukas S, Cripton PA, Wellington CL. Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis. Exp Neurol 2019; 324:113116. [PMID: 31734317 DOI: 10.1016/j.expneurol.2019.113116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in modern societies. Diffuse axonal and vascular injury are nearly universal consequences of mechanical energy impacting the head and contribute to disability throughout the injury severity spectrum. CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a non-surgical, impact-acceleration model of rodent TBI that reliably produces diffuse axonal injury characterized by white matter gliosis and axonal damage. At impact energies up to 0.7 joules, which result in mild TBI in mice, CHIMERA does not produce detectable vascular or grey matter injury. This study was designed to expand CHIMERA's capacity to induce more severe injuries, including vascular damage and grey matter gliosis. This was made possible by designing a physical interface positioned between the piston and animal's head to allow higher impact energies to be transmitted to the head without causing skull fracture. Here, we assessed interface-assisted single CHIMERA TBI at 2.5 joules in wild-type mice using a study design that spanned 6 h-60 d time points. Injured animals displayed robust acute neurological deficits, elevated plasma total tau and neurofilament-light levels, transiently increased proinflammatory cytokines in brain tissue, blood-brain barrier (BBB) leakage and microstructural vascular abnormalities, and grey matter microgliosis. Memory deficits were evident at 30 d and resolved by 60 d. Intriguingly, white matter injury was not remarkable at acute time points but evolved over time, with white matter gliosis being most extensive at 60 d. Interface-assisted CHIMERA thus enables experimental modeling of distinct endophenotypes of TBI that include acute vascular and grey matter injury in addition to chronic evolution of white matter damage, similar to the natural history of human TBI.
Collapse
Affiliation(s)
- Asma Bashir
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| | - Zelalem A Abebe
- International Centre On Repair Discoveries, Department of Mechanical Engineering and School of Biomedical Engineering, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Kurt A McInnes
- International Centre On Repair Discoveries, Department of Mechanical Engineering and School of Biomedical Engineering, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Emily B Button
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| | - Igor Tatarnikov
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada; Centre for Applied Neurogenetics, Department of Medical Genetics, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Wai Hang Cheng
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, USA
| | - Anna Wilkinson
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| | - Carlos Barron
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, USA.
| | - Sophie Stukas
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| | - Peter A Cripton
- International Centre On Repair Discoveries, Department of Mechanical Engineering and School of Biomedical Engineering, University of British Columbia, Vancouver V5Z 1M9, BC, Canada.
| | - Cheryl L Wellington
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada.
| |
Collapse
|
29
|
Amyot F, Kenney K, Spessert E, Moore C, Haber M, Silverman E, Gandjbakhche A, Diaz-Arrastia R. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2019; 25:102086. [PMID: 31790877 PMCID: PMC6909332 DOI: 10.1016/j.nicl.2019.102086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Traumatic cerebral vascular injury (TCVI) is a frequent, but under-recognized, endophenotype of traumatic brain injury (TBI). It likely contributes to functional deficits after TBI and TBI-related chronic disability, and represents an attractive target for targeted therapeutic interventions. The aim of this prospective study is to assess microvascular injury/dysfunction in chronic TBI by measuring cerebral vascular reactivity (CVR) by 2 methods, functional magnetic resonance imaging (fMRI) and functional Near InfraRed Spectroscopy (fNIRS) imaging, as each has attractive features relevant to clinical utility. 42 subjects (27 chronic TBI, 15 age- and gender-matched non-TBI volunteers) were enrolled and underwent outpatient CVR testing by 2 methods, MRI-BOLD and fNIRS, each with hypercapnia challenge, a neuropsychological testing battery, and symptom survey questionnaires. Chronic TBI subjects showed a significant reduction in global CVR compared to HC (p < 0.0001). Mean CVR measures by fMRI were 0.225 ± 0.014 and 0.183 ± 0.026 %BOLD/mmHg for non-TBI and TBI subjects respectively and 12.3 ± 1.8 and 9.2 ± 1.7 mM/mmHg by fNIRS for non-TBI versus TBI subjects respectively. Global CVR measured by fNIRS imaging correlates with results by MRI-BOLD (R = 0.5). Focal CVR deficits seen on CVR maps by fMRI are also observed in the same areas by fNIRS in the frontal regions. Global CVR is significantly lower in chronic TBI patients and is reliably measured by both fMRI and fNIRS, the former with better spatial and the latter with better temporal resolution. Both methods show promise as non-invasive measures of CVR function and microvascular integrity after TBI.
