1
|
Wang S, Kurth S, Burger C, Wirtz DC, Schildberg FA, Ossendorff R. TNFα-Related Chondrocyte Inflammation Models: A Systematic Review. Int J Mol Sci 2024; 25:10805. [PMID: 39409134 PMCID: PMC11476358 DOI: 10.3390/ijms251910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Tumor necrosis factor alpha (TNFα), as a key pro-inflammatory cytokine, plays a central role in joint diseases. In recent years, numerous models of TNFα-induced cartilage inflammation have been developed. However, due to the significant differences between these models and the lack of consensus in their construction, it becomes difficult to compare the results of different studies. Therefore, we summarized and compared these models based on important parameters for model construction, such as cell source, cytokine concentration, stimulation time, mechanical stimulation, and more. We attempted to analyze the advantages and disadvantages of each model and provide a compilation of the analytical methods used in previous studies. Currently, TNFα chondrocyte inflammation models can be categorized into four main types: monolayer-based, construct-based, explant-based TNFα chondrocyte inflammation models, and miscellaneous TNFα chondrocyte inflammation models. The most commonly used models were the monolayer-based TNFα chondrocyte inflammation models (42.86% of cases), with 10 ng/mL TNFα being the most frequently used concentration. The most frequently used chondrocyte cell passage is passage 1 (50%). Human tissues were most frequently used in experiments (51.43%). Only five articles included models with mechanical stimulations. We observed variations in design conditions between different models. This systematic review provides the essential experimental characteristics of the available chondrocyte inflammation models with TNFα, and it provides a platform for better comparison between existing and new studies in this field. It is essential to perform further experiments to standardize each model and to find the most appropriate experimental parameters.
Collapse
|
2
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
4
|
Feng D, Li H, Ma X, Liu W, Zhu Y, Kang X. Downregulation of extracellular matrix protein 1 effectively ameliorates osteoarthritis progression in vivo. Int Immunopharmacol 2024; 126:111291. [PMID: 38039715 DOI: 10.1016/j.intimp.2023.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease whose important pathological feature is degeneration of articular cartilage. Although extracellular matrix protein 1 (ECM1) serves as a central regulator of chondrocyte proliferation and hypertrophy, its role in OA remains largely unknown. This study aims to decipher the roles of ECM1 in OA development and therapy in animal models. In the present study, ECM1 expression was examined in clinical OA samples, experimental OA mice and OA cell models. Mice subjected to destabilised medial meniscus (DMM) surgery were intra-articularly injected with adeno-associated virus (AAV) expressing ECM1 (AAV-ECM1) or AAV containing shECM1 (AAV-shECM1). Histological analysis was performed to determine cartilage damage. mRNA sequencing was performed to explore the molecular mechanism. In addition, the downstream signaling was further confirmed by using specific inhibitors. Our data showed that ECM1 was upregulated in the cartilage of patients with OA, OA mice as well as OA cell models. Moreover, ECM1 over-expressing in knee joints by AAV-ECM1 accelerated OA progression, while knockdown of ECM1 by AAV-shECM1 alleviated OA development. Mechanistically, cartilage destruction increased ECM1 expression, which consequently exacerbated OA progression partly by decreasing PRG4 expression in the TGF-β/PKA/CREB-dependent manner. In conclusion, our study revealed the important role of ECM1 in OA progression. Targeted ECM1 inhibition is a potential strategy for OA therapy.
Collapse
Affiliation(s)
- Dongxu Feng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiao Ma
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wenjuan Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yangjun Zhu
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, PR China.
| | - Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
5
|
Rydén M, Lindblom K, Yifter-Lindgren A, Turkiewicz A, Aspberg A, Tillgren V, Englund M, Önnerfjord P. A human meniscus explant model for studying early events in osteoarthritis development by proteomics. J Orthop Res 2023; 41:2765-2778. [PMID: 37218349 DOI: 10.1002/jor.25633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Degenerative meniscus lesions have been associated with both osteoarthritis etiology and its progression. We, therefore, sought to establish a human meniscus ex vivo model to study the meniscal response to cytokine treatment using a proteomics approach. Lateral menisci were obtained from five knee-healthy donors. The meniscal body was cut into vertical slices and further divided into an inner (avascular) and outer region. Explants were either left untreated (controls) or stimulated with cytokines. Medium changes were conducted every 3 days up to Day 21 and liquid chromatography-mass spectrometry was performed at all the time points for the identification and quantification of proteins. Mixed-effect linear regression models were used for statistical analysis to estimate the effect of treatments versus control on protein abundance. Treatment by IL1ß increased release of cytokines such as interleukins, chemokines, and matrix metalloproteinases but a limited catabolic effect in healthy human menisci explants. Further, we observed an increased release of matrix proteins (collagens, integrins, prolargin, tenascin) in response to oncostatin M (OSM) + tumor necrosis factor (TNF) and TNF+interleukin-6 (IL6) + sIL6R treatments, and analysis of semitryptic peptides provided additional evidence of increased catabolic effects in response to these treatments. The induced activation of catabolic processes may play a role in osteoarthritis development.
Collapse
Affiliation(s)
- Martin Rydén
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Karin Lindblom
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Aida Yifter-Lindgren
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Aleksandra Turkiewicz
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anders Aspberg
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Viveka Tillgren
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Englund
- Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Manosalva C, Alarcon P, Quiroga J, Teuber S, Carretta MD, Bustamante H, Lopez-Muñoz R, Hidalgo MA, Burgos RA. Bovine tumor necrosis factor-alpha Increases IL-6, IL-8, and PGE2 in bovine fibroblast-like synoviocytes by metabolic reprogramming. Sci Rep 2023; 13:3257. [PMID: 36828912 PMCID: PMC9958177 DOI: 10.1038/s41598-023-29851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023] Open
Abstract
Lameness is a common condition in dairy cattle caused by infectious or noninfectious agents. Joint lesions are the second most common cause of lameness and can be diagnosed in association with the presentation of digit injuries. Fibroblast-like synoviocyte (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the expression of proinflammatory mediators. Tumor necrosis factor-alpha (TNF-α) is a potent proinflammatory cytokine involved in cyclooxygenase 2 (COX-2) and proinflammatory cytokine expression in FLS. Previously, TNF-α was demonstrated to increase hypoxia-inducible Factor 1 (HIF-1), a transcription factor that rewires cellular metabolism and increases the expression of interleukin (IL)-6 in bovine FLS (bFLS). Despite this, the proinflammatory effects of TNF-α in bFLS on metabolic reprogramming have been poorly studied. We hypothesized that TNF-α increases glycolysis and in this way controls the expression of IL-6, IL-8, and COX-2 in bFLS. Results first, gas chromatography/mass spectrometry (GC/MS)-based untargeted metabolomics revealed that bTNF-α altered the metabolism of bFLS, increasing glucose, isoleucine, leucine, methionine, valine, tyrosine, and lysine and decreasing malate, fumarate, α-ketoglutarate, stearate, palmitate, laurate, aspartate, and alanine. In addition, metabolic flux analysis using D-glucose-13C6 demonstrated an increase of pyruvate and a reduction in malate and citrate levels, suggesting a decreased flux toward the tricarboxylic acid cycle after bTNF-α stimulation. However, bTNF-α increased lactate dehydrogenase subunit A (LDHA), IL-6, IL-8, IL-1β and COX-2 expression, which was dependent on glycolysis and the PI3K/Akt pathway. The use of FX11 and dichloroacetate (DCA), an inhibitor of LDHA and pyruvate dehydrogenase kinase (PDK) respectively, partially reduced the expression of IL-6. Our results suggest that bTNF-α induces metabolic reprogramming that favors glycolysis in bFLS and increases IL-6, IL-8, IL-1β and COX-2/PGE2.
