1
|
Wang Y, Rambold U, Fiedler P, Babushku T, Tapken CL, Hoefig KP, Hofer TP, Adler H, Yildirim AÖ, Strobl LJ, Zimber-Strobl U. CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells. Cell Mol Immunol 2024:10.1038/s41423-024-01219-w. [PMID: 39420111 DOI: 10.1038/s41423-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.
Collapse
Affiliation(s)
- Yan Wang
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Petra Fiedler
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Claas L Tapken
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Önder Yildirim
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| |
Collapse
|
2
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Dal Pozzolo R, Cafaro G, Perricone C, Calvacchi S, Bruno L, Colangelo A, Tromby F, Gerli R, Bartoloni E. Salivary gland biopsy as a prognostic tool in Sjögren's syndrome. Expert Rev Clin Immunol 2024; 20:1139-1147. [PMID: 38881375 DOI: 10.1080/1744666x.2024.2368189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is an autoimmune disorder primarily affecting salivary and lacrimal glands, although about 40% of patients experience systemic complications. In this setting, the identification of patient phenotypes characterized by increased risk of extra-glandular involvement still represents an unmet need. AREAS COVERED The aim of this paper is to review the scientific evidence on the utility of salivary gland biopsies in pSS, emphasizing their role in defining prognosis. In latest years, research focused on disease-specific clinical, serological, or histological features able to categorize patient prognosis. Among histopathological features, focus score and ectopic germinal centers exhibit associations with glandular and extraglandular manifestations, including higher rates of lymphomagenesis. EXPERT OPINION Pathological characterization of salivary glands provides information that go beyond a mere diagnostic or classification utility, providing insights for a stratification of disease severity and for predicting systemic manifestations. Thus, a salivary gland biopsy should be offered to all patients and included in routine practice, even when not strictly required for diagnostic purposes. More advanced analysis techniques of the tissue, including immunohistochemistry and 'omics' should be further explored in longitudinal studies to boost the ability to further stratify and predict disease evolution.
Collapse
Affiliation(s)
- Roberto Dal Pozzolo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santina Calvacchi
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenza Bruno
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anna Colangelo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Tromby
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
Legger GE, Nakshbandi U, van Ginkel MS, Liefers SC, de Wolff L, Stel AJ, Armbrust W, Spijkervet FKL, Vissink A, Arends S, Bootsma H, van der Vegt B, Verstappen GM, Kroese FGM. More severe parotid gland histopathology in paediatric-onset than in adult-onset Sjögren's disease. RMD Open 2024; 10:e004201. [PMID: 39142692 PMCID: PMC11332018 DOI: 10.1136/rmdopen-2024-004201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES The aim of this study was to assess the histopathological features of the parotid glands in patients with paediatric-onset Sjögren's disease (pedSjD) in comparison to patients with adult-onset Sjögren's disease (adSjD). METHODS This study was performed in Groningen, the Netherlands. Patients with pedSjD from a diagnostic paediatric cohort (n=19), patients with adSjD from a diagnostic adult cohort (n=32) and patients with adSjD who participated in a clinical trial (n=42) with a baseline parotid gland biopsy were included. Parotid gland biopsies were analysed after (immuno)histological staining for SjD-related histopathological markers and compared between groups. RESULTS All characteristic histopathological features of adSjD were also observed in pedSjD. There were no significant differences in lymphoepithelial lesions or immunoglobulin A (IgA)/IgG plasma cell shift between the pedSjD and the adSjD cohorts. However, compared with the diagnostic adSjD cohort (with comparable total EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) scores), pedSjD showed more severe lymphocytic infiltration as reflected by a higher focus score (p=0.003), a higher relative surface area of CD45+ infiltrate (p=0.041), higher numbers of B and T lymphocytes/mm2 (p=0.004 and p=0.029, respectively), a higher B/T lymphocyte ratio (p=0.013), higher numbers of CD21+ follicular dendritic cell networks/mm2 (p=0.029) and germinal centres (GC)/mm2 (p=0.002). Compared with the trial adSjD cohort, with significant higher total ESSDAI scores (p=0.001), only the B/T lymphocyte ratio and numbers of GC/mm2 were significantly higher in the pedSjD cohort (p=0.023 and p=0.018, respectively). CONCLUSION Patients with pedSjD exhibit more pronounced histopathological features compared with patients with adSjD at diagnosis. Notably, the histopathology of patients with pedSjD aligns more closely with that observed in an adSjD clinical trial cohort, with even stronger B lymphocyte involvement.
Collapse
Affiliation(s)
- Geertje Elizabeth Legger
- Pediatric Rheumatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uzma Nakshbandi
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martha S van Ginkel
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Silvia C Liefers
- Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisette de Wolff
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alja J Stel
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wineke Armbrust
- Pediatric Rheumatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fred K L Spijkervet
- Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne Arends
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gwenny M Verstappen
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Riffard C, Letaïef L, Azar S, Casrouge A, Brunet I, Teillaud JL, Dieu-Nosjean MC. Absence of sympathetic innervation hampers the generation of tertiary lymphoid structures upon acute lung inflammation. Sci Rep 2024; 14:11749. [PMID: 38782985 PMCID: PMC11116507 DOI: 10.1038/s41598-024-62673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are lymphoid organs present in inflammatory non-lymphoid tissues. Studies have linked TLS to favorable outcomes for patients with cancers or infectious diseases, but the mechanisms underlying their formation are not fully understood. In particular, secondary lymphoid organs innervation raises the question of sympathetic nerve fibers involvement in TLS organogenesis. We established a model of pulmonary inflammation based on 5 daily intranasal instillations of lipopolysaccharide (LPS) in immunocompetent mice. In this setting, lung lymphoid aggregates formed transiently, evolving toward mature TLS and disappearing when inflammation resolved. Sympathetic nerve fibers were then depleted using 6-hydroxydopamine. TLS quantification by immunohistochemistry showed a decrease in LPS-induced TLS number and surface in denervated mouse lungs. Although a reduction in alveolar space was observed, it did not impair overall pulmonary content of transcripts encoding TNF-α, IL-1β and IFN-γ inflammation molecules whose expression was induced by LPS instillations. Immunofluorescence analysis of immune infiltrates in lungs of LPS-treated mice showed a drop in the proportion of CD23+ naive cells among CD19+ B220+ B cells in denervated mice whereas the proportion of other cell subsets remained unchanged. These data support the existence of neuroimmune crosstalk impacting lung TLS neogenesis and local naive B cell pool.
Collapse
Affiliation(s)
- Clémence Riffard
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| | - Laïla Letaïef
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France
- Inserm U1135, 75013, Paris, France
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France
| | - Safa Azar
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, Inserm U1050, 75231, Cedex Paris, France
- Université Paris Sciences and Lettres, 75231, Cedex Paris, France
| | - Armanda Casrouge
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France
- Inserm U1135, 75013, Paris, France
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France
| | - Isabelle Brunet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, Inserm U1050, 75231, Cedex Paris, France
- Université Paris Sciences and Lettres, 75231, Cedex Paris, France
| | - Jean-Luc Teillaud
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| | - Marie-Caroline Dieu-Nosjean
- Faculté de Santé Sorbonne Université, Sorbonne Université UMRS1135, 75013, Paris, France.
- Inserm U1135, 75013, Paris, France.
