1
|
Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol 2023; 19:713-723. [PMID: 37789119 DOI: 10.1038/s41584-023-01032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for >40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the ECM, including some drugs that are currently under consideration for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
2
|
Abstract
Rho guanosine triphosphatase (GTPases), as molecular switches, have been identified to be dysregulated and involved in the pathogenesis of various rheumatic diseases, mainly including rheumatoid arthritis, osteoarthritis, systemic sclerosis, and systemic lupus erythematosus. Downstream pathways involving multiple types of cells, such as fibroblasts, chondrocytes, synoviocytes, and immunocytes are mediated by activated Rho GTPases to promote pathogenesis. Targeted therapy via inhibitors of Rho GTPases has been implicated in the treatment of rheumatic diseases, demonstrating promising effects. In this review, the effects of Rho GTPases in the pathogenesis of rheumatic diseases are summarized, and the Rho GTPase-mediated pathways are elucidated. Therapeutic strategies using Rho GTPase inhibitors in rheumatic diseases are also discussed to provide insights for further exploration of targeted therapy in preclinical studies and clinical practice. Future directions on studies of Rho GTPases in rheumatic diseases based on current understandings are provided.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Corresponding author
| | - Hao Chen
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Corresponding author
| |
Collapse
|
3
|
Matera DL, Lee AT, Hiraki HL, Baker BM. The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cell Mol Bioeng 2021; 14:381-396. [PMID: 34777599 PMCID: PMC8548490 DOI: 10.1007/s12195-021-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Connective tissue repair and mechanosensing are tightly entwined in vivo and occur within a complex three-dimensional (3D), fibrous extracellular matrix (ECM). Typically driven by activated fibroblasts, wound repair involves well-defined steps of cell spreading, migration, proliferation, and fibrous ECM deposition. While the role of Rho GTPases in regulating these processes has been explored extensively in two-dimensional cell culture models, much less is known about their role in more physiologic, 3D environments. METHODS We employed a 3D, fibrous and protease-sensitive hydrogel model of interstitial ECM to study the interplay between Rho GTPases and fibrous matrix cues in fibroblasts during wound healing. RESULTS Modulating fiber density within protease-sensitive hydrogels, we confirmed previous findings that heightened fiber density promotes fibroblast spreading and proliferation. The presence of matrix fibers furthermore corresponded to increased cell migration speeds and macroscopic hydrogel contraction arising from fibroblast generated forces. During fibroblast spreading, Rac1 and RhoA GTPase activity proved crucial for fiber-mediated cell spreading and contact guidance along matrix fibers, while Cdc42 was dispensable. In contrast, interplay between RhoA, Rac1, and Cdc42 contributed to fiber-mediated myofibroblast differentiation and matrix contraction over longer time scales. CONCLUSION These observations may provide insights into tissue repair processes in vivo and motivate the incorporation of cell-adhesive fibers within synthetic hydrogels for material-guided wound repair strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00698-5.
Collapse
Affiliation(s)
- Daniel L. Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexander T. Lee
- Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Harrison L. Hiraki
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Brendon M. Baker
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
4
|
Patel S, Tang J, Overstreet JM, Anorga S, Lian F, Arnouk A, Goldschmeding R, Higgins PJ, Samarakoon R. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB J 2019; 33:9797-9810. [PMID: 31095421 PMCID: PMC6704447 DOI: 10.1096/fj.201802489rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Rac-GTPases are major regulators of cytoskeletal remodeling and their deregulation contributes to numerous pathologies. Whether or how Rac promotes tubulointerstitial fibrosis and chronic kidney disease (CKD) is currently unknown. We showed that the major profibrotic cytokine, TGF-β1 promoted rapid Rac1-GTP loading in human kidney 2 (HK-2) human renal epithelial cells. A Rac-specific chemical inhibitor, EHT 1864, blocked TGF-β1-induced fibrotic reprogramming in kidney epithelial cells and fibroblasts. Stable Rac1 depletion in HK-2 cells, moreover, eliminated TGF-β1-mediated non-SMAD pathway activation [e.g., Src, epidermal growth factor receptor (EGFR), p53] and subsequent plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor, fibronectin, and p21 induction. Rac1 and p22phox knockdown abrogated free radical generation by TGF-β1 in HK-2 cells, consistent with the role of Rac1 in NAPD(H). TGF-β1-induced renal epithelial cytostasis was also completely bypassed by Rac1, p22phox, p47phox, and PAI-1 silencing. Rac1b isoform expression was robustly induced in the fibrotic kidneys of mice and humans. Intraperitoneal administration of EHT 1864 in mice dramatically attenuated ureteral unilateral obstruction-driven EGFR, p53, Rac1b, yes-associated protein/transcriptional coactivator with PDZ-binding motif activation/expression, dedifferentiation, cell cycle arrest, and renal fibrogenesis evident in vehicle-treated obstructed kidneys. Thus, the Rac1-directed redox response is critical for TGF-β1-driven epithelial dysfunction orchestrated, in part, via PAI-1 up-regulation. Rac pathway inhibition suppressed renal oxidative stress and maladaptive repair, identifying Rac as a novel therapeutic target against progressive CKD.-Patel, S., Tang, J., Overstreet, J. M., Anorga, S., Lian, F., Arnouk, A., Goldschmeding, R., Higgins, P. J., Samarakoon, R. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways.