Collapse
Affiliation(s)
- Carolina Manosalva
- grid.7119.e0000 0004 0487 459XInstitute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Stefanie Teuber
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D. Carretta
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- grid.7119.e0000 0004 0487 459XVeterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Lopez-Muñoz
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Maria A. Hidalgo
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A. Burgos
- grid.7119.e0000 0004 0487 459XLaboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Kurz B, Hart ML, Rolauffs B. Mechanical Articular Cartilage Injury Models and Their Relevance in Advancing Therapeutic Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:107-124. [PMID: 37052850 DOI: 10.1007/978-3-031-25588-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This chapter details how Alan Grodzinsky and his team unraveled the complex electromechanobiological structure-function relationships of articular cartilage and used these insights to develop an impressively versatile shear and compression model. In this context, this chapter focuses (i) on the effects of mechanical compressive injury on multiple articular cartilage properties for (ii) better understanding the molecular concept of mechanical injury, by studying gene expression, signal transduction and the release of potential injury biomarkers. Furthermore, we detail how (iii) this was used to combine mechanical injury with cytokine exposure or co-culture systems for generating a more realistic trauma model to (iv) investigate the therapeutic modulation of the injurious response of articular cartilage. Impressively, Alan Grodzinsky's research has been and will remain to be instrumental in understanding the proinflammatory response to injury and in developing effective therapies that are based on an in-depth understanding of complex structure-function relationships that underlay articular cartilage function and degeneration.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany.
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Rydén M, Önnerfjord P. In Vitro Models and Proteomics in Osteoarthritis Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:57-68. [PMID: 37052846 DOI: 10.1007/978-3-031-25588-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This review summarizes and exemplifies the current understanding of osteoarthritis in vitro models and describes their relevance for new insights in the future of osteoarthritis research. Our friend and highly appreciated colleague, Prof. Alan Grodzinsky has contributed greatly to the understanding of joint tissue biology and cartilage biomechanics. He frequently utilizes in vitro models and cartilage explant cultures, and recent work also includes proteomics studies. This review is dedicated to honor his 75-year birthday and will focus on recent proteomic in vitro studies related to osteoarthritis, and within this topic highlight some of his contributions to the field.
Collapse
Affiliation(s)
- Martin Rydén
- Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Arabiyat AS, Chen H, Erndt-Marino J, Burkhard K, Scola L, Fleck A, Wan LQ, Hahn MS. Hyperosmolar Ionic Solutions Modulate Inflammatory Phenotype and sGAG Loss in a Cartilage Explant Model. Cartilage 2021; 13:713S-721S. [PMID: 32975437 PMCID: PMC8804856 DOI: 10.1177/1947603520961167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Hongyu Chen
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Josh Erndt-Marino
- Department of Biomedical Engineering,
Tufts University, Medford, MA, USA
| | - Katie Burkhard
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Lisa Scola
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Allison Fleck
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Leo Q. Wan
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| |
Collapse
|
10
|
Matta C, Fellows CR, Quasnichka H, Williams A, Jeremiasse B, Allaway D, Mobasheri A. Clusterin secretion is attenuated by the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α in models of cartilage degradation. J Orthop Res 2021; 39:1017-1029. [PMID: 32725904 DOI: 10.1002/jor.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
The protein clusterin has been implicated in the molecular alterations that occur in articular cartilage during osteoarthritis (OA). Clusterin exists in two isoforms with opposing functions, and their roles in cartilage have not been explored. The secreted form of clusterin (sCLU) is a cytoprotective extracellular chaperone that prevents protein aggregation, enhances cell proliferation and promotes viability, whereas nuclear clusterin acts as a pro-death signal. Therefore, these two clusterin isoforms may be putative molecular markers of repair and catabolic responses in cartilage and the ratio between them may be important. In this study, we focused on sCLU and used established, pathophysiologically relevant, in vitro models to understand its role in cytokine-stimulated cartilage degradation. The secretome of equine cartilage explants, osteochondral biopsies and isolated unpassaged chondrocytes was analyzed by western blotting for released sCLU, cartilage oligomeric protein (COMP) and matrix metalloproteinases (MMP) 3 and 13, following treatment with the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α. Release of sulfated glycosaminoglycans (sGAG) was determined using the dimethylmethylene blue assay. Clusterin messenger RNA (mRNA) expression was quantified by quantitative real-time polymerase chain reaction. MMP-3, MMP-13, COMP, and sGAG release from explants and osteochondral biopsies was elevated with cytokine treatment, confirming cartilage degradation in these models. sCLU release was attenuated with cytokine treatment in all models, potentially limiting its cytoprotective function. Clusterin mRNA expression was down-regulated 7-days post cytokine stimulation. These observations implicate sCLU in catabolic responses of chondrocytes, but further studies are required to evaluate its role in OA and its potential as an investigative biomarker.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Christopher R Fellows
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Helen Quasnichka
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | | | - Bernadette Jeremiasse
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David Allaway
- Biomarkers Division, WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Leicestershire, UK
| | - Ali Mobasheri
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics, University Medical Centre Utrecht, Utrecht, The Netherlands.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
11
|
Anderson JR, Phelan MM, Foddy L, Clegg PD, Peffers MJ. Ex Vivo Equine Cartilage Explant Osteoarthritis Model: A Metabolomics and Proteomics Study. J Proteome Res 2020; 19:3652-3667. [PMID: 32701294 PMCID: PMC7476031 DOI: 10.1021/acs.jproteome.0c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Osteoarthritis is an age-related
degenerative musculoskeletal disease
characterized by loss of articular cartilage, synovitis, and subchondral
bone sclerosis. Osteoarthritis pathogenesis is yet to be fully elucidated
with no osteoarthritis-specific biomarkers in clinical use. Ex vivo equine cartilage explants (n =
5) were incubated in tumor necrosis factor-α (TNF-α)/interleukin-1β
(IL-1β)-supplemented culture media for 8 days, with the media
removed and replaced at 2, 5, and 8 days. Acetonitrile metabolite
extractions of 8 day cartilage explants and media samples at all time
points underwent one-dimensional (1D) 1H nuclear magnetic
resonance metabolomic analysis, with media samples also undergoing
mass spectrometry proteomic analysis. Within the cartilage, glucose
and lysine were elevated following TNF-α/IL-1β treatment,
while adenosine, alanine, betaine, creatine, myo-inositol, and uridine
decreased. Within the culture media, 4, 4, and 6 differentially abundant
metabolites and 154, 138, and 72 differentially abundant proteins
were identified at 1–2, 3–5, and 6–8 days, respectively,
including reduced alanine and increased isoleucine, enolase 1, vimentin,
and lamin A/C following treatment. Nine potential novel osteoarthritis
neopeptides were elevated in the treated media. Implicated pathways
were dominated by those involved in cellular movement. Our innovative
study has provided insightful information on early osteoarthritis
pathogenesis, enabling potential translation for clinical markers
and possible new therapeutic targets.