Collapse
Affiliation(s)
- Franck Amyot
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Emily Spessert
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
30
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
31
|
Monson KL, Converse MI, Manley GT. Cerebral blood vessel damage in traumatic brain injury. Clin Biomech (Bristol, Avon) 2019; 64:98-113. [PMID: 29478776 DOI: 10.1016/j.clinbiomech.2018.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/12/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury is a devastating cause of death and disability. Although injury of brain tissue is of primary interest in head trauma, nearly all significant cases include damage of the cerebral blood vessels. Because vessels are critical to the maintenance of the healthy brain, any injury or dysfunction of the vasculature puts neural tissue at risk. It is well known that these vessels commonly tear and bleed as an immediate consequence of traumatic brain injury. It follows that other vessels experience deformations that are significant though not severe enough to produce bleeding. Recent data show that such subfailure deformations damage the microstructure of the cerebral vessels, altering both their structure and function. Little is known about the prognosis of these injured vessels and their potential contribution to disease development. The objective of this review is to describe the current state of knowledge on the mechanics of cerebral vessels during head trauma and how they respond to the applied loads. Further research on these topics will clarify the role of blood vessels in the progression of traumatic brain injury and is expected to provide insight into improved strategies for treatment of the disease.
Collapse
Affiliation(s)
- Kenneth L Monson
- Department of Mechanical Engineering, University of Utah, USA; Department of Bioengineering, University of Utah, USA.
| | | | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
32
|
Sandsmark DK, Bogoslovsky T, Qu BX, Haber M, Cota MR, Davis C, Butman JA, Latour LL, Diaz-Arrastia R. Changes in Plasma von Willebrand Factor and Cellular Fibronectin in MRI-Defined Traumatic Microvascular Injury. Front Neurol 2019; 10:246. [PMID: 30972003 PMCID: PMC6445052 DOI: 10.3389/fneur.2019.00246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
The neuropathology of traumatic brain injury (TB) is diverse, including primary injury to neurons, axons, glial cells, vascular structures, and secondary processes, such as edema and inflammation that vary between individual patients. Traumatic microvascular injury is an important endophenotype of TBI-related injury. We studied patients who sustained a TBI requiring ER evaluation and had an MRI performed within 48 h of injury. We classified patients into 3 groups based on their MRI findings: (1) those that had evidence of traumatic microvascular injury on susceptibility or diffusion weighted MRI sequences without frank hemorrhage [Traumatic Vascular Injury (TVI) group; 20 subjects]. (2) those who had evidence of intraparenchymal, subdural, epidural, or subarachnoid hemorrhage [Traumatic Hemorrhage (TH) group; 26 subjects], and (3) those who had no traumatic injuries detected by MRI [MRI-negative group; 30 subjects]. We then measured plasma protein biomarkers of vascular injury [von Willebrand Factor (vWF) or cellular fibronectin (cFn)] and axonal injury (phosphorylated neurofilament heavy chain; pNF-H). We found that the TVI group was characterized by decreased expression of plasma vWF (p < 0.05 compared to MRI-negative group; p < 0.00001 compared to TH group) ≤48 h after injury. cFN was no different between groups ≤48 h after injury, but was increased in the TVI group compared to the MRI-negative (p < 0.00001) and TH (p < 0.00001) groups when measured >48 h from injury. pNF-H was increased in both the TH and TVI groups compared to the MRI-negative group ≤48 h from injury. When we used the MRI grouping and molecular biomarkers in a model to predict Glasgow Outcome Scale-Extended (GOS-E) score at 30–90 days, we found that inclusion of the imaging data and biomarkers substantially improved the ability to predict a good outcome over clinical information alone. These data indicate that there is a distinct, vascular-predominant endophenotype in a subset of patients who sustain a TBI and that these injuries are characterized by a specific biomarker profile. Further work to will be needed to determine whether these biomarkers can be useful as predictive and pharmacodynamic biomarkers for vascular-directed therapies after TBI.