Collapse
Affiliation(s)
- Samik Patel
- Department of Regenerative and Cancer Cell Biology Albany Medical Center, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology Albany Medical Center, Albany, New York, USA
| | - Jessica M. Overstreet
- Division of Nephrology and Hypertension, Vanderbilt Medical School, Nashville, Tennessee, USA
| | - Sandybell Anorga
- Department of Regenerative and Cancer Cell Biology Albany Medical Center, Albany, New York, USA
| | - Fei Lian
- Division of Urology, Albany Medical Center, Albany, New York, USA
| | - Alex Arnouk
- Division of Urology, Albany Medical Center, Albany, New York, USA
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology Albany Medical Center, Albany, New York, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology Albany Medical Center, Albany, New York, USA
| |
Collapse
|
5
|
Shiwen X, Stratton R, Nikitorowicz-Buniak J, Ahmed-Abdi B, Ponticos M, Denton C, Abraham D, Takahashi A, Suki B, Layne MD, Lafyatis R, Smith BD. A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis. PLoS One 2015; 10:e0126015. [PMID: 25955164 PMCID: PMC4425676 DOI: 10.1371/journal.pone.0126015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Xu Shiwen
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Joanna Nikitorowicz-Buniak
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Bahja Ahmed-Abdi
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Christopher Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Diseases, University College London, Royal Free Campus, London, United Kingdom
| | - Ayuko Takahashi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Robert Lafyatis
- Rheumatology Department, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara D. Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Elliott CG, Forbes TL, Leask A, Hamilton DW. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts. Matrix Biol 2015; 43:71-84. [PMID: 25779637 DOI: 10.1016/j.matbio.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 12/18/2022]
Abstract
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Thomas L Forbes
- Division of Vascular Surgery, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Andrew Leask
- Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
7
|
Shen L, Yang A, Yao P, Sun X, Chen C, Mo C, Shi L, Chen Y, Liu Q. Gadolinium promoted proliferation in mouse embryo fibroblast NIH3T3 cells through Rac and PI3K/Akt signaling pathways. Biometals 2014; 27:753-62. [DOI: 10.1007/s10534-014-9769-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/25/2014] [Indexed: 11/25/2022]
|
8
|
Arizmendi N, Puttagunta L, Chung KL, Davidson C, Rey-Parra J, Chao DV, Thebaud B, Lacy P, Vliagoftis H. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis. Respir Res 2014; 15:71. [PMID: 24970330 PMCID: PMC4082672 DOI: 10.1186/1465-9921-15-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. METHODS To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. RESULTS BLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21. CONCLUSION Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kerri L Chung
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Davidson
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Juliana Rey-Parra
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Danny V Chao
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thebaud
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Abstract
Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho GTPases, and their function in tumor stem cells and tumor stroma. This review summarizes these novel findings and tries to define challenging questions for future research.
Collapse
Affiliation(s)
- Hui Li
- University of Copenhagen, BRIC, BMI, 2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
10
|
Lin CH, Yu MC, Tung WH, Chen TT, Yu CC, Weng CM, Tsai YJ, Bai KJ, Hong CY, Chien MH, Chen BC. Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2823-2833. [PMID: 23906792 DOI: 10.1016/j.bbamcr