- Laboratory "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections, CIMI Paris, 75013, Paris, France.
| |
Collapse
|
8
|
Maleki-Fischbach M, Anderson K, Fernández Pérez ER. Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren's Patients Reveals Interferon Signature. Genes (Basel) 2024; 15:628. [PMID: 38790257 PMCID: PMC11120746 DOI: 10.3390/genes15050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Sjögren's disease (SjD) is a common systemic autoimmune disease that affects mainly women. Key pathologic features include the infiltration of exocrine glands by lymphocytes and the activation of B lymphocytes with the production of autoantibodies. We aimed to analyze the transcriptome of circulating B cells from patients with SJD and healthy controls to decipher the B-cell-specific contribution to SJD. METHODS RNA from peripheral blood B cells of five untreated female patients with SjD and positive ANA, positive anti-SSA (both Ro-52 and Ro-60), positive anti-SSB and positive rheumatoid-factor, and five healthy controls was subjected to whole-transcriptome sequencing. A false discovery rate of < 0.1 was applied to define differentially expressed genes (DEG). RESULTS RNA-sequencing identified 56 up and 23 down DEG. Hierarchal clustering showed a clear separation between the two groups. Ingenuity pathway analysis revealed that these genes may play a role in interferon signaling, chronic mycobacterial infection, and transformation to myeloproliferative disorders. CONCLUSIONS We found upregulated expression of type-I and type-II interferon (IFN)-induced genes, as well as genes that may contribute to other concomitant conditions, including infections and a higher risk of myeloproliferative disorders. This adds insight into the autoimmune process and suggests potential targets for future functional and prognostic studies.
Collapse
Affiliation(s)
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Evans R. Fernández Pérez
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
9
|
Shao H, Wu Y, Tao X, Liu Q, Ran C, Jin L, Tao J. The titers of antinuclear antibodies are associated with the degree of inflammation and organ damage in Primary Sjögren's Syndrome. Clin Exp Med 2024; 24:96. [PMID: 38717644 PMCID: PMC11078821 DOI: 10.1007/s10238-024-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Primary Sjögren's Syndrome (pSS) falls within the category of connective tissue diseases, characterized by the presence of autoantibodies such as antinuclear antibodies (ANA). However, according to the classification criteria for pSS, some patients may exhibit a negative result for autoantibodies. Patients with a negative result for autoantibodies may lack typical features of connective tissue diseases, and the immunological state as well as the extent of organ involvement and damage may differ from those with positive autoantibodies. This study aims to compare the clinical phenotypes of patients with positive and negative autoantibodies, providing insights for disease classification and treatment selection for clinicians. Patients with pSS were grouped based on the presence and titers of their autoantibodies. Subsequently, differences in organ damage and laboratory indicators were compared between these groups, aiming to analyze the value of autoantibody titers in assessing the condition of pSS. (1) Patients with positive ANA exhibited elevated levels of inflammatory indicators, including ESR, IgG levels, lip gland biopsy pathology grade, and overall organ involvement, in comparison with patients with negative ANA (P < 0.05). Furthermore, ANA-positivity correlated with a higher occurrence of multi-organ damage, particularly affecting the skin, mucous membranes, and the hematological system (P < 0.05). (2) As ANA titers increased, patients demonstrated elevated levels of IgG and an escalation in organ involvement (P < 0.05). (3) Patients in the positive autoantibody group (positive for antinuclear antibodies, anti-SSA, or anti-SSB antibodies) had higher IgG levels compared to the negative group (P < 0.05). (4) Patients with positive anti-SSA and anti-SSB antibodies exhibited higher levels of inflammatory indicators and IgG compared to other patients (P < 0.05); however, no significant differences were observed in terms of organ involvement and organ damage. Patients with positive ANA in pSS typically exhibit higher levels of inflammation and an increased likelihood of experiencing multi-organ damage. Furthermore, as the ANA titers increase, both inflammation levels and the risk of multi-organ damage also escalate. Additionally, the presence of anti-SSA and anti-SSB antibodies may contribute to an elevated risk of increased inflammation levels, but does not increase the risk of organ damage.
Collapse
Affiliation(s)
- Huijun Shao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
- Department of Allergy and Clinical Immunity, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
| | - Yue Wu
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
- Department of Allergy and Clinical Immunity, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
| | - Qun Liu
- Wannan Medical College, No. 10 Kangfu Road, Wuhu, 241000, Anhui, China
| | - Chenyu Ran
- Wannan Medical College, No. 10 Kangfu Road, Wuhu, 241000, Anhui, China
| | - Li Jin
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No. 17 Lijiang Road, Hefei, 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No. 17 Lijiang Road, Hefei, 230001, Anhui, China.
- Department of Allergy and Clinical Immunity, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lijiang Road, Hefei, 230001, Anhui, China.
| |
Collapse
|
10
|
Huard B, Chemkhi Z, Giovannini D, Barre M, Baillet A, Cornec D, Harada K, Sturm N. Presence of ectopic germinal center structures in autoimmune hepatitis. Clin Immunol 2024; 259:109876. [PMID: 38145857 DOI: 10.1016/j.clim.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Autoimmune tissues may contain ectopic germinal centers (EGCs). However, these structures have never been described in the liver of patients suffering from autoimmune hepatitis (AIH). We retrospectively reviewed histological features of 120 definite AIH cases, and found 10 cases harboring markers of EGCs. In these cases, CD21+ follicular dendritic cells were intermixed with CD3+ T and CD20+ B lymphocytes. The latter expressed the GC-specific marker bcl6, and some were proliferative as assessed by Ki67 expression. Antibody-secreting cells (ASCs) defined by expression of the mum-1 transcription factor and presence of cytoplasmic IgMs were usually present in the periphery of these structures, but some were also present within the EGCs. Notably, some ASCs were IgG-switched. Common treatment applied to AIH patients achieved biochemical normalization as efficiently as in patients without EGCs. In the present study, we provide the proof for the occurrence of functional EGCs enabling differentiation of B cells into ASCs and occurrence of immunoglobulin switch in AIH livers.
Collapse
Affiliation(s)
- B Huard
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - Z Chemkhi
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - D Giovannini
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Anatomocytopathology, University Hospital, Grenoble, France.
| | - M Barre
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France.
| | - A Baillet
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Rhumatology, University Hospital, Grenoble, France.
| | - D Cornec
- Lymphocyte B and Autoimmunity, INSERM, UMR 1227, Department of Rhumatology, Brest university, Brest, France.
| | - K Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - N Sturm
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche, France; Department of Anatomocytopathology, University Hospital, Grenoble, France.
| |
Collapse
|
11
|
Arvidsson G, Czarnewski P, Johansson A, Raine A, Imgenberg-Kreuz J, Nordlund J, Nordmark G, Syvänen AC. Multimodal Single-Cell Sequencing of B Cells in Primary Sjögren's Syndrome. Arthritis Rheumatol 2024; 76:255-267. [PMID: 37610265 DOI: 10.1002/art.42683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE B cells are important in the pathogenesis of primary Sjögren's syndrome (pSS). Patients positive for Sjögren's syndrome antigen A/Sjögren syndrome antigen B (SSA/SSB) autoantibodies are more prone to systemic disease manifestations and adverse outcomes. We aimed to determine the role of B cell composition, gene expression, and B cell receptor usage in pSS subgroups stratified for SSA/SSB antibodies. METHODS Over 230,000 B cells were isolated from peripheral blood of patients with pSS (n = 6 SSA-, n = 8 SSA+ single positive and n = 10 SSA/SSB+ double positive) and four healthy controls and processed for single-cell RNA sequencing (scRNA-seq) and single-cell variable, diversity, and joining (VDJ) gene sequencing (scVDJ-seq). RESULTS We show that SSA/SSB+ patients present the highest and lowest proportion of naïve and memory B cells, respectively, and the highest up-regulation of interferon-induced genes across all B cell subtypes. Differential usage of IGHV showed that IGHV1-69 and IGHV4-30-4 were more often used in all pSS subgroups compared with controls. Memory B cells from SSA/SSB+ patients displayed a higher proportion of cells with unmutated VDJ transcripts compared with other pSS patient groups and controls, indicating altered somatic hypermutation processes. Comparison with previous studies revealed heterogeneous clonotype pools, with little overlap in CDR3 sequences. Joint analysis using scRNA-seq and scVDJ-seq data allowed unsupervised stratification of patients with pSS and identified novel parameters that correlated to disease manifestations and antibody status. CONCLUSION We describe heterogeneity and molecular characteristics in B cells from patients with pSS, providing clues to intrinsic differences in B cells that affect the phenotype and outcome and allowing stratification of patients with pSS at improved resolution.