Collapse
Affiliation(s)
- Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Tanya Bogoslovsky
- Division of Clinical Neurosciences, Turku University Hospital, University of Turku, Turku, Finland
| | - Bao-Xi Qu
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin R Cota
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Cora Davis
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,National Institutes of Health, Radiology and Imaging Sciences, Bethesda, MD, United States
| | - Lawrence L Latour
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Abstract
Sports-related traumatic brain injuries (TBIs) range in severity from severe to subconcussive. Although technologies exist for clinical diagnosis of more severe injuries, methods for diagnosis of milder forms of brain injury are limited. Developing objective measures to indicate pathogenic processes after a suspected mild TBI is challenging for multiple reasons. The field of biomarker discovery for diagnosing TBI continues to expand, with newly identified candidate biomarkers being reported regularly. Brain-specific biomarkers include proteins derived from neurons and glia, and are often measured to assess neural injury and repair, and to predict outcomes. Ideally, changes in biomarker levels should indicate pathologic events and answer critical questions for accurate diagnosis and prognosis. For example, does the presence or a change in the biomarker level suggest greater vulnerability for sustaining a second concussion or show that the window of increased vulnerability has passed? Likewise, do changes in biomarker levels predict postconcussion syndrome or recovery/repair? Although there are numerous promising candidates for fluid biomarkers that may diagnose mild TBI or concussion, none has reached the clinic to date. In this chapter, we will define biomarkers, discuss the importance of understanding their normal and pathologic functions, and outline some considerations for interpreting detection assay results in TBI. We will then review five proposed blood and cerebrospinal fluid biomarkers (tau, neurofilament, ubiquitin carboxyl-terminal hydrolase L1, S100β, and glial fibrillary acidic protein) used currently to address TBI. Lastly, we will discuss a future trajectory for developing new, clinically useful fluid biomarkers.
Collapse
|
34
|
Pavlova V, Filipova E, Uzunova K, Kalinov K, Vekov T. Pioglitazone Therapy and Fractures: Systematic Review and Meta- Analysis. Endocr Metab Immune Disord Drug Targets 2019; 18:502-507. [PMID: 29683100 DOI: 10.2174/1871530318666180423121833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Thiazolidinediones are a group of synthetic medications used in type 2 diabetes treatment. Among available thiazolidinediones, pioglitazone is gaining increased attention due to its lower cardiovascular risk in type 2 diabetes mellitus sufferers and seems a promising future therapy. Accumulating evidence suggests that diabetic patients may exert bone fractures due to such treatments. Simultaneously, the female population is thought to be at greater risk. Still, the safety outcomes of pioglitazone treatment especially in terms of fractures are questionable and need to be clarified. METHODS We searched MEDLINE, Scopus, PsyInfo, eLIBRARY.ru electronic databases and clinical trial registries for studies reporting an association between pioglitazone and bone fractures in type 2 diabetes mellitus patients published before Feb 15, 2016. Among 1536 sources that were initially identified, six studies including 3172 patients proved relevant for further analysis. RESULT Pooled analysis of the included studies demonstrated that after treatment with pioglitazone patients with type 2 diabetes mellitus had no significant increase in fracture risk [odds ratio (OR): 1.18, 95% confidence interval (CI): 0.82 to 1.71, p=0.38] compared to other antidiabetic drugs or placebo. Additionally, no association was found between the risk of fractures and pioglitazone therapy duration. The gender of the patients involved was not relevant to the risk of fractures, too. CONCLUSION Pioglitazone treatment in diabetic patients does not increase the incidence of bone fractures. Moreover, there is no significant association between patients' fractures, their gender and the period of exposure to pioglitazone. Additional longitudinal studies need to be undertaken to obtain more detailed information on bone fragility and pioglitazone therapy.