Collapse
Affiliation(s)
- James R Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | - Marie M Phelan
- NMR Metabolomics Facility, Technology Directorate & Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Laura Foddy
- School of Veterinary Science, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 3GH, U.K
| | - Peter D Clegg
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | - Mandy J Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| |
Collapse
|
12
|
Haidar O, O'Neill N, Staunton CA, Bavan S, O'Brien F, Zouggari S, Sharif U, Mobasheri A, Kumagai K, Barrett-Jolley R. Pro-inflammatory Cytokines Drive Deregulation of Potassium Channel Expression in Primary Synovial Fibroblasts. Front Physiol 2020; 11:226. [PMID: 32265733 PMCID: PMC7105747 DOI: 10.3389/fphys.2020.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023] Open
Abstract
The synovium secretes synovial fluid, but is also richly innervated with nociceptors and acts as a gateway between avascular joint tissues and the circulatory system. Resident fibroblast-like synoviocytes' (FLS) calcium-activated potassium channels (K Ca) change in activity in arthritis models and this correlates with FLS activation. Objective To investigate this activation in an in vitro model of inflammatory arthritis; 72 h treatment with cytokines TNFα and IL1β. Methods FLS cells were isolated from rat synovial membranes. We analyzed global changes in FLS mRNA by RNA-sequencing, then focused on FLS ion channel genes and the corresponding FLS electrophysiological phenotype and finally modeling data with ingenuity pathway analysis (IPA) and MATLAB. Results IPA showed significant activation of inflammatory, osteoarthritic and calcium signaling canonical pathways by cytokines, and we identified ∼200 channel gene transcripts. The large K Ca (BK) channel consists of the pore forming Kcnma1 together with β-subunits. Following cytokine treatment, a significant increase in Kcnma1 RNA abundance was detected by qPCR and changes in several ion channels were detected by RNA-sequencing, including a loss of BK channel β-subunit expression Kcnmb1/2 and an increase in Kcnmb3. In electrophysiological experiments, there was a decrease in over-all current density at 20 mV without change in chord conductance at this potential. Conclusion TNFα and IL1β treatment of FLS in vitro recapitulated several common features of inflammatory arthritis at the transcriptomic level, including increase in Kcnma1 and Kcnmb3 gene expression.
Collapse
Affiliation(s)
- Omar Haidar
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nathanael O'Neill
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Caroline A Staunton
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Selvan Bavan
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Zouggari
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Umar Sharif
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics and Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, Netherlands.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kosuke Kumagai
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
13
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
14
|
Wiles TA, Powell R, Michel C, Beard KS, Hohenstein A, Bradley B, Reisdorph N, Haskins K, Delong T. Identification of Hybrid Insulin Peptides (HIPs) in Mouse and Human Islets by Mass Spectrometry. J Proteome Res 2019; 18:814-825. [PMID: 30585061 DOI: 10.1021/acs.jproteome.8b00875] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We recently discovered hybrid insulin peptides (HIPs) as a novel class of post-translationally modified peptides in murine-derived beta cell tumors, and we demonstrated that these molecules are autoantigens in type 1 diabetes (T1D). A HIP consists of an insulin fragment linked to another secretory granule peptide via a peptide bond. We verified that autoreactive CD4 T cells in both mouse and human autoimmune diabetes recognize these modified peptides. Here, we use mass spectrometric analyses to confirm the presence of HIPs in both mouse and human pancreatic islets. We also present criteria for the confident identification of these peptides. This work supports the hypothesis that HIPs are autoantigens in human T1D and provides a foundation for future efforts to interrogate this previously unknown component of the beta cell proteome.
Collapse
Affiliation(s)
- T. Aaron Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Roger Powell
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - K. Scott Beard
- Barbara Davis Center for Childhood Diabetes , Aurora , Colorado 80045 , United States
| | - Anita Hohenstein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Brenda Bradley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| |
Collapse
|
15
|
Schneider MC, Barnes CA, Bryant SJ. Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels. Biotechnol Bioeng 2017; 114:2096-2108. [PMID: 28436002 DOI: 10.1002/bit.26320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/28/2016] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels are highly tunable platforms that are promising cell delivery vehicles for chondrocytes and cartilage tissue engineering. In addition to characterizing the type of extracellular matrix (ECM) that forms, understanding the types of proteins that are secreted by encapsulated cells may be important. Thus, the objectives for this study were to characterize the secretome of chondrocytes encapsulated in PEG hydrogels and determine whether the secretome varies as a function of hydrogel stiffness and culture condition. Bovine chondrocytes were encapsulated in photoclickable PEG hydrogels with a compressive modulus of 8 and 46 kPa and cultured under free swelling or dynamic compressive loading conditions. Cartilage ECM deposition was assessed by biochemical assays and immunohistochemistry. The conditioned medium was analyzed by liquid chromatography-tandem mass spectrometry. Chondrocytes maintained their phenotype within the hydrogels and deposited cartilage-specific ECM that increased over time and included aggrecan and collagens II and VI. Analysis of the secretome revealed a total of 64 proteins, which were largely similar among all experimental conditions. The identified proteins have diverse functions such as biological regulation, response to stress, and collagen fibril organization. Notably, many of the proteins important to the assembly of a collagen-rich cartilage ECM were identified and included collagen types II(α1), VI (α1, α2, and α3), IX (α1), XI (α1 and α2), and biglycan. In addition, many of the other identified proteins have been reported to be present within cell-secreted exosomes. In summary, chondrocytes encapsulated within photoclickable PEG hydrogels secrete many types of proteins that diffuse out of the hydrogel and which have diverse functions, but which are largely preserved across different hydrogel culture environments. Biotechnol. Bioeng. 2017;114: 2096-2108. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margaret C Schneider
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Campus Box 596, Boulder 80309, Colorado.,Biofrontiers Institute, University of Colorado, Boulder, Colorado
| | | | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Campus Box 596, Boulder 80309, Colorado.,Biofrontiers Institute, University of Colorado, Boulder, Colorado.,Material Science and Engineering Program, University of Colorado, Boulder, Colorado
| |
Collapse
|
16
|
Neuman P, Dahlberg LE, Englund M, Struglics A. Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthritis Cartilage 2017; 25:492-498. [PMID: 27654964 DOI: 10.1016/j.joca.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe the longitudinal patterns of release, and investigate the association between a set of synovial fluid biomarkers at the acute and chronic stage and the development of radiographic knee osteoarthritis (OA) after an anterior cruciate ligament (ACL) injury. DESIGN Synovial fluid was aspirated from the acutely ACL-injured knee within the first 2weeks (acute samples), and yearly (chronic samples) up to 7.5 years after injury in 88 subjects (60% men). Non-injured subjects (n = 12) were used as reference group. Aggrecan, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 in synovial fluid were quantified by immunoassays. The presence of radiographic tibiofemoral (TF) or patellofemoral (PF) OA [Kellgren and Lawrence (K&L) ≥2] was examined with weight-bearing knee radiography 16 years after the ACL injury. RESULTS The average acute and chronic SF concentrations of COMP and aggrecan were elevated in comparison with the reference group (P < 0.001). The levels of COMP and aggrecan clearly decreased approximately half a year after the ACL injury, and returned to reference values during the 7.5 years of follow-up. Using logistic regression analysis neither acute nor chronic concentrations of the four biomarkers were associated with the development of radiographic knee OA at the 16 year follow-up. CONCLUSION Increased synovial fluid concentrations of aggrecan and COMP was related to knee injury, but acute and chronic synovial fluid concentrations of aggrecan, COMP, MMP-3 and TIMP-1 failed to predict knee OA 16 years after ACL injury.