Collapse
|
12
|
Kolijn PM, Langerak AW. Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds. Immunol Lett 2023; 263:46-59. [PMID: 37774986 DOI: 10.1016/j.imlet.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Wiley MM, Khatri B, Joachims ML, Tessneer KL, Stolarczyk AM, Rasmussen A, Anaya JM, Aqrawi LA, Bae SC, Baecklund E, Björk A, Brun JG, Bucher SM, Dand N, Eloranta ML, Engelke F, Forsblad-d’Elia H, Fugmann C, Glenn SB, Gong C, Gottenberg JE, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kelly JA, Khanam S, Kim K, Kvarnström M, Mandl T, Martín J, Morris DL, Nocturne G, Norheim KB, Olsson P, Palm Ø, Pers JO, Rhodus NL, Sjöwall C, Skarstein K, Taylor KE, Tombleson P, Thorlacius GE, Venuturupalli S, Vital EM, Wallace DJ, Grundahl KM, Radfar L, Brennan MT, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Appel S, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner BM, Rischmueller M, Witte T, Farris AD, Mariette X, Shiboski CH, Wahren-Herlenius M, Alarcón-Riquelme ME, Ng WF, Sivils KL, Guthridge JM, Adrianto I, Vyse TJ, Tsao BP, Nordmark G, Lessard CJ. Variants in the DDX6-CXCR5 autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561076. [PMID: 39071447 PMCID: PMC11275775 DOI: 10.1101/2023.10.05.561076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine mapping and bioinformatic analysis of the DDX6-CXCR5 genetic risk association in Sjögren's Disease (SjD) and Systemic Lupus Erythematosus (SLE) identified five common SNPs with functional evidence in immune cell types: rs4938573, rs57494551, rs4938572, rs4936443, rs7117261. Functional interrogation of nuclear protein binding affinity, enhancer/promoter regulatory activity, and chromatin-chromatin interactions in immune, salivary gland epithelial, and kidney epithelial cells revealed cell type-specific allelic effects for all five SNPs that expanded regulation beyond effects on DDX6 and CXCR5 expression. Mapping the local chromatin regulatory network revealed several additional genes of interest, including lnc-PHLDB1-1. Collectively, functional characterization implicated the risk alleles of these SNPs as modulators of promoter and/or enhancer activities that regulate cell type-specific expression of DDX6, CXCR5, and lnc-PHLDB1-1, among others. Further, these findings emphasize the importance of exploring the functional significance of SNPs in the context of complex chromatin architecture in disease-relevant cell types and tissues.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Michelle L. Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Anna M. Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | | | - Lara A. Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
- University of Oslo, Norway
| | | | | | | | - Johan G. Brun
- University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | | | - Nick Dand
- King’s College London, London, United Kingdom
| | | | | | | | | | - Stuart B. Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Chen Gong
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sharmily Khanam
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | | | | | | | - Javier Martín
- Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain
| | | | - Gaetane Nocturne
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kiely M. Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | | | - Judith A. James
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lindsey A. Criswell
- University of California San Francisco, San Francisco, California, USA
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Simon J. Bowman
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Roald Omdal
- University of Bergen, Bergen, Norway
- Stavanger University Hospital, Stavanger, Norway
| | | | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xavier Mariette
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | - Marta E. Alarcón-Riquelme
- Karolinska Institutet, Solna, Sweden
- Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain
| | | | - Wan-Fai Ng
- NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Betty P. Tsao
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
14
|
Frech M, Danzer H, Uchil P, Azizov V, Schmid E, Schälter F, Dürholz K, Mauro D, Rauber S, Muñoz L, Taher L, Ciccia F, Schober K, Irla M, Sarter K, Schett G, Zaiss MM. Butyrophilin 2a2 (Btn2a2) expression on thymic epithelial cells promotes central T cell tolerance and prevents autoimmune disease. J Autoimmun 2023; 139:103071. [PMID: 37356345 DOI: 10.1016/j.jaut.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heike Danzer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pooja Uchil
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Schmid
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Schälter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniele Mauro
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Simon Rauber
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University Della Campania L. Vanvitelli, Naples, Italy
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Magali Irla
- CNRS, INSERM, Centre D'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
15
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Wu KY, Kulbay M, Tanasescu C, Jiao B, Nguyen BH, Tran SD. An Overview of the Dry Eye Disease in Sjögren's Syndrome Using Our Current Molecular Understanding. Int J Mol Sci 2023; 24:1580. [PMID: 36675090 PMCID: PMC9866656 DOI: 10.3390/ijms24021580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious auto-immune disease characterized by lymphocyte infiltration of exocrine glands. The patients typically present with ocular surface diseases related to dry eye and other systemic manifestations. However, due to the high prevalence of dry eye disease and the lack of objective and clinically reliable diagnostic tools, discriminating Sjögren's syndrome dry eye (SSDE) from non-Sjögren's syndrome dry eye (NSSDE) remains a challenge for clinicians. Diagnosing SS is important to improve the quality of life of patients through timely referral for systemic workups, as SS is associated with serious systemic complications such as lymphoma and other autoimmune diseases. The purpose of this article is to describe the current molecular understanding of Sjögren's syndrome and its implications for novel diagnostic modalities on the horizon. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. The SSDE pathophysiology and immunology pathways have become better understood in recent years. Novel diagnostic modalities, such as tear and saliva proteomics as well as exosomal biomarkers, provide hope on the horizon.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Cristina Tanasescu
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
| | - Belinda Jiao
- Department of Medicine, Division of Internal Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Bich H. Nguyen
- CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
17
|
Kolijn PM, Huijser E, Wahadat MJ, van Helden-Meeuwsen CG, van Daele PLA, Brkic Z, Rijntjes J, Hebeda KM, Groenen PJTA, Versnel MA, Thurlings RM, Langerak AW. Extranodal marginal zone lymphoma clonotypes are detectable prior to eMZL diagnosis in tissue biopsies and peripheral blood of Sjögren's syndrome patients through immunogenetics. Front Oncol 2023; 13:1130686. [PMID: 37035202 PMCID: PMC10076775 DOI: 10.3389/fonc.2023.1130686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Activated B cells play a key role in the pathogenesis of primary Sjögren's syndrome (pSS) through the production of autoantibodies and the development of ectopic germinal centers in the salivary glands and other affected sites. Around 5-10% of pSS patients develop B-cell lymphoma, usually extranodal marginal zone lymphomas (eMZL) of the mucosa-associated lymphoid tissue (MALT). The aim of the current study is to investigate if the eMZL clonotype is detectable in prediagnostic blood and tissue biopsies of pSS patients. Methods/Results We studied prediagnostic tissue biopsies of three pSS patients diagnosed with eMZL and four pSS controls through immunoglobulin (IG) gene repertoire sequencing. In all three cases, we observed the eMZL clonotype in prediagnostic tissue biopsies. Among controls, we observed transient elevation of clonotypes in two pSS patients. To evaluate if eMZL clonotypes may also be detected in the circulation, we sequenced a peripheral blood mononuclear cell (PBMC) sample drawn at eMZL diagnosis and two years prior to eMZL relapse in two pSS patients. The eMZL clonotype was detected in the peripheral blood prior to diagnosis in both cases. Next, we selected three pSS patients who developed eMZL lymphoma and five additional pSS patients who remained lymphoma-free. We sequenced the IG heavy chain (IGH) gene repertoire in PBMC samples taken a median of three years before eMZL diagnosis. In two out of three eMZL patients, the dominant clonotype in the prediagnostic PBMC samples matched the eMZL clonotype in the diagnostic biopsy. The eMZL clonotypes observed consisted of stereotypic IGHV gene combinations (IGHV1-69/IGHJ4 and IGHV4-59/IGHJ5) associated with rheumatoid factor activity, a previously reported feature of eMZL in pSS. Discussion In conclusion, our results indicate that eMZL clonotypes in pSS patients are detectable prior to overt eMZL diagnosis in both tissue biopsies and peripheral blood through immunogenetic sequencing, paving the way for the development of improved methods of early detection of eMZL.