Collapse
Affiliation(s)
- Velichka Pavlova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Elena Filipova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Katya Uzunova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Krassimir Kalinov
- Department of Informatics, New Bulgarian University, 21 Montevideo Street, 1618 Sofia, Bulgaria
| | - Toni Vekov
- Medical University, Faculty of Pharmacy, Dean, Pleven, Bulgaria
| |
Collapse
|
35
|
A mechanism for injury through cerebral arteriole inflation. Biomech Model Mechanobiol 2019; 18:651-663. [PMID: 30604301 DOI: 10.1007/s10237-018-01107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
An increase in arterial pressure within the cerebral vasculature appears to coincide with ischemia and dysfunction of the neurovascular unit in some cases of traumatic brain injury. In this study, we examine a new mechanism of brain tissue damage that results from excessive cerebral arteriole pressurization. We begin by considering the morphological and material properties of normotensive and hypertensive arterioles and present a computational model that captures the interaction of neighboring pressurized arterioles and the surrounding brain tissue. Assuming an axonal strain-induced injury criterion, we find that the injury depends on vessel spacing, proximity to an unconfined free surface, and the relative difference in stiffness between the arterioles and the surrounding tissue. We find that a steeper heterogeneity (stiffer vessels surrounded by softer brain tissue) causes larger axial strains to develop at some distance from the arteriole wall, within the brain parenchyma. For a more gradual heterogeneity (softer vessels), we observe more larger strain fields close to the arteriole walls. Both deformation patterns are comparable to damage seen in previous pathology studies on postmortem TBI patients. Finally, we use an analytical model to approximate the interplay between internal pressure, arteriole thickness, and the variation in mechanical properties of arterioles.
Collapse
|
36
|
Haber M, Amyot F, Kenney K, Meredith-Duliba T, Moore C, Silverman E, Podell J, Chou YY, Pham DL, Butman J, Lu H, Diaz-Arrastia R, Sandsmark D. Vascular Abnormalities within Normal Appearing Tissue in Chronic Traumatic Brain Injury. J Neurotrauma 2018; 35:2250-2258. [PMID: 29609518 DOI: 10.1089/neu.2018.5684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for visualizing traumatic brain injury(TBI)-related lesions. Trauma-induced encephalomalacia is frequently identified by its hyperintense appearance on fluid-attenuated inversion recovery (FLAIR) sequences. In addition to parenchymal lesions, TBI commonly results in cerebral microvascular injury, but its anatomical relationship to parenchymal encephalomalacia is not well characterized. The current study utilized a multi-modal MRI protocol to assess microstructural tissue integrity (by mean diffusivity [MD] and fractional aniosotropy [FA]) and altered vascular function (by cerebral blood flow [CBF] and cerebral vascular reactivity [CVR]) within regions of visible encephalomalacia and normal appearing tissue in 27 chronic TBI (minimum 6 months post-injury) subjects. Fifteen subjects had visible encephalomalacias whereas 12 did not have evident lesions on MRI. Imaging from 14 age-matched healthy volunteers were used as controls. CBF was assessed by arterial spin labeling (ASL) and CVR by measuring the change in blood-oxygen-level-dependent (BOLD) MRI during a hypercapnia challenge. There was a significant reduction in FA, CBF, and CVR with a complementary increase in MD within regions of FLAIR-visible encephalomalacia (p < 0.05 for all comparisons). In normal-appearing brain regions, only CVR was significantly reduced relative to controls (p < 0.05). These findings indicate that vascular dysfunction represents a TBI endophenotype that is distinct from structural injury detected using conventional MRI, may be present even in the absence of visible structural injury, and persists long after trauma. CVR may serve as a useful diagnostic and pharmacodynamic imaging biomarker of traumatic microvascular injury.