Collapse
Affiliation(s)
- P Neuman
- Orthopedics, Department of Clinical Sciences, Malmö, Lund University, Sweden.
| | - L E Dahlberg
- Orthopedics, Department of Clinical Sciences, Malmö, Lund University, Sweden; Orthopedics, Department of Clinical Sciences, Lund, Lund University, Sweden
| | - M Englund
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences, Lund, Lund University, Sweden; Clinical Epidemiology Research & Training Unit, Boston University School of Medicine, Boston, MA, USA
| | - A Struglics
- Orthopedics, Department of Clinical Sciences, Lund, Lund University, Sweden
| |
Collapse
|
17
|
The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity. Inflammation 2017; 39:1377-86. [PMID: 27235018 DOI: 10.1007/s10753-016-0369-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters.
Collapse
|
18
|
Riegger J, Joos H, Palm HG, Friemert B, Reichel H, Ignatius A, Brenner RE. Antioxidative therapy in an ex vivo human cartilage trauma-model: attenuation of trauma-induced cell loss and ECM-destructive enzymes by N-acetyl cysteine. Osteoarthritis Cartilage 2016; 24:2171-2180. [PMID: 27514995 DOI: 10.1016/j.joca.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical trauma of articular cartilage results in cell loss and cytokine-driven inflammatory response. Subsequent accumulation of reactive oxygen (ROS) and nitrogen (RNS) species enhances the enzymatic degradation of the extracellular matrix (ECM). This study aims on the therapeutic potential of N-acetyl cysteine (NAC) in a human ex vivo cartilage trauma-model, focusing on cell- and chondroprotective features. DESIGN Human full-thickness cartilage explants were subjected to a defined impact trauma (0.59 J) and treated with NAC. Efficiency of NAC administration was evaluated by following outcome parameters: cell viability, apoptosis rate, anabolic/catabolic gene expression, secretion and activity of matrix metalloproteinases (MMPs) and proteoglycan (PG) release. RESULTS Continuous NAC administration increased cell viability and reduced the apoptosis rate after trauma. It also suppressed trauma-induced gene expression of ECM-destructive enzymes, such as ADAMTS-4, MMP-1, -2, -3 and -13 in a dosage- and time-depending manner. Subsequent suppression of MMP-2 and MMP-13 secretion reflected these findings on protein level. Moreover, NAC inhibited proteolytic activity of MMPs and reduced PG release. CONCLUSION In the context of this ex vivo study, we showed not only remarkable cell- and chondroprotective features, but also revealed new encouraging findings concerning the therapeutically effective concentration and treatment-time regimen of NAC. Its defense against chondrocyte apoptosis and catabolic enzyme secretion recommends NAC as a multifunctional add-on reagent for pharmaceutical intervention after cartilage injury. Taken together, our data increase the knowledge on the therapeutic potential of NAC after cartilage trauma and presents a basis for future in vivo studies.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - H Joos
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - H G Palm
- Department of Orthopedics and Trauma Surgery, German Armed Forces Hospital of Ulm, Ulm, Germany
| | - B Friemert
- Department of Orthopedics and Trauma Surgery, German Armed Forces Hospital of Ulm, Ulm, Germany
| | - H Reichel
- Department of Orthopedics, University of Ulm, Ulm, Germany
| | - A Ignatius
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
19
|
Ciuffa R, Caron E, Leitner A, Uliana F, Gstaiger M, Aebersold R. Contribution of Mass Spectrometry-Based Proteomics to the Understanding of TNF-α Signaling. J Proteome Res 2016; 16:14-33. [PMID: 27762135 DOI: 10.1021/acs.jproteome.6b00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is a family of ubiquitous dimeric transcription factors that play a role in a myriad of cellular processes, ranging from differentiation to stress response and immunity. In inflammation, activation of NF-κB is mediated by pro-inflammatory cytokines, in particular the prototypic cytokines IL-1β and TNF-α, which trigger the activation of complex signaling cascades. In spite of decades of research, the system level understanding of TNF-α signaling is still incomplete. This is partially due to the limited knowledge at the proteome level. The objective of this review is to summarize and critically evaluate the current status of the proteomic research on TNF-α signaling. We will discuss the merits and flaws of the existing studies as well as the insights that they have generated into the proteomic landscape and architecture connected to this signaling pathway. Besides delineating past and current trends in TNF-α proteomic research, we will identify research directions and new methodologies that can further contribute to characterize the TNF-α associated proteome in space and time.
Collapse
Affiliation(s)
- Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Etienne Caron
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Federico Uliana
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich , 8006 Zurich, Switzerland
| |
Collapse
|
20
|
Chooi WH, Chan BP. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs. Sci Rep 2016; 6:26449. [PMID: 27197886 PMCID: PMC4873809 DOI: 10.1038/srep26449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs.
Collapse
Affiliation(s)
- Wai Hon Chooi
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| |
Collapse
|
21
|
Wilson R, Golub SB, Rowley L, Angelucci C, Karpievitch YV, Bateman JF, Fosang AJ. Novel Elements of the Chondrocyte Stress Response Identified Using an in Vitro Model of Mouse Cartilage Degradation. J Proteome Res 2016; 15:1033-50. [PMID: 26794603 DOI: 10.1021/acs.jproteome.5b01115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania , Hobart, Tasmania 7001, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Suzanne B Golub
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Pediatrics, University of Melbourne , Parkville, Victoria 3052, Australia
| | - Lynn Rowley
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Constanza Angelucci
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia
| | - Yuliya V Karpievitch
- School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7001, Australia.,Centre of Excellence in Plant Energy Biology, University of Western Australia and Harry Perkins Institute of Medical Research , Perth, Western Australia 6009, Australia
| | - John F Bateman
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| | - Amanda J Fosang
- Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville, Melbourne, Victoria 3052, Australia.,Department of Pediatrics, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis. Int J Mol Sci 2015; 16:20560-75. [PMID: 26334269 PMCID: PMC4613218 DOI: 10.3390/ijms160920560] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 01/04/2023] Open
Abstract
Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA.
Collapse
|
23
|
Svala E, Löfgren M, Sihlbom C, Rüetschi U, Lindahl A, Ekman S, Skiöldebrand E. An inflammatory equine model demonstrates dynamic changes of immune response and cartilage matrix molecule degradation in vitro. Connect Tissue Res 2015; 56:315-25. [PMID: 25803623 DOI: 10.3109/03008207.2015.1027340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The molecular aspects of inflammation were investigated in equine articular cartilage explants using quantitative proteomics. Articular cartilage explants were stimulated with interleukin (IL)-1β in vitro for 25 days, and proteins released into cell culture media were chemically labeled with isobaric mass tags and analyzed by liquid chromatography-tandem mass spectrometry. A total of 127 proteins were identified and quantified in media from explants. IL-1β-stimulation resulted in an abundance of proteins related to inflammation, including matrix metalloproteinases, acute phase proteins, complement components and IL-6. Extracellular matrix (ECM) molecules were released at different time points, and fragmentation of aggrecan and cartilage oligomeric matrix protein was observed at days 3 and 6, similar to early-stage OA in vivo. Degradation products of the collagenous network were observed at days 18 and 22, similar to late-stage OA. This model displays a longitudinal quantification of released molecules from the ECM of articular cartilage. Identification of dynamic changes of extracellular matrix molecules in the secretome of equine explants stimulated with IL-1β over time may be useful for identifying components released at different time points during the spontaneous OA process.