Collapse
Affiliation(s)
- P. Martijn Kolijn
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Erika Huijser
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | - M. Javad Wahadat
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, Erasmus MC, Rotterdam, Netherlands
| | | | - Paul L. A. van Daele
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Zana Brkic
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Jos Rijntjes
- Department of Pathology, Radboudumc, Nijmegen, Netherlands
| | | | | | | | | | - Anton W. Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Anton W. Langerak,
| |
Collapse
|
18
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
19
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
Vílchez-Oya F, Balastegui Martin H, García-Martínez E, Corominas H. Not all autoantibodies are clinically relevant. Classic and novel autoantibodies in Sjögren’s syndrome: A critical review. Front Immunol 2022; 13:1003054. [PMID: 36325321 PMCID: PMC9619091 DOI: 10.3389/fimmu.2022.1003054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Sjögren’s syndrome (SjS) is a heterogeneous systemic disease. The abnormal responses to La/SSB and Ro/SSA of both B-cells and T-cells are implicated as well as others, in the destruction of the epithelium of the exocrine glands, whose tissue characteristically shows a peri-epithelial lymphocytic infiltration that can vary from sicca syndrome to systemic disease and lymphoma. Despite the appearance of new autoantibodies, anti-Ro/SSA is still the only autoantibody included in the American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) classification criteria and is used extensively as a traditional biomarker in clinical practice. The study and findings of new autoantibodies in SjS has risen in the previous decade, with a central role given to diagnosis and elucidating new aspects of SjS physiopathology, while raising the opportunity to establish clinical phenotypes with the goal of predicting long-term complications. In this paper, we critically review the classic and the novel autoantibodies in SjS, analyzing the methods employed for detection, the pathogenic role and the wide spectrum of clinical phenotypes.
Collapse
Affiliation(s)
- Francisco Vílchez-Oya
- Department of Anaesthesiology, Pain Medicine Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - E. García-Martínez
- Department of Immunology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Hèctor Corominas
- Department of Rheumatology and Autoimmune Diseases, Hospital de la Santa Creu i Sant, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- *Correspondence: Hèctor Corominas,
| |
Collapse
|
21
|
Ridgewell D, Thalayasingam N, Ng WF. Sjögren's syndrome: shedding light on emerging and key drug targets. Expert Opin Ther Targets 2022; 26:869-882. [PMID: 36576336 DOI: 10.1080/14728222.2022.2157259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sjögren's syndrome (SS) is an immune-mediated inflammatory condition characterized by sicca syndrome, musculoskeletal pain, and fatigue. Extra-glandular manifestations are common and there is a markedly increased risk of lymphoma development. SS is associated with high health-economic burden driven largely by the symptom burden on patients. Currently, there is no approved disease-modifying treatment and management is based on empirical evidence. Progress in the understanding of SS pathogenesis has led to an expanding portfolio of more targeted therapies under development. AREAS COVERED This review summarizes the key development in targeted biological therapies in SS including emerging targets. It also highlights the challenges in therapeutic development in SS such as disease heterogeneity and defining appropriate disease assessment tools to evaluate therapeutic efficacy. EXPERT OPINION Early trials in SS failed to meet their primary outcomes which may in part due to the use of inappropriate or insensitive study endpoints. Recent trials targeting B-cells, B-T cell co-stimulation and IFN signaling have shown promising results. Development of composite endpoints including patient reported outcomes and objective disease measure may provide a more holistic approach to disease assessment. The impact of these new tools on therapeutic development that benefit patients remains to be fully evaluated.
Collapse
Affiliation(s)
- Dominic Ridgewell
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nishanthi Thalayasingam
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Wan-Fai Ng
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
23
|
The Brave New World of Early Treatment of Multiple Sclerosis: Using the Molecular Biomarkers CXCL13 and Neurofilament Light to Optimize Immunotherapy. Biomedicines 2022; 10:biomedicines10092099. [PMID: 36140203 PMCID: PMC9495360 DOI: 10.3390/biomedicines10092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease involving a combination of inflammation, demyelination, and CNS injury. It is the leading cause of non-traumatic neurological disability in younger people. There is no cure, but treatments in the form of immunomodulatory drugs (IMDs) are available. Experience over the last 30 years has shown that IMDs, also sometimes called disease-modifying therapies, are effective in downregulating neuroinflammatory activity. However, there are a number of negatives in IMD therapy, including potential for significant side-effects and adverse events, uncertainty about long-term benefits regarding disability outcomes, and very high and increasing financial costs. The two dozen currently available FDA-approved IMDs also are heterogeneous with respect to efficacy and safety, especially long-term safety, and determining an IMD treatment strategy is therefore challenging for the clinician. Decisions about optimal therapy have been particularly difficult in early MS, at the time of the initial clinical demyelinating event (ICDE), at a time when early, aggressive treatment would best be initiated on patients destined to have a highly inflammatory course. However, given the fact that the majority of ICDE patients have a more benign course, aggressive immunosuppression, with its attendant risks, should not be administered to this group, and should only be reserved for patients with a more neuroinflammatory course, a decision that can only be made in retrospect, months to years after the ICDE. This quandary of moderate vs. aggressive therapy facing clinicians would best be resolved by the use of biomarkers that are predictive of future neuroinflammation. Unfortunately, biomarkers, especially molecular biomarkers, have not thus far been particularly useful in assisting clinicians in predicting the likelihood of future neuroinflammation, and thus guiding therapy. However, the last decade has seen the emergence of two highly promising molecular biomarkers to guide therapy in early MS: the CXCL13 index and neurofilament light. This paper will review the immunological and neuroscientific underpinnings of these biomarkers and the data supporting their use in early MS and will propose how they will likely be used to maximize benefit and minimize risk of IMDs in MS patients.
Collapse
|
24
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
25
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Nayar S, Pontarini E, Campos J, Berardicurti O, Smith CG, Asam S, Gardner DH, Colafrancesco S, Lucchesi D, Coleby R, Chung MM, Iannizzotto V, Hunter K, Bowman SJ, Carlesso G, Herbst R, McGettrick HM, Browning J, Buckley CD, Fisher BA, Bombardieri M, Barone F. Immunofibroblasts regulate LTα3 expression in tertiary lymphoid structures in a pathway dependent on ICOS/ICOSL interaction. Commun Biol 2022; 5:413. [PMID: 35508704 PMCID: PMC9068764 DOI: 10.1038/s42003-022-03344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/10/2022] [Indexed: 01/15/2023] Open
Abstract
Immunofibroblasts have been described within tertiary lymphoid structures (TLS) that regulate lymphocyte aggregation at sites of chronic inflammation. Here we report, for the first time, an immunoregulatory property of this population, dependent on inducible T-cell co-stimulator ligand and its ligand (ICOS/ICOS-L). During inflammation, immunofibroblasts, alongside other antigen presenting cells, like dendritic cells (DCs), upregulate ICOSL, binding incoming ICOS + T cells and inducing LTα3 production that, in turn, drives the chemokine production required for TLS assembly via TNFRI/II engagement. Pharmacological or genetic blocking of ICOS/ICOS-L interaction results in defective LTα expression, abrogating both lymphoid chemokine production and TLS formation. These data provide evidence of a previously unknown function for ICOSL-ICOS interaction, unveil a novel immunomodulatory function for immunofibroblasts, and reveal a key regulatory function of LTα3, both as biomarker of TLS establishment and as first driver of TLS formation and maintenance in mice and humans.