Collapse
Affiliation(s)
- Margalit Haber
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Franck Amyot
- 6 National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Kimbra Kenney
- 2 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Tawny Meredith-Duliba
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Carol Moore
- 2 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Erika Silverman
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jamie Podell
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Yi-Yu Chou
- 3 Center for Neuroscience and Regenerative Medicine , Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Dzung L Pham
- 3 Center for Neuroscience and Regenerative Medicine , Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - John Butman
- 4 National Institutes of Health , Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland
| | - Hanzhang Lu
- 5 Department of Radiology, Johns Hopkins University Baltimore , Maryland
| | - Ramon Diaz-Arrastia
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Danielle Sandsmark
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Jullienne A, Salehi A, Affeldt B, Baghchechi M, Haddad E, Avitua A, Walsworth M, Enjalric I, Hamer M, Bhakta S, Tang J, Zhang JH, Pearce WJ, Obenaus A. Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. J Neurotrauma 2018; 35:1646-1658. [PMID: 29648973 DOI: 10.1089/neu.2017.5547] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that traumatic brain injuries (TBI) alter the cerebrovasculature near the injury site in rats, followed by revascularization over a 2-week period. Here, we tested our hypothesis that male and female adult mice have differential cerebrovascular responses following a moderate controlled cortical impact (CCI). Using in vivo magnetic resonance imaging (MRI), a new technique called vessel painting, and immunohistochemistry, we found no differences between males and females in lesion volume, neurodegeneration, blood-brain barrier (BBB) alteration, and microglia activation. However, females exhibited more astrocytic hypertrophy and heme-oxygenase-1 (HO-1) induction at 1 day post-injury (dpi), whereas males presented with increased endothelial activation and expression of β-catenin, shown to be involved in angiogenesis. At 7 dpi, we observed an increase in the number of vessels and an enhancement in vessel complexity in the injured cortex of males compared with females. Cerebrovasculature recovers differently after CCI, suggesting biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Amandine Jullienne
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Arjang Salehi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Bethann Affeldt
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mohsen Baghchechi
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Elizabeth Haddad
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Angela Avitua
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mark Walsworth
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Isabelle Enjalric
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Mary Hamer
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Sonali Bhakta
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California
| | - Jiping Tang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California
| | - John H Zhang
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,3 Department of Anesthesiology, University of California Irvine , Irvine, California.,4 Department of Neurosurgery, University of California Irvine , Irvine, California
| | - William J Pearce
- 2 Department of Physiology and Pharmacology, University of California Irvine , Irvine, California.,5 Center for Perinatal Biology, Loma Linda University , Loma Linda, California
| | - André Obenaus
- 1 Department of Basic Sciences, University of California Irvine , Irvine, California.,6 Department of Pediatrics, University of California Irvine , Irvine, California
| |
Collapse
|
38
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
39
|
Kenney K, Amyot F, Moore C, Haber M, Turtzo LC, Shenouda C, Silverman E, Gong Y, Qu BX, Harburg L, Wassermann EM, Lu H, Diaz‐Arrastia R. Phosphodiesterase-5 inhibition potentiates cerebrovascular reactivity in chronic traumatic brain injury. Ann Clin Transl Neurol 2018; 5:418-428. [PMID: 29687019 PMCID: PMC5899908 DOI: 10.1002/acn3.541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Traumatic cerebrovascular injury (TCVI), a common consequence of traumatic brain injury (TBI), presents an attractive therapeutic target. Because phosphodiesterase-5 (PDE5) inhibitors potentiate the action of nitric oxide (NO) produced by endothelial cells, they are candidate therapies for TCVI. This study aims to: (1) measure cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and change in CVR after a single dose of sildenafil (ΔCVR) in chronic TBI compared to uninjured controls; (2) examine the safety and tolerability of 8-week sildenafil administration in chronic symptomatic moderate/severe TBI patients; and as an exploratory aim, (3) assess the effect of an 8-week course of sildenafil on chronic TBI symptoms. METHODS Forty-six subjects (31 chronic TBI, 15 matched healthy volunteers) were enrolled. Baseline CBF and CVR before and after administration of sildenafil were measured. Symptomatic TBI subjects then completed an 8-week double-blind, placebo-controlled, crossover trial of sildenafil. A neuropsychological battery and neurobehavioral symptom questionnaires were administered at each study visit. RESULTS After a single dose of sildenafil, TBI subjects showed a significant increase in global CVR compared to healthy controls (P < 0.001, d = 0.9). Post-sildenafil CVR maps showed near-normalization of CVR in many regions where baseline CVR was low, predominantly within areas without structural abnormalities. Sildenafil was well tolerated. Clinical Global Impression (CGI) scale showed a trend toward clinical improvement while on sildenafil treatment. FINDINGS Single-dose sildenafil improves regional CVR deficits in chronic TBI patients. CVR and ΔCVR are potential predictive and pharmacodynamic biomarkers of PDE5 inhibitor therapy for TCVI. Sildenafil is a potential therapy for TCVI.