Collapse
Affiliation(s)
- Emilia Svala
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue-engineered cartilage. Using normal cartilage tissue as a standard, tissue-engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage.
Collapse
Affiliation(s)
- Xinzhu Pu
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, 1910 University Drive, Mail Stop 1511, Boise, ID, USA.
| |
Collapse
|
25
|
Cillero-Pastor B, Eijkel GB, Blanco FJ, Heeren RMA. Protein classification and distribution in osteoarthritic human synovial tissue by matrix-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem 2014; 407:2213-22. [DOI: 10.1007/s00216-014-8342-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/26/2022]
|
26
|
Ranok A, Wongsantichon J, Robinson RC, Suginta W. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). J Biol Chem 2014; 290:2617-29. [PMID: 25477513 DOI: 10.1074/jbc.m114.588905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four crystal structures of human YKL-39 were solved in the absence and presence of chitooligosaccharides. The structure of YKL-39 comprises a major (β/α)8 triose-phosphate isomerase barrel domain and a small α + β insertion domain. Structural analysis demonstrates that YKL-39 interacts with chitooligosaccharides through hydrogen bonds and hydrophobic interactions. The binding of chitin fragments induces local conformational changes that facilitate tight binding. Compared with other GH-18 members, YKL-39 has the least extended chitin-binding cleft, containing five subsites for sugars, namely (-3)(-2)(-1)(+1)(+2), with Trp-360 playing a prominent role in the sugar-protein interactions at the center of the chitin-binding cleft. Evaluation of binding affinities obtained from isothermal titration calorimetry and intrinsic fluorescence spectroscopy suggests that YKL-39 binds to chitooligosaccharides with Kd values in the micromolar concentration range and that the binding energies increase with the chain length. There were no significant differences between the Kd values of chitopentaose and chitohexaose, supporting the structural evidence for the five binding subsite topology. Thermodynamic analysis indicates that binding of chitooligosaccharide to YKL-39 is mainly driven by enthalpy.
Collapse
Affiliation(s)
- Araya Ranok
- From the Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jantana Wongsantichon
- the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Singapore 138673, Singapore, and
| | - Robert C Robinson
- the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Singapore 138673, Singapore, and the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,
| |
Collapse
|
27
|
Lourido L, Calamia V, Mateos J, Fernández-Puente P, Fernández-Tajes J, Blanco FJ, Ruiz-Romero C. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis. J Proteome Res 2014; 13:6096-106. [PMID: 25383958 DOI: 10.1021/pr501024p] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.
Collapse
Affiliation(s)
- Lucía Lourido
- Proteomics Group-PBR2-ProteoRed/ISCIII, Rheumatology Division, §RIER-RED de Inflamación y Enfermedades Reumáticas, ∥CIBER-BBN Instituto de Salud Carlos III, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , As Xubias, 84, 15006-A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Williams A, Smith JR, Allaway D, Harris P, Liddell S, Mobasheri A. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1β. Arthritis Res Ther 2014; 15:R223. [PMID: 24373218 PMCID: PMC3978949 DOI: 10.1186/ar4424] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Arthritic diseases are characterized by the degradation of collagenous and noncollagenous extracellular matrix (ECM) components in articular cartilage. The increased expression and activity of matrix metalloproteinases (MMPs) is partly responsible for cartilage degradation. This study used proteomics to identify inflammatory proteins and catabolic enzymes released in a serum-free explant model of articular cartilage stimulated with the pro-inflammatory cytokine interleukin 1β (IL-1β). Western blotting was used to quantify the release of selected proteins in the presence or absence of the cyclooxygenase-2 specific nonsteroidal pro-inflammatory drug carprofen. METHODS Cartilage explant cultures were established by using metacarpophalangeal joints from horses euthanized for purposes other than research. Samples were treated as follows: no treatment (control), IL-1β (10 ng/ml), carprofen (100 μg/ml), and carprofen (100 μg/ml) + IL-1β (10 ng/ml). Explants were incubated (37°C, 5% CO2) over twelve day time courses. High-throughput nano liquid chromatography/mass spectrometry/mass spectrometry uncovered candidate proteins for quantitative western blot analysis. Proteoglycan loss was assessed by using the dimethylmethylene blue (DMMB) assay, which measures the release of sulfated glycosaminoglycans (GAGs). RESULTS Mass spectrometry identified MMP-1, -3, -13, and the ECM constituents thrombospondin-1 (TSP-1) and fibronectin-1 (FN1). IL-1β stimulation increased the release of all three MMPs. IL-1β also stimulated the fragmentation of FN1 and increased chondrocyte cell death (as assessed by β-actin release). Addition of carprofen significantly decreased MMP release and the appearance of a 60 kDa fragment of FN1 without causing any detectable cytotoxicity to chondrocytes. DMMB assays suggested that carprofen initially inhibited IL-1β-induced GAG release, but this effect was transient. Overall, during the two time courses, GAG release was 58.67% ± 10.91% (SD) for IL-1β versus 52.91% ± 9.35% (SD) with carprofen + IL-1β. CONCLUSIONS Carprofen exhibits beneficial anti-inflammatory and anti-catabolic effects in vitro without causing any detectable cytotoxicity. Combining proteomics with this explant model provides a sensitive screening system for anti-inflammatory compounds.
Collapse
|
29
|
Joos H, Wildner A, Hogrefe C, Reichel H, Brenner RE. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res Ther 2014; 15:R119. [PMID: 24034344 PMCID: PMC3978440 DOI: 10.1186/ar4299] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints. Methods We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments. Results A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC. Conclusion These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.
Collapse
|
30
|
Ceciliani F, Restelli L, Lecchi C. Proteomics in farm animals models of human diseases. Proteomics Clin Appl 2014; 8:677-88. [PMID: 24595991 DOI: 10.1002/prca.201300080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/18/2013] [Accepted: 01/14/2014] [Indexed: 12/21/2022]
Abstract
The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques.
Collapse
Affiliation(s)
- Fabrizio Ceciliani
- Department of Veterinary Sciences and Public Health, Università di Milano, Milan, Italy; Interdepartmental Centre for Studies on Mammary Gland, Università di Milano, Milan, Italy
| | | | | |
Collapse
|
31
|
Parri M, Pietrovito L, Grandi A, Campagnoli S, De Camilli E, Bianchini F, Marchiò S, Bussolino F, Jin B, Sarmientos P, Grandi G, Viale G, Pileri P, Chiarugi P, Grifantini R. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis 2014; 17:881-96. [PMID: 24903490 DOI: 10.1007/s10456-014-9435-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.
Collapse
Affiliation(s)
- Matteo Parri
- Externautics SpA, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648459. [PMID: 24959581 PMCID: PMC4052144 DOI: 10.1155/2014/648459] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
Cartilage extracellular matrix (ECM) is composed primarily of the network type II collagen (COLII) and an interlocking mesh of fibrous proteins and proteoglycans (PGs), hyaluronic acid (HA), and chondroitin sulfate (CS). Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO) signal, protein kinase C (PKC), and retinoic acid (RA) signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.
Collapse
|
33
|
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 2013; 14:20658-81. [PMID: 24132152 PMCID: PMC3821636 DOI: 10.3390/ijms141020658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.