Collapse
Affiliation(s)
- Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Joana Campos
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Onorina Berardicurti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Saba Asam
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - David H Gardner
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | | | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming-May Chung
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Kelly Hunter
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gianluca Carlesso
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Ronald Herbst
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Helen M McGettrick
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Jeff Browning
- Departments of Microbiology and Rheumatology, Boston University School of Medicine, Boston, MA, USA
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin A Fisher
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
- Candel Therapeutics, Needham, Boston, MA, USA.
| |
Collapse
|
27
|
Broeren MGA, Wang JJ, Balzaretti G, Groenen PJTA, van Schaik BDC, Chataway T, Kaffa C, Bervoets S, Hebeda KM, Bounova G, Pruijn GJM, Gordon TP, De Vries N, Thurlings RM. Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sjögren's syndrome. Ann Rheum Dis 2022; 81:644-652. [PMID: 35144926 PMCID: PMC8995816 DOI: 10.1136/annrheumdis-2021-221604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Objective To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren’s syndrome (SjS) using an integrated omics workflow. Methods Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. Results Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. Conclusion The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab.
Collapse
Affiliation(s)
- Mathijs G A Broeren
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jing J Wang
- Department of Immunology, Flinders University, Adelaide, South Australia, Australia
| | - Giulia Balzaretti
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | | - Barbera D C van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Charlotte Kaffa
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Sander Bervoets
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thomas P Gordon
- SA Pathology, Department of Immunology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Niek De Vries
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Jonsson R. Disease mechanisms in Sjögren's syndrome: what do we know? Scand J Immunol 2022; 95:e13145. [PMID: 35073430 DOI: 10.1111/sji.13145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Why should we explore and study disease mechanisms? This is particularly important when we are dealing with complex pathogenesis without a direct causal agent e.g. syndromes with multiple organ involvements. Sjögren's syndrome is definitely such an entity. Also, there are a number of reasons for such studies such as disclosing the aetiology, to identify biomarkers for diagnosis and assessment of the disease process and monitor response to treatment, to determine targets for treatment, to define critical items in classification criteria, among others. Samples available for the study of disease mechanisms in Sjögren's syndrome have included serum (autoantibodies, cytokines), DNA (gene profiling, GWAS), cells (phenotypes/flow cytometry, proportion of cells/CyTOF), tissue (focal inflammation, germinal centres, mass cytometry), saliva (proteomics, biochemistry, mucosal immunity). An original explanatory concept for the pathogenesis of Sjögren's syndrome proposed a specific and self-perpetuating immune mediated loss of exocrine tissue as the principal cause of glandular hypofunction. This hypothesis however falls short of accommodating several Sjögren's syndrome-related phenomena and experimental findings. Today, the emergence of advanced bio-analytical platforms has further enabled the identification of central pathogenic processes and potential biomarkers. The purpose of this minor review is to highlight a selection of previous but also recent and novel aspects on the disease mechanisms in Sjögren's syndrome.
Collapse
Affiliation(s)
- Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
30
|
Nakamura H, Tsukamoto M, Nagasawa Y, Kitamura N, Shimizu T, Kawakami A, Nagata K, Takei M. Does HTLV-1 Infection Show Phenotypes Found in Sjögren's Syndrome? Viruses 2022; 14:100. [PMID: 35062304 PMCID: PMC8780498 DOI: 10.3390/v14010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are a possible cause for Sjögren's syndrome (SS) as an environmental factor related to SS onset, which exhibits exocrine gland dysfunction and the emergence of autoantibodies. Although retroviruses may exhibit lymphocytic infiltration into exocrine glands, human T-cell leukemia virus type 1 (HTLV-1) has been postulated to be a causative agent for SS. Transgenic mice with HTLV-1 genes showed sialadenitis resembling SS, but their phenotypic symptoms differed based on the adopted region of HTLV-1 genes. The dominance of tax gene differed in labial salivary glands (LSGs) of SS patients with HTLV 1-associated myelopathy (HAM) and adult T-cell leukemia. Although HTLV-1 was transmitted to salivary gland epithelial cells (SGECs) by a biofilm-like structure, no viral synapse formation was observed. After infection to SGECs derived from SS patients, adhesion molecules and migration factors were time-dependently released from infected SGECs. The frequency of the appearance of autoantibodies including anti-Ro/SS-A, La/SS-B antibodies in SS patients complicated with HAM is unknown; the observation of less frequent ectopic germinal center formation in HTLV-1-seropositive SS patients was a breakthrough. In addition, HTLV-1 infected cells inhibited B-lymphocyte activating factor or C-X-C motif chemokine 13 through direct contact with established follicular dendritic cell-like cells. These findings show that HTLV-1 is directly involved in the pathogenesis of SS.
Collapse
Affiliation(s)
- Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masako Tsukamoto
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Yosuke Nagasawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Noboru Kitamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Toshimasa Shimizu
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Kinya Nagata
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| |
Collapse
|
31
|
Veenbergen S, Kozmar A, van Daele PL, Schreurs MW. Autoantibodies in Sjögren's syndrome and its classification criteria. J Transl Autoimmun 2021; 5:100138. [PMID: 35024595 PMCID: PMC8728464 DOI: 10.1016/j.jtauto.2021.100138] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by immune-mediated injury of exocrine glands. Extensive lymphocytic infiltrates may contribute to the destruction and loss of secretory function of glands. B-cell hyperactivity is a key feature of the disease resulting in the production of a diverse array of autoantibodies in these patients. Although not specific for SS, anti-Ro/SSA and anti-La/SSB antibodies have been useful biomarkers for disease classification and diagnosis. During recent years, novel autoantibodies have been discovered in SS. In this review, we summarize the historical role and clinical relevance that autoantibodies have played in the classification criteria of Sjögren's syndrome, discuss laboratory aspects in antibody detection and review the role of novel autoantibodies in predicting particular stages of the disease, clinical phenotypes and long-term complications.
Collapse
Affiliation(s)
- Sharon Veenbergen
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Croatia
| | - Paul L.A. van Daele
- Department of Internal Medicine, Allergology & Clinical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Marco W.J. Schreurs
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
32
|
Thalayasingam N, Baldwin K, Judd C, Ng WF. New developments in Sjogren's syndrome. Rheumatology (Oxford) 2021; 60:vi53-vi61. [PMID: 34951923 PMCID: PMC8709567 DOI: 10.1093/rheumatology/keab466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
SS is a chronic, autoimmune condition characterized by lymphocytic infiltration of the exocrine glands and B-cell dysfunction. Current treatment strategies are largely empirical and offer only symptomatic relief for patients. There are no proven treatments that alter disease progression or treat the systemic manifestations of disease. B-cell depletion is used in patients with systemic disease but its overall clinical efficacy has not been demonstrated in two large randomized controlled trials. Studies are now focussing on alternative strategies to target B-cells, including co-stimulation targets, with promising data. It is increasingly clear that clinical trials in SS will require patient stratification and relevant and sensitive outcome measures to identify successful treatment modalities.