Collapse
Affiliation(s)
- Kimbra Kenney
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Franck Amyot
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Carol Moore
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Margalit Haber
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | | | - Christian Shenouda
- Department of Physical Medicine and RehabilitationNational Institutes of Health Clinical CenterBethesdaMaryland
| | - Erika Silverman
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Yunhua Gong
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Bao‐ Xi Qu
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Leah Harburg
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Eric M. Wassermann
- Behavioral Neurology UnitNational Institute of Neurological Diseases and StrokeNational Institutes of HealthBethesdaMaryland
| | | | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
40
|
Sangiorgi S, Benedictis AD, Reguzzoni M, Trezza A, Cossu S, Marras CE, Bellocchi S, Manelli A, Protasoni M. Arterial and microvascular supply of cerebral hemispheres in the nude mouse revealed using corrosion casting and scanning electron microscopy. J Anat 2018; 232:739-746. [PMID: 29441571 DOI: 10.1111/joa.12791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 11/29/2022] Open
Abstract
Morphological analyses of cerebral vascularization are not only important for the characterization of the anatomical and physiological relationships between vascular and nervous tissue, but also required to understand structural modifications that occur in many pathological conditions affecting the brain. The aim of this study was to generate a three-dimensional vascular map of the cerebral hemispheres in the nude mouse brain, a widely used animal model for studying tumour biology. We used the corrosion casting (CC) technique to isolate blood vessels from 30 nude mouse brains. All casts were analysed using scanning electron microscopy (SEM), which generated quantitative data regarding vessel length and diameter as well as inter-vascular and inter-branching distances. We identified three different topographical regions: (i) the cortical region, characterized by a superficial wide sheet of vessels giving rise to terminal perforant vessels that penetrate the grey matter; (ii) the inner part of the grey matter, in which dense capillary nets form many flake-like structures extending towards the grey-white matter boundary, where perforant vessels finally change direction and form a well-defined vascular sheet; and (iii) the white matter layer, characterized by a more disorganized vascular architecture. In this study, we demonstrate the accuracy of the CC-SEM method in revealing the 3D-topographical organization of the vascular network of the normal nude mouse brain. These baseline data will serve as a reference for future anatomical investigations of pathological alterations, such as tumour infiltrations, using the nude mouse model.
Collapse
Affiliation(s)
- Simone Sangiorgi
- Neurosurgery Unit, Department of Surgery, ASST lariana - S. Anna Hospital, Como, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Trezza
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Silvia Cossu
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Silvio Bellocchi
- Neurosurgery Unit, Department of Surgery, ASST lariana - S. Anna Hospital, Como, Italy
| | | | - Marina Protasoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
41
|
Olczak M, Niderla-Bielińska J, Kwiatkowska M, Samojłowicz D, Tarka S, Wierzba-Bobrowicz T. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int 2017; 280:1-7. [PMID: 28942078 DOI: 10.1016/j.forsciint.2017.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 01/27/2023]
Abstract
MAPT is a neuronal protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. MAPT release into the CSF and blood has been interpreted as indicative of axonal injury as its elevated levels were observed in olympic boxers even after a mild head trauma suggesting minor CNS injuries. In our study we wanted to check the potential relevance of MAPT examination for forensic purposes. The study was carried out using cases of head injury group and cases of sudden death (cardiopulmonary failure, no injuries of the head - control group) provided by forensic pathologists at the Department of Forensic Medicine, Medical University of Warsaw. CSF and blood were collected within 24h after death using suboccipital puncture and femoral vein puncture. Serum and cerebrospinal fluid Tau protein concentrations were compared using an enzyme-linked immunosorbent assay (elisa). Brain specimens (frontal cortex) were collected during forensic autopsies. Sections were stained histologically (hematoxylin-eosin) and immunohistochemically with anti human Tau antibody, anti glial fibrillary acid protein (GFAP), anti human macrosialin (CD68) or anti human endothelial cells (CD34). In our study we documented that elevated levels of serum and CSF MAPT may also be considered a marker for mild traumatic brain injury and traumatic brain injury (mTBI and TBI). An increase in CSF and serum levels of MAPT in the absence of visible macroscopic traumatic CNS changes indicates that even minor head injuries may result in changes at the neuronal level that could remain undiagnosed during regular forensic autopsy and routine histopathological examination.