Collapse
Affiliation(s)
- Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-151-795-6006; Fax: +44-151-795-6101
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; E-Mail:
| | - Peter D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
| |
Collapse
|
34
|
Cillero-Pastor B, Eijkel GB, Kiss A, Blanco FJ, Heeren RMA. Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. ACTA ACUST UNITED AC 2013; 65:710-20. [PMID: 23280504 DOI: 10.1002/art.37799] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 11/08/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Information about the distribution of proteins and the modulation that they undergo in the different phases of rheumatic pathologies is essential to understanding the development of these diseases. We undertook this study to demonstrate the utility of mass spectrometry (MS)-based molecular imaging for studying the spatial distribution of different components in human articular cartilage sections. METHODS We compared the distribution of peptides and proteins in human control and osteoarthritic (OA) cartilage. Human control and OA cartilage slices were cut and deposited on conductive slides. After tryptic digestion, we performed matrix-assisted laser desorption ionization-imaging MS (MALDI-IMS) experiments in a MALDI-quadrupole time-of-flight mass spectrometer. Protein identification was undertaken with a combination of multivariate statistical methods and Mascot protein database queries. Hematoxylin and eosin staining and immunohistochemistry were performed to validate the results. RESULTS We created maps of peptide distributions at 150-μm raster size from control and OA human cartilage. Proteins such as biglycan, prolargin, decorin, and aggrecan core protein were identified and localized. Specific protein markers for cartilage oligomeric matrix protein and fibronectin were found exclusively in OA cartilage samples. Their distribution displayed a stronger intensity in the deep area than in the superficial area. New tentative OA markers were found in the deep area of the OA cartilage. CONCLUSION MALDI-IMS identifies and localizes disease-specific peptides and proteins in cartilage. All the OA-related peptides and proteins detected display a stronger intensity in the deep cartilage. MS-based molecular imaging is demonstrated to be an innovative method for studying OA pathology.
Collapse
|
35
|
Sarma NJ, Tiriveedhi V, Subramanian V, Shenoy S, Crippin JS, Chapman WC, Mohanakumar T. Hepatitis C virus mediated changes in miRNA-449a modulates inflammatory biomarker YKL40 through components of the NOTCH signaling pathway. PLoS One 2012; 7:e50826. [PMID: 23226395 PMCID: PMC3511274 DOI: 10.1371/journal.pone.0050826] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022] Open
Abstract
Liver disease due to hepatitis C virus (HCV) infection is an important health problem worldwide. HCV induced changes in microRNAs (miRNA) are shown to mediate inflammation leading to liver fibrosis. Gene expression analyses identified dysregulation of miRNA-449a in HCV patients but not in alcoholic and non-alcoholic liver diseases. By sequence analysis of the promoter for YKL40, an inflammatory marker upregulated in patients with chronic liver diseases with fibrosis, adjacent binding sites for nuclear factor of Kappa B/P65 and CCAAT/enhancer-binding protein alpha (CEBPα) were identified. P65 interacted with CEBPα to co-operatively activate YKL40 expression through sequence specific DNA binding. In vitro analysis demonstrated that tumor necrosis factor alpha (TNFα) mediated YKL40 expression is regulated by miRNA-449a and its target NOTCH1 in human hepatocytes.NOTCH1 facilitated nuclear localization of P65 in response to TNFα. Further, HCV patients demonstrated upregulation of NOTCH1 along with downregulation of miRNA-449a. Taken together it is demonstrated that miRNA-449a plays an important role in modulating expression of YKL40 through targeting the components of the NOTCH signaling pathway following HCV infection. Therefore, defining transcriptional regulatory mechanisms which control inflammatory responses and fibrosis will be important towards developing strategies to prevent hepatic fibrosis especially following HCV recurrence in liver transplant recipients.
Collapse
Affiliation(s)
- Nayan J. Sarma
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Venkataswarup Tiriveedhi
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Vijay Subramanian
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Surendra Shenoy
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jeffrey S. Crippin
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - William C. Chapman
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Thalachallour Mohanakumar
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
36
|
Mobasheri A. Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Front Physiol 2011; 2:108. [PMID: 22207853 PMCID: PMC3246359 DOI: 10.3389/fphys.2011.00108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022] Open
Abstract
The incidence of age-related musculoskeletal impairment is steadily rising throughout the world. Musculoskeletal conditions are closely linked with aging and inflammation. They are leading causes of morbidity and disability in man and beast. Aging is a major contributor to musculoskeletal degeneration and the development of osteoarthritis (OA). OA is a degenerative disease that involves structural changes to joint tissues including synovial inflammation, catabolic destruction of articular cartilage and alterations in subchondral bone. Cartilage degradation and structural changes in subchondral bone result in the production of fragments of extracellular matrix molecules. Some of these biochemical markers or "biomarkers" can be detected in blood, serum, synovial fluid, and urine and may be useful markers of disease progression. The ability to detect biomarkers of cartilage degradation in body fluids may enable clinicians to diagnose sub-clinical OA as well as determining the course of disease progression. New biomarkers that indicate early responses of the joint cartilage to degeneration will be useful in detecting early, pre-radiographic changes. Systems biology is increasingly applied in basic cartilage biology and OA research. Proteomic techniques have the potential to improve our understanding of OA physiopathology and its underlying mechanisms. Proteomics can also facilitate the discovery of disease-specific biomarkers and help identify new therapeutic targets. Proteomic studies of cartilage and other joint tissues may be particularly relevant in diagnostic orthopedics and therapeutic research. This perspective article discusses the relevance and potential of proteomics for studying age-related musculoskeletal diseases such as OA and reviews the contributions of key investigators in the field.
Collapse
Affiliation(s)
- Ali Mobasheri
- Musculoskeletal Research Group, Division of Veterinary Medicine, School of Veterinary Medicine and Science, University of Nottingham Nottingham, UK
| |
Collapse
|
37
|
Shields AM, Thompson SJ, Panayi GS, Corrigall VM. Pro-resolution immunological networks: binding immunoglobulin protein and other resolution-associated molecular patterns. Rheumatology (Oxford) 2011; 51:780-8. [PMID: 22190690 DOI: 10.1093/rheumatology/ker412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Appropriate regulation and subsequent resolution of acute inflammatory events is critical to the prevention of autoinflammatory diseases. Indeed, the chronic inflammation observed in diseases such as RA is at least partially consequent on the failure of endogenous immunoregulation. Current RA therapies (e.g. anti-TNF-α inhibitors and MTX) inhibit components of the inflammatory disease process without directly promoting the resolution of inflammation. We propose that the next generation of RA therapeutics will complement and augment endogenous immunoregulatory and pro-resolution immunological networks, thus promoting the definitive resolution of inflammation rather than temporary immunological control. Of particular interest with respect to this therapeutic approach is binding immunoglobulin protein [BiP; also known as glucose-regulated protein-78 (GRP78)], a member of the recently defined resolution-associated molecular pattern (RAMP) family of molecules. In this review, we consider the preclinical evidence from experiments in mouse and man that suggests BiP and other members of the RAMP family have the potential to herald a new generation of immunotherapeutics.