Collapse
Affiliation(s)
- Nishanthi Thalayasingam
- Department of Rheumatology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust
| | - Kelly Baldwin
- Department of Rheumatology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust
| | - Claire Judd
- Department of Rheumatology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust
| | - Wan-Fai Ng
- Department of Rheumatology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Pontarini E, Coleby R, Bombardieri M. Cellular and molecular diversity in Sjogren's syndrome salivary glands: Towards a better definition of disease subsets. Semin Immunol 2021; 58:101547. [PMID: 34876330 DOI: 10.1016/j.smim.2021.101547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
34
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
35
|
Hwang SH, Woo JS, Moon J, Yang S, Park JS, Lee J, Choi J, Lee KH, Kwok SK, Park SH, Cho ML. IL-17 and CCR9 +α4β7 - Th17 Cells Promote Salivary Gland Inflammation, Dysfunction, and Cell Death in Sjögren's Syndrome. Front Immunol 2021; 12:721453. [PMID: 34539657 PMCID: PMC8440850 DOI: 10.3389/fimmu.2021.721453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies have evaluated the roles of T and B cells in the pathogenesis of Sjögren's syndrome (SS); however, their relationships with age-dependent and metabolic abnormalities remain unclear. We examined the impacts of changes associated with aging or metabolic abnormalities on populations of T and B cells and SS disease severity. We detected increased populations of IL-17-producing T and B cells, which regulate inflammation, in the salivary glands of NOD/ShiLtJ mice. Inflammation-induced human submandibular gland cell death, determined based on p-MLKL and RIPK3 expression levels, was significantly increased by IL-17 treatment. Among IL-17-expressing cells in the salivary gland, peripheral blood, and spleen, the α4β7 (gut-homing integrin)-negative population was significantly increased in aged NOD/ShiLtJ mice. The α4β7-positive population markedly increased in the intestines of aged NOD/ShiLtJ mice following retinoic acid (RA) treatment. A significant increase in α4β7-negative IL-17-expressing cells in salivary glands may be involved in the onset and progression of SS. These results suggest the potential therapeutic utility of RA in SS treatment.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeonghyeon Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JaeSeon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kun Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
36
|
Lopes AP, Bekker CPJ, Hillen MR, Blokland SLM, Hinrichs AC, Pandit A, Kruize AA, Radstake TRDJ, van Roon JAG. The Transcriptomic Profile of Monocytes from Patients With Sjögren's Syndrome Is Associated With Inflammatory Parameters and Is Mimicked by Circulating Mediators. Front Immunol 2021; 12:701656. [PMID: 34413853 PMCID: PMC8368727 DOI: 10.3389/fimmu.2021.701656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/β receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome.
Collapse
Affiliation(s)
- Ana P Lopes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten R Hillen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anneline C Hinrichs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
37
|
Seror R, Nocturne G, Mariette X. Current and future therapies for primary Sjögren syndrome. Nat Rev Rheumatol 2021; 17:475-486. [PMID: 34188206 DOI: 10.1038/s41584-021-00634-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that is characterized by a triad of symptoms that affect all patients (dryness, pain and fatigue). In addition, systemic involvement can affect between one-third and one-half of patients. The management of patients with pSS has been negatively affected by a lack of effective treatments; however, knowledge of the epidemiology of pSS has increased, and advances in developing classification criteria, systemic disease activity scoring and patient-reported outcomes have been made during the past decade. Progress has also been made in understanding the mechanisms that underlie the pathogenesis of pSS, which has enabled a more targeted therapeutic approach to be taken. At present, therapeutic decisions rely on the evaluation of symptoms and systemic manifestations and are mostly formed on the basis of experience rather than evidence, and on similarities with other autoimmune diseases, although the 2019 management recommendations from EULAR are now being used to inform clinical management of pSS. This Review summarizes the available evidence for systemic treatments for pSS and includes discussions of advances in outcome assessment, the current evidence for DMARD use and an overview of promising future therapeutics.
Collapse
Affiliation(s)
- Raphaèle Seror
- Department of Rheumatology, Université Paris-Saclay, INSERM U1184: Centre for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, Paris, France
| | - Gaetane Nocturne
- Department of Rheumatology, Université Paris-Saclay, INSERM U1184: Centre for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, Paris, France
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, INSERM U1184: Centre for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, Paris, France.
| |
Collapse
|
38
|
Chowdhury F, Tappuni A, Bombardieri M. Biological Therapy in Primary Sjögren's Syndrome: Effect on Salivary Gland Function and Inflammation. Front Med (Lausanne) 2021; 8:707104. [PMID: 34336905 PMCID: PMC8319401 DOI: 10.3389/fmed.2021.707104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease. It is the second most common rheumatic autoimmune disorder, affecting 0.7% of European Americans and up to 1% of people globally. pSS is characterized by the impaired secretory function of exocrine glands, including salivary and lachrymal glands. A lymphocytic infiltration of these organs leads to the common and debilitating symptoms of oral and ocular dryness, majorly affecting the quality of life of these patients. Currently, no disease-modifying drug has been approved for the treatment of pSS, with therapies largely aimed at relieving symptoms of dry mouth and dry eyes. In particular, management of oral dryness still represents a major unmet clinical need in pSS and a significant burden for patients with this condition. Recently, several randomized clinical trials in pSS with biological therapies targeting specific mechanistic pathways implicated in the disease pathogenesis, including B-cell hyperactivity, T-cell co-stimulation and the aberrant role of cytokines, have been completed with mixed results. In this review, we summarize evidence from recent clinical trials investigating biological therapy in pSS, specifically highlighting efficacy, or lack thereof, in modulating local inflammation and improving salivary gland function.
Collapse
Affiliation(s)
- Farzana Chowdhury
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Anwar Tappuni
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| |
Collapse
|
39
|
Quartuccio L, De Marchi G, Longhino S, Manfrè V, Rizzo MT, Gandolfo S, Tommasini A, De Vita S, Fox R. Shared Pathogenetic Features Between Common Variable Immunodeficiency and Sjögren's Syndrome: Clues for a Personalized Medicine. Front Immunol 2021; 12:703780. [PMID: 34322134 PMCID: PMC8311857 DOI: 10.3389/fimmu.2021.703780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Common variable immunodeficiency disorders (CVID) are a group of rare diseases of the immune system and the most common symptomatic primary antibody deficiency in adults. The “variable” aspect of CVID refers to the approximately half of the patients who develop non-infective complications, mainly autoimmune features, in particular organ specific autoimmune diseases including thyroiditis, and cytopenias. Among these associated conditions, the incidence of lymphoma, including mucosal associated lymphoid tissue (MALT) type, is increased. Although these associated autoimmune disorders in CVID are generally attributed to Systemic Lupus Erythematosus (SLE), we propose that Sjogren’s syndrome (SS) is perhaps a better candidate for the associated disease. SS is an autoimmune disorder characterized by the lymphocytic infiltrates of lacrimal and salivary glands, leading to dryness of the eyes and mouth. Thus, it is a lymphocyte aggressive disorder, in contrast to SLE where pathology is generally attributed to auto-antibody and complement activation. Although systemic lupus erythematosus (SLE) shares these features with SS, a much higher frequency of MALT lymphoma distinguishes SS from SLE. Also, the higher frequency of germ line encoded paraproteins such as the monoclonal rheumatoid factor found in SS patients would be more consistent with the failure of B-cell VDJ switching found in CVID; and in contrast to the hypermutation that characterizes SLE autoantibodies. Thus, we suggest that SS may fit as a better “autoimmune” association with CVID. Examining the common underlying biologic mechanisms that promote lymphoid infiltration by dysregulated lymphocytes and lymphoma in CVID may provide new avenues for treatment in both the diseases. Since the diagnosis of SLE or rheumatoid arthritis is usually based on specific autoantibodies, the associated autoimmune features of CVID patients may not be recognized in the absence of autoantibodies.