Collapse
Affiliation(s)
- Mieszko Olczak
- Department of Forensic Medicine, Medical University of Warsaw, 1 Oczki st., 02-007 Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Histology and Embriology Department, Medical University of Warsaw, 5 Chałubińskiego st., 02-004 Warsaw, Poland
| | - Magdalena Kwiatkowska
- Department of Forensic Medicine, Medical University of Warsaw, 1 Oczki st., 02-007 Warsaw, Poland
| | - Dorota Samojłowicz
- Department of Forensic Medicine, Medical University of Warsaw, 1 Oczki st., 02-007 Warsaw, Poland
| | - Sylwia Tarka
- Department of Forensic Medicine, Medical University of Warsaw, 1 Oczki st., 02-007 Warsaw, Poland; Department of Neuropathology, Institute of Psychiatry and Neurology, 9 Sobieskiego st., 02-957 Warsaw, Poland
| | - Teresa Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, 9 Sobieskiego st., 02-957 Warsaw, Poland
| |
Collapse
|
42
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
43
|
Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2017; 15:843-856. [PMID: 27302363 DOI: 10.1016/s1474-4422(16)00112-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, University of Bonn, Bonn, Germany
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Unit of Gene Therapy of Neurodegenerative Diseases, Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olli Gröhn
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Merab Kokaia
- Epilepsy Center, Experimental Epilepsy Group, Division of Neurology, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
44
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
45
|
Obenaus A, Ng M, Orantes AM, Kinney-Lang E, Rashid F, Hamer M, DeFazio RA, Tang J, Zhang JH, Pearce WJ. Traumatic brain injury results in acute rarefication of the vascular network. Sci Rep 2017; 7:239. [PMID: 28331228 PMCID: PMC5427893 DOI: 10.1038/s41598-017-00161-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
The role of the cerebrovascular network and its acute response to TBI is poorly defined and emerging evidence suggests that cerebrovascular reactivity is altered. We explored how cortical vessels are physically altered following TBI using a newly developed technique, vessel painting. We tested our hypothesis that a focal moderate TBI results in global decrements to structural aspects of the vasculature. Rats (naïve, sham-operated, TBI) underwent a moderate controlled cortical impact. Animals underwent vessel painting perfusion to label the entire cortex at 1 day post TBI followed by whole brain axial and coronal images using a wide-field fluorescence microscope. Cortical vessel network characteristics were analyzed for classical angiographic features (junctions, lengths) wherein we observed significant global (both hemispheres) reductions in vessel junctions and vessel lengths of 33% and 22%, respectively. Biological complexity can be quantified using fractal geometric features where we observed that fractal measures were also reduced significantly by 33%, 16% and 13% for kurtosis, peak value frequency and skewness, respectively. Acutely after TBI there is a reduction in vascular network and vascular complexity that are exacerbated at the lesion site and provide structural evidence for the bilateral hemodynamic alterations that have been reported in patients after TBI.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Michelle Ng
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Amanda M Orantes
- Molecular and Integrative Physiology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Eli Kinney-Lang
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Faisal Rashid
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Mary Hamer
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | - Jiping Tang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - William J Pearce
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
46
|
Urrecha M, Romero I, DeFelipe J, Merchán-Pérez A. Influence of cerebral blood vessel movements on the position of perivascular synapses. PLoS One 2017; 12:e0172368. [PMID: 28199396 PMCID: PMC5310786 DOI: 10.1371/journal.pone.0172368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.
Collapse
Affiliation(s)
- Miguel Urrecha
- Department of Mechanical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ignacio Romero
- Department of Mechanical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
- IMDEA Materials Institute, Getafe, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel Merchán-Pérez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol 2016; 12:563-74. [DOI: 10.1038/nrneurol.2016.127] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 2016; 28:556-64. [PMID: 26402408 DOI: 10.1097/wco.0000000000000248] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Angiogenesis or vascular reorganization plays a role in recovery after stroke and traumatic brain injury (TBI). In this review, we have focused on two major events that occur during stroke and TBI from a vascular perspective - what is the process and time course of blood-brain barrier (BBB) breakdown? and how does the surrounding vasculature recover and facilitate repair? RECENT FINDINGS Despite differences in the primary injury, the BBB changes overlap between stroke and TBI. Disruption of BBB involves a series of events: formation of caveolae, trans and paracellular disruption, tight junction breakdown and vascular disruption. Confounding factors that need careful assessment and standardization are the severity, duration and extent of the stroke and TBI that influences BBB disruption. Vascular repair proceeds through long-term neovascularization processes: angiogenesis, arteriogenesis and vasculogenesis. Enhancing each of these processes may impart beneficial effects in endogenous recovery. SUMMARY Our understanding of BBB breakdown acutely after the cerebrovascular injury has come a long way; however, we lack a clear understanding of the course of BBB disruption and BBB recovery and the evolution of individual cellular events associated with BBB change. Neovascularization responses have been widely studied in stroke for their role in functional recovery but the role of vascular reorganization after TBI in recovery is much less defined.
Collapse
|
49
|
Yamamura H, Morioka T, Yamamoto T, Mizobata Y. Head computed tomographic measurement as a predictor of outcome in patients with subdural hematoma with cerebral edema. Scand J Trauma Resusc Emerg Med 2016; 24:83. [PMID: 27412565 PMCID: PMC4942894 DOI: 10.1186/s13049-016-0271-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to predict outcome in patients with cerebral edema is important because it can influence treatment strategy. We evaluated whether differences in head computed tomographic (CT) measurements in Hounsfield units (HU) of white matter and gray matter can be used as a predictor of outcome in patients with subdural hematoma with cerebral edema. METHODS We evaluated 34 patients who had subdural hematoma with cerebral edema following acute closed head trauma and had undergone head CT within a few hours of admission. We divided them into the survival (n = 24) group and death (n = 10) group, and measured the HU of white matter and gray matter at injury and non-injury sites. RESULTS There were no significant differences in operation time or blood loss during surgery between the two groups. Only the HU of white matter in the injury site of patients in the death group were decreased significantly. A cut-off value of 31.5 for HU of white matter showed 80.0 % sensitivity and 99.9 % specificity for death; the area under the curve was 0.91. DISCUSSION Our results are more evidence of the support of neurogenic edema in trauma rather than an important clinical tool at this stage. However, HU values in WM may be one factor in the decision-making process that affects patient outcome. Changing the treatment strategy in patients with a low HU value in the WM at the injury site may bring about an improvement in patient outcome. CONCLUSION Measurement in HU of white matter at the injury site might be useful as a predictor of outcome in patients with subdural hematoma with cerebral edema.
Collapse
Affiliation(s)
- Hitoshi Yamamura
- Department of Critical Care Medicine, Graduate School of Medicine, Hirosaki University, 5 Zaifuchou, Hirosaki city, Aomori, 036-8562, Japan.
| | - Takasei Morioka
- Department of Critical Care Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Osaka City, 545-8585, Japan
| | - Tomonori Yamamoto
- Department of Critical Care Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Osaka City, 545-8585, Japan
| | - Yasumitsu Mizobata
- Department of Critical Care Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Osaka City, 545-8585, Japan
| |
Collapse
|
50
|
Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev 2016; 68:460-473. [PMID: 27181909 DOI: 10.1016/j.neubiorev.2016.05.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022]
Abstract
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.
Collapse
|