Collapse
Affiliation(s)
- Adrian M Shields
- Department of Academic Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, 1st Floor New Hunts House, Guy's Campus, King's College London, London SE 1UL, UK
| | | | | | | |
Collapse
|
38
|
Gharbi M, Deberg M, Henrotin Y. Application for proteomic techniques in studying osteoarthritis: a review. Front Physiol 2011; 2:90. [PMID: 22144964 PMCID: PMC3228966 DOI: 10.3389/fphys.2011.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/11/2011] [Indexed: 01/12/2023] Open
Abstract
After the genomic era, proteomic corresponds to a wide variety of techniques that study the protein content of cells, tissue, or organism and that allow the isolation of protein of interest. It offers the choice between gel-based and gel-free methods or shotgun proteomics. Applications of proteomic technology may concern three principal objectives in several biomedical or clinical domains of research as in osteoarthritis: (i) to understand the physiopathology or underlying mechanisms leading to a disease or associated with a particular model, (ii), to find disease-specific biomarker, and (iii) to identify new therapeutic targets. This review aimed at gathering most of the data regarding the proteomic techniques and their applications to osteoarthritis research. It also reported technical limitations and solutions, as for example for sample preparation. Proteomics open wide perspectives in biochemical research but many technical matters still remain to be solved.
Collapse
|
39
|
Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:15-37. [PMID: 21826801 DOI: 10.1002/wsbm.157] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multifaceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis.
Collapse
Affiliation(s)
- Alexander Y Hui
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Zhang Z, Jin W, Beckett J, Otto T, Moed B. A proteomic approach for identification and localization of the pericellular components of chondrocytes. Histochem Cell Biol 2011; 136:153-62. [PMID: 21698479 DOI: 10.1007/s00418-011-0834-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2011] [Indexed: 11/26/2022]
Abstract
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.
Collapse
Affiliation(s)
- Zijun Zhang
- Department of Orthopaedic Surgery, Saint Louis University, School of Medicine, 3635 Vista Avenue, Desloge Towers, DT-7, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
41
|
Schulze Willbrenning G, Hiss S, Theune C, Mielenz M, Schellander K, Sauerwein H. Gelatinase activities and haptoglobin concentrations in healthy and in degenerative articular cartilage of pigs. J Anim Physiol Anim Nutr (Berl) 2011; 94:757-66. [PMID: 20050947 DOI: 10.1111/j.1439-0396.2009.00958.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objectives of this study were to investigate the activity of the matrix metalloproteinase (MMP)-2 and MMP-9 in healthy and in degenerative cartilage and to characterize the relation with the acute phase protein haptoglobin (HP) in articular cartilages of pigs. Joint surfaces of the proximal and distal humerus and femur of fattening pigs were histopathologically classified. In addition, cartilage homogenates and synovia were obtained. The tissue homogenates were analysed for gelatinase activity by zymography and by activity assay. The concentrations of HP in cartilage homogenates, in synovia and in serum were analysed by ELISA. High enzymatic activity of the MMP-2 latent form was observed in zymography in all samples. Zymographic activities of MMP-2 active form and MMP-9 (active and latent form) were detected at low levels in some samples. Comparison of the zymographic activities of gelatinases in unaltered vs. altered cartilages yielded no differences. In contrast to zymography, cartilage homogenates were negative for MMP-2 and MMP-9 in the activity assays. The concentrations of HP in cartilage homogenates and in synovia from samples without alteration and from samples with massive alterations were not different. When classified according to their HP concentration, cartilage homogenates with increased HP concentrations had higher (p < 0.05) zymographic activities of the MMP-2 active form. For the two MMPs investigated, there was no detectable relationship with degenerative processes in the cartilage.
Collapse
Affiliation(s)
- G Schulze Willbrenning
- Physiology & Hygiene Unit, Institute of Animal Science, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
42
|
High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation. J Proteomics 2011; 74:704-15. [PMID: 21354348 PMCID: PMC3078332 DOI: 10.1016/j.jprot.2011.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
This study employed a targeted high-throughput proteomic approach to identify the major proteins present in the secretome of articular cartilage. Explants from equine metacarpophalangeal joints were incubated alone or with interleukin-1beta (IL-1β, 10ng/ml), with or without carprofen, a non-steroidal anti-inflammatory drug, for six days. After tryptic digestion of culture medium supernatants, resulting peptides were separated by HPLC and detected in a Bruker amaZon ion trap instrument. The five most abundant peptides in each MS scan were fragmented and the fragmentation patterns compared to mammalian entries in the Swiss-Prot database, using the Mascot search engine. Tryptic peptides originating from aggrecan core protein, cartilage oligomeric matrix protein (COMP), fibronectin, fibromodulin, thrombospondin-1 (TSP-1), clusterin (CLU), cartilage intermediate layer protein-1 (CILP-1), chondroadherin (CHAD) and matrix metalloproteinases MMP-1 and MMP-3 were detected. Quantitative western blotting confirmed the presence of CILP-1, CLU, MMP-1, MMP-3 and TSP-1. Treatment with IL-1β increased MMP-1, MMP-3 and TSP-1 and decreased the CLU precursor but did not affect CILP-1 and CLU levels. Many of the proteins identified have well-established extracellular matrix functions and are involved in early repair/stress responses in cartilage. This high throughput approach may be used to study the changes that occur in the early stages of osteoarthritis.
Collapse
|
43
|
Haudenschild DR, Chen J, Pang N, Steklov N, Grogan SP, Lotz MK, D’Lima DD. Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. J Orthop Res 2011; 29:20-5. [PMID: 20602472 PMCID: PMC2976780 DOI: 10.1002/jor.21198] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Actin and tubulin cytoskeletal components are studied extensively in chondrocytes, but less is known about vimentin intermediate filaments. In other cell types, vimentin is a determinant of cell stiffness and disruption of vimentin networks weakens the mechanical integrity of cells. Changes in vimentin organization correlate with osteoarthritis progression, but the functional consequences of these changes remain undetermined in chondrocytes. The objective of this study was to compare the contribution of vimentin to the mechanical stiffness of primary human chondrocytes isolated from normal versus osteoarthritic cartilage. Chondrocytes were embedded in alginate and vimentin networks disrupted with acrylamide. Constructs were imaged while subjected to 20% nominal strain on a confocal microscope stage, and the aspect ratios of approximately 1,900 cells were measured. Cytosolic stiffness was estimated with a finite element model, and live-cell imaging of GFP-vimentin was used to further analyze the nature of vimentin disruption. Vimentin in normal chondrocytes formed an inner cage-like network that was substantially stiffer than the rest of the cytosol and contributed significantly to overall cellular stiffness. Disruption of vimentin reduced stiffness approximately 2.8-fold in normal chondrocytes. In contrast, osteoarthritic chondrocytes were less stiff and less affected by vimentin disruption. This 3D experimental system revealed contributions of vimentin to chondrocyte stiffness previously not apparent, and correlated changes in vimentin-based chondrocyte stiffness with osteoarthritis.
Collapse
Affiliation(s)
- Dominik R. Haudenschild
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037, The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Jianfen Chen
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Nina Pang
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Nikolai Steklov
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037
| | - Martin K. Lotz
- The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, La Jolla, CA 92037, The Scripps Research Institute, Division of Arthritis Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
44
|
Ruiz-Romero C, Blanco FJ. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis. Osteoarthritis Cartilage 2010; 18:500-9. [PMID: 20060947 DOI: 10.1016/j.joca.2009.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/21/2009] [Accepted: 11/23/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common rheumatic pathology. It is related to aging and is characterized primarily by cartilage degradation. Despite its high prevalence, the diagnostic methods currently available are limited and lack sensitivity. The focus of this review is the application of proteomic technologies in the search of new biomarkers for improved diagnosis, prognosis and treatment of OA. METHODS This review focuses on the utilization of proteomics in OA biomarker research to enable early diagnosis, improved prognosis and the application of tailored treatments. RESULTS New diagnostic tests for OA are urgently needed and would also promote the development of alternative therapeutic strategies. Considering that OA involves different tissues and complex biological processes, the most promising diagnostic approach would be the study of combinations of biomarkers. New experimental approaches for the identification and validation of OA biomarkers have recently emerged and include proteomic technologies. These techniques allow the simultaneous analysis of multiple markers and become a very powerful tool for both biomarker discovery and validation. CONCLUSIONS Improvements in proteomics technology will undoubtedly lead to advances in characterizing new OA biomarkers and developing alternative therapies. Even so, further work is required to enhance the performance and reproducibility of proteomics tools before they can be routinely used in clinical trials and practice.