Collapse
Affiliation(s)
- Luca Quartuccio
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Simone Longhino
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Manfrè
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Maria Teresa Rizzo
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Alberto Tommasini
- Pediatric Immunology, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Robert Fox
- Rheumatology Clinic, Scripps Memorial Hospital and Research Foundation, La Jolla, CA, United States
| |
Collapse
|
40
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
41
|
Kim J, Kim YS, Park SH. Metformin as a Treatment Strategy for Sjögren's Syndrome. Int J Mol Sci 2021; 22:7231. [PMID: 34281285 PMCID: PMC8269365 DOI: 10.3390/ijms22137231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Sjögren's syndrome (SS), a chronic inflammatory disease involving the salivary and lacrimal glands, presents symptoms of sicca as well as systemic manifestations such as fatigue and musculoskeletal pain. Only a few treatments have been successful in management of SS; thus treatment of the disease is challenging. Metformin is the first-line agent for type 2 diabetes and has anti-inflammatory potential. Its immunomodulatory capacity is exerted via activation of 5' adenosine monophosphate-activated protein kinase (AMPK). Metformin inhibits mitochondrial respiratory chain complex I which leads to change in adenosine mono-phosphate (AMP) to adenosine tri-phosphate (ATP) ratio. This results in AMPK activation and causes inhibition of mammalian target of rapamycin (mTOR). mTOR plays an important role in T cell differentiation and mTOR deficient T cells differentiate into regulatory T cells. In this manner, metformin enhances immunoregulatory response in an individual. mTOR is responsible for B cell proliferation and germinal center (GC) differentiation. Thus, reduction of B cell differentiation into antibody-producing plasma cells occurs via downregulation of mTOR. Due to the lack of suggested treatment for SS, metformin has been considered as a treatment strategy and is expected to ameliorate salivary gland function.
Collapse
Affiliation(s)
- Joa Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Yun-Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
42
|
Berardicurti O, Ruscitti P, Di Benedetto P, D'Andrea S, Navarini L, Marino A, Cipriani P, Giacomelli R. Association Between Minor Salivary Gland Biopsy During Sjӧgren's Syndrome and Serologic Biomarkers: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:686457. [PMID: 34177936 PMCID: PMC8226119 DOI: 10.3389/fimmu.2021.686457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Patients with primary Sjögren’s syndrome (pSS) may develop a potentially severe disease with extra-glandular involvement and lymphoma insurgence. Minor salivary gland biopsy is routinely used in the disease diagnosis, but its potential role as a biomarker for clinical disease presentation and prognosis is still poorly understood. Methods We performed a systematic review and meta-analysis on clinical presentation and prognosis in pSS patients who underwent minor salivary gland biopsy at diagnosis according to the PRISMA guidelines. Results We included five retrospective studies and 589 pSS patients. Ectopic GCs presence was not associated with a significant increase in the odds ratio for the clinical variables explored such as salivary gland swelling, arthritis, and Raynaud’s phenomenon. As far as serological features are concerned, ectopic GCs presence accounted for an increased ratio of antibodies anti-SSA (OR = 3.13, 95% CI: 1.25–7.85, p = 0.02, I2 = 79%), anti-SSB (OR = 3.94, 95% CI: 1.50–10.37, p = 0.0005, I2 = 80%), and RFs presence (OR = 3.12, 95% CI: 1.94–5.00, p < 0.00001, I2 = 0%). Conclusions This study showed that the association between ectopic GC in salivary glands identifies a clinical subset characterized by autoantibodies presence, and probably pSS patients affected from a more severe disease.
Collapse
Affiliation(s)
- Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L'Aquila, L'Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L'Aquila, L'Aquila, Italy
| | - Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L'Aquila, L'Aquila, Italy
| | - Settimio D'Andrea
- Department of Life, Health and Environment Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Rome, Italy
| | - Annalisa Marino
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Rome, Italy
| |
Collapse
|
43
|
Du W, Han M, Zhu X, Xiao F, Huang E, Che N, Tang X, Zou H, Jiang Q, Lu L. The Multiple Roles of B Cells in the Pathogenesis of Sjögren's Syndrome. Front Immunol 2021; 12:684999. [PMID: 34168653 PMCID: PMC8217880 DOI: 10.3389/fimmu.2021.684999] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by lymphocytic infiltration and tissue destruction of exocrine glands such as salivary glands. Although the formation of ectopic lymphoid tissue in exocrine glands and overproduction of autoantibodies by autoreactive B cells highlight the critical involvement of B cells in disease development, the precise roles of various B cell subsets in pSS pathogenesis remain partially understood. Current studies have identified several novel B cell subsets with multiple functions in pSS, among which autoreactive age-associated B cells, and plasma cells with augmented autoantibody production contribute to the disease progression. In addition, tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell subset with enhanced pro-inflammatory cytokine production serves as a key driver in pSS patients with mucosa-associated lymphoid tissue (MALT)-lymphomas. Recently, regulatory B (Breg) cells with impaired immunosuppressive functions are found negatively correlated with T follicular helper (Tfh) cells in pSS patients. Further studies have revealed a pivotal role of Breg cells in constraining Tfh response in autoimmune pathogenesis. This review provides an overview of recent advances in the identification of pathogenic B cell subsets and Breg cells, as well as new development of B-cell targeted therapies in pSS patients.
Collapse
Affiliation(s)
- Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Man Han
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaopo Tang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Quan Jiang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
44
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Cheng C, Zhou J, Chen R, Shibata Y, Tanaka R, Wang J, Zhang J. Predicted Disease-Specific Immune Infiltration Patterns Decode the Potential Mechanisms of Long Non-Coding RNAs in Primary Sjogren's Syndrome. Front Immunol 2021; 12:624614. [PMID: 33936039 PMCID: PMC8079748 DOI: 10.3389/fimmu.2021.624614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a chronic progressive autoimmune disease with clinical phenotypic “Sicca symptoms”. In some cases, the diagnosis of pSS is delayed by 6–7 years due to the inefficient differential diagnosis of pSS and non-SS “Sicca”. This study aimed to investigate the difference between these two diseases, and in particular, their immunopathogenesis. Based on their gene expression profiles, we systematically defined for the first time the predicted disease-specific immune infiltration pattern of patients with pSS differentiated from normal donors and patients with non-SS “Sicca”. We found that it was characterized by the aberrant abundance and interaction of tissue-infiltrated immune cells, such as a notable shift in the subpopulation of six immune cells and the perturbed abundance of nine subpopulations, such as CD4+ memory, CD8+ T-cells and gamma delta T-cells. In addition, we identified essential genes, particularly long non-coding RNAs (lncRNAs), as the potential mechanisms linked to this predicted pattern reprogramming. Fourteen lncRNAs were identified as the potential regulators associated with the pSS-specific immune infiltration pattern in a synergistic manner, among which the CTA-250D10.23 lncRNA was highly relevant to chemokine signaling pathways. In conclusion, aberrant predicted disease-specific immune infiltration patterns and relevant genes revealed the immunopathogenesis of pSS and provided some clues for the immunotherapy by targeting specific immune cells and genes.
Collapse
Affiliation(s)
- Caiqi Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan.,School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Ruiying Chen
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies Targeting Intracellular and Extracellular Proteins in Autoimmunity. Front Immunol 2021; 12:548469. [PMID: 33763057 PMCID: PMC7982651 DOI: 10.3389/fimmu.2021.548469] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Detecting autoantibodies provides foundational information for the diagnosis of most autoimmune diseases. An important pathophysiological distinction is whether autoantibodies are directed against extracellular or intracellular proteins. Autoantibodies targeting extracellular domains of proteins, such as membrane receptors, channels or secreted molecules are often directly pathogenic, whereby autoantibody binding to the autoantigen disrupts the normal function of a critical protein or pathway, and/or triggers antibody-dependent cell surface complement killing. By comparison, autoantibodies directed against intracellular proteins are recognized as useful diagnostic biomarkers of abnormal autoimmune activity, but the link between antigenicity and pathogenicity is less straightforward. Because intracellular autoantigens are generally inaccessible to autoantibody binding, for the most part, they do not directly contribute to pathogenesis. In a few diseases, autoantibodies to intracellular targets cause damage indirectly by immune complex formation, immune activation, and other processes. In this review, the general features of and differences between autoimmune diseases segregated on the basis of intracellular or extracellular autoantigens are explored using over twenty examples. Expression profiles of autoantigens in relation to the tissues targeted by autoimmune disease and the temporal appearance of autoantibodies before clinical diagnosis often correlate with whether the respective autoantibodies mostly recognize either intracellular or extracellular autoantigens. In addition, current therapeutic strategies are discussed from this vantage point. One drug, rituximab, depletes CD20+ B-cells and is highly effective for autoimmune disorders associated with autoantibodies against extracellular autoantigens. In contrast, diseases associated with autoantibodies directed predominately against intracellular autoantigens show much more complex immune cell involvement, such as T-cell mediated tissue damage, and require different strategies for optimal therapeutic benefit. Understanding the clinical ramifications of autoimmunity derived by autoantibodies against either intracellular or extracellular autoantigens, or a spectrum of both, has practical implications for guiding drug development, generating monitoring tools, stratification of patient interventions, and designing trials based on predictive autoantibody profiles for autoimmune diseases.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jason M Keller
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front Immunol 2021; 12:637829. [PMID: 33692806 PMCID: PMC7937623 DOI: 10.3389/fimmu.2021.637829] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, IL-23A (p19) and IL-12/23B (p40), the latter shared with Interleukin-12 (IL-12). IL-23 is mainly produced by macrophages and dendritic cells, in response to exogenous or endogenous signals, and drives the differentiation and activation of T helper 17 (Th17) cells with subsequent production of IL-17A, IL-17F, IL-6, IL-22, and tumor necrosis factor α (TNF-α). Although IL-23 plays a pivotal role in the protective immune response to bacterial and fungal infections, its dysregulation has been shown to exacerbate chronic immune-mediated inflammation. Well-established experimental data support the concept that IL-23/IL-17 axis activation contributes to the development of several inflammatory diseases, such as PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing Spondylitis; IBD, Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren Syndrome; MS, Multiple Sclerosis. As a result, emerging clinical studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of IL-23 and Th17 cells in inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Claudia Schinocca
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Chiara Rizzo
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Serena Fasano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia Grasso
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| |
Collapse
|
48
|
Association between EBV serological patterns and lymphocytic profile of SjS patients support a virally triggered autoimmune epithelitis. Sci Rep 2021; 11:4082. [PMID: 33603079 PMCID: PMC7893064 DOI: 10.1038/s41598-021-83550-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Sjögren's syndrome (SjS) is characterized by lymphocytic infiltration of exocrine glands, i.e. autoimmune epithelitis. Lymphocytes are central in SjS pathogenesis, with B-cell hyperactivity mediated by T-cells. B-cells are main targets of Epstein-Barr virus (EBV) infection, a frequently-suggested trigger for SjS. We aimed to evaluate how the EBV infection modulates B and T-cell subsets in SjS, including as controls Rheumatoid arthritis patients (RA) and healthy participants (HC). SjS patients presented decreased CXCR5+T-cells, although IL21-secreting Tfh and Tfc cells were increased. Tfc were positively correlated with ESSDAI scores, suggesting their relevant role in SjS pathogenesis. As previously described, SjS patients showed expanded circulating naïve B-cell compartments. SjS patients had a higher incidence of EBV-EA-D-IgG+ antibodies, characteristic of recent EBV-infection/reactivation. SjS patients with past infection or recent infection/reactivation showed increased CXCR3+Th1 and CXCR3+Tfh1 cells compared to those without active infection. SjS patients with a recent infection/reactivation profile presented increased transitional B-cells compared to patients with past infection and increased plasmablasts, compared to those without infection. Our results suggest EBV-infection contributes to B and T-cell differentiation towards the effector phenotypes typical of SjS. Local lymphocyte activation at ectopic germinal centres, mediated by Tfh and Tfc, can be EBV-driven, perpetuating autoimmune epithelitis, which leads to gland destruction in SjS.
Collapse
|
49
|
Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:191-202. [PMID: 33509710 DOI: 10.1016/j.joim.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Primary Sjogren's syndrome (pSS) is a chronic autoimmune disease involving exocrine glands. Current studies have found that the occurrence of the disease is closely related to genetic, environmental and neuroendocrine factors, as well as abnormal activation of T and B lymphocytes. The etiology and pathogenesis of pSS is complex, and there is a lack of specific targeted drugs. Traditional Chinese medicines (TCMs) have been comprehensively investigated for their treatment effects on pSS. Through a systematic review of the literature, we summarized the TCMs used to treat pSS, and find that there are four major ways that TCMs are used, including upregulation of aquaporin proteins, suppression of cell apoptosis, suppression of the abnormal activation of B lymphocytes and suppression of the abnormal activation of T lymphocytes (balancing T helper type [Th]1/Th2 & Th17/Treg and suppressing follicular helper T [Tfh] cells). However, there are not enough data about the active constituents, quality control, pharmacokinetics, toxicity and modern preparations of these TCMs; therefore, more investigations are needed. This paper highlights the importance of TCMs for treating pSS and provides guidance for future investigations.
Collapse
|
50
|
Barcelos F, Martins C, Madeira N, Ângelo-Dias M, Cardigos J, Alves N, Vaz-Patto J, Cunha-Branco J, Borrego LM. Lymphocyte subpopulations in Sjögren's syndrome are distinct in anti-SSA-positive patients and related to disease activity. Clin Rheumatol 2021; 40:2791-2804. [PMID: 33443605 DOI: 10.1007/s10067-020-05537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SjS) patients exhibit great phenotypical heterogeneity, reinforced by the positiveness of anti-SSA antibody. We aimed to evaluate lymphocyte subpopulations in SSA-positive (SSA+SjS) and SSA-negative (SSA-SjS) SjS patients, Sicca patients, and healthy controls (HC), and to investigate associations between lymphocyte subpopulations and disease activity in SjS. METHODS According to the fulfilment of the ACR/EULAR 2016 classification criteria, patients were included as SjS or as Sicca. HC were selected from the Ophthalmology outpatient clinic. Lymphocyte subpopulations were characterized by flow cytometry. Statistical analysis was performed with GraphPad PrismTM, with statistical significance concluded if p < 0.05. RESULTS We included 53 SjS patients (38 SSA+ and 15 SSA-), 72 Sicca, and 24 HC. SSA+SjS patients presented increased IL-21+CD4+ and CD8+ T cells compared to Sicca and HC, whereas compared to SSA-SjS patients, only IL-21+CD4+ T cell percentages were increased and Tfh17 percentages and numbers were decreased. Compared to Sicca and HC, SSA+SjS patients had higher levels of CD24HiCD38Hi B cells, naïve B cells, and IgM-/+CD38++ plasmablasts, and lower levels of memory B cells, including CD24HiCD27+ B cells. SSA+SjS patients with clinically active disease had positive correlations between ESSDAI and IL-21+CD4+ (p = 0.038, r = 0.456) and IL-21+CD8+ T cells (p = 0.046, r = 0.451). CONCLUSIONS In SjS, a distinct lymphocyte subset distribution profile seems to be associated with positive anti-SSA. Moreover, the association between ESSDAI and IL-21+CD4+ and IL-21+CD8+ (follicular) T cells in SSA+SjS patients suggests the involvement of these cells in disease pathogenesis and activity, and possibly their utility for the prognosis and assessment of response to therapy. Key Points • SSA+SjS patients have a pronounced naïve/memory B cell imbalance. • SSA+SjS patients have more active disease associated with IL-21+CD4+ and IL-21+CD8+ follicular T cell expansion. • IL-21+CD4+ and IL-21+CD8+ T cell quantification may be useful for the prognosis and assessment of response to therapy.
Collapse
Affiliation(s)
- Filipe Barcelos
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal. .,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal. .,Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal. .,Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.
| | - Catarina Martins
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Miguel Ângelo-Dias
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Joana Cardigos
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos, Lisbon, Portugal
| | - Nuno Alves
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos, Lisbon, Portugal.,Ophthalmology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - José Vaz-Patto
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Jaime Cunha-Branco
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal.,Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Lisbon, Portugal
| | - Luís-Miguel Borrego
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal.,Immunoalergy Department, Hospital da Luz Lisboa, Lisbon, Portugal
| |
Collapse
|