Collapse
Affiliation(s)
- C Ruiz-Romero
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Unidad de Proteómica-Nodo Asociado a ProteoRed-(Genoma España), Centro de Investigación Biomédica, Servicio de Reumatología, Complejo Hospitalario Universitario de A Coruña, 15006-A Coruña, Spain
| | | |
Collapse
|
45
|
Abstract
Articular cartilage extracellular matrix and cell function change with age and are considered to be the most important factors in the development and progression of osteoarthritis. The multifaceted nature of joint disease indicates that the contribution of cell death can be an important factor at early and late stages of osteoarthritis. Therefore, the pharmacologic inhibition of cell death is likely to be clinically valuable at any stage of the disease. In this article, we will discuss the close association between diverse changes in cartilage aging, how altered conditions influence chondrocyte death, and the implications of preventing cell loss to retard osteoarthritis progression and preserve tissue homeostasis.
Collapse
|
46
|
Mohanty JG, Shukla HD, Williamson JD, Launer LJ, Saxena S, Rifkind JM. Alterations in the red blood cell membrane proteome in alzheimer's subjects reflect disease-related changes and provide insight into altered cell morphology. Proteome Sci 2010; 8:11. [PMID: 20199679 PMCID: PMC2848146 DOI: 10.1186/1477-5956-8-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 03/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background Our earlier studies have shown that red blood cell (RBC) morphology in Alzheimer's disease (AD) subjects was altered (> 15% of the RBCs were elongated as compared to 5.9% in normal controls (p < 0.0001)). These results suggested alterations in the RBC membrane architecture in AD subjects, possibly due to RBC-β-amyloid interactions and/or changes in the expression of membrane proteins. We hypothesized that the observed changes could be due to changes in the level of the protein components of the cytoskeleton and those linked to the RBC membrane. To examine this, we performed a proteomic analysis of RBC membrane proteins of AD subjects, and their age-matched controls using one pool of samples from each group, following their separation by SDS-PAGE, in-gel Tryptic digestion, LC-MS-MS of peptides generated, and a label-free approach of semi-quantitative analysis of their relative MS spectral intensities. Results The data suggest, (1) RBC shape/morphology changes in AD subjects are possibly attributed primarily to the changes (elevation or decrease) in the level of a series of membrane/cytoskeleton proteins involved in regulating the stability and elasticity of the RBC membrane, and (2) changes (elevation or decrease) in the level of a second series of proteins in the RBC membrane proteome reflect similar changes reported earlier by various investigators in AD or animal model of AD. Of particular interest, elevation of oxidative stress response proteins such as heat shock 90 kDa protein 1 alpha in AD subjects has been confirmed by western blot analysis in the RBC membrane proteome. Conclusions The results suggest that this study provides a potential link between the alterations in RBC membrane proteome in AD subjects and AD pathology.
Collapse
|
47
|
Malda J, ten Hoope W, Schuurman W, van Osch GJ, van Weeren PR, Dhert WJ. Localization of the Potential Zonal Marker Clusterin in Native Cartilage and in Tissue-Engineered Constructs. Tissue Eng Part A 2010; 16:897-904. [DOI: 10.1089/ten.tea.2009.0376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Werner ten Hoope
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter Schuurman
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerjo J.V.M. van Osch
- Departments of Orthopaedics and Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Chapter 8: Clusterin: A multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 2010; 104:139-70. [PMID: 19878776 DOI: 10.1016/s0065-230x(09)04008-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For years, clusterin has been recognized as a secreted protein and a large number of works demonstrated that this ubiquitously expressed protein has multiple activities. Among the described activities several were related to inflammation and immunity such as its regulatory activity on complement. Then it became clear that a nuclear form of the protein with proapoptotic property existed and more recently that a cytoplasmic form could regulate NF-kappaB pathway. Again, these activities have a strong repercussion in inflammation and immunity. On the other hand, data available on the exact role of CLU in these processes and autoimmunity were quite scarce until recently. Indeed, in the last few years, a differential CLU expression in subtype of T cells, the regulation of CLU expression by proinflammatory cytokines and molecules, the regulation of expression and function of CLU depending on its subcellular localization, the interaction of CLU with nuclear and intracellular proteins were all reported. Adding these new roles of CLU to the already reported functions of this protein allows a better understanding of its role and potential involvement in several inflammatory and immunological processes and, in particular, autoimmunity. In this sense, rheumatoid arthritis appears to be a very attractive disease to build a new paradigm of the role and function of CLU because it makes the link between proliferation, inflammation, and autoimmunity. We will try to see in this review how to bring altogether the old and new knowledge on CLU with inflammation and autoimmunity. Nevertheless, it is clear that CLU has not yet revealed all its secrets in inflammation and autoimmunity.
Collapse
|
49
|
Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR. Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol Cell Proteomics 2009; 8:1475-89. [PMID: 19196708 DOI: 10.1074/mcp.m800181-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objectives of this study were to perform a quantitative comparison of proteins released from cartilage explants in response to treatment with IL-1beta, TNF-alpha, or mechanical compression injury in vitro and to interpret this release in the context of anabolic-catabolic shifts known to occur in cartilage in response to these insults in vitro and their implications in vivo. Bovine calf cartilage explants from 6-12 animals were subjected to injurious compression, TNF-alpha (100 ng/ml), IL-1beta (10 ng/ml), or no treatment and cultured for 5 days in equal volumes of medium. The pooled medium from each of these four conditions was labeled with one of four iTRAQ labels and subjected to nano-2D-LC/MS/MS on a quadrupole time-of-flight instrument. Data were analysed by ProQuant for peptide identification and quantitation. k-means clustering and biological pathways analysis were used to identify proteins that may correlate with known cartilage phenotypic responses to such treatments. IL-1beta and TNF-alpha treatment caused a decrease in the synthesis of collagen subunits (p < 0.05) as well as increased release of aggrecan G2 and G3 domains to the medium (p < 0.05). MMP-1, MMP-3, MMP-9, and MMP-13 were significantly increased by all treatments compared with untreated samples (p < 0.10). Increased release of proteins involved in innate immunity and immune cell recruitment were noted following IL-1beta and TNF-alpha treatment, whereas increased release of intracellular proteins was seen most dramatically with mechanical compression injury. Proteins involved in insulin-like growth factor and TGF-beta superfamily pathway modulation showed changes in pro-anabolic pathways that may represent early repair signals. At the systems level, two principal components were sufficient to describe 97% of the covariance in the data. A strong correlation was noted between the proteins released in response to IL-1beta and TNF-alpha; in contrast, mechanical injury resulted in both similarities and unique differences in the groups of proteins released compared with cytokine treatment.
Collapse
Affiliation(s)
- Anna L Stevens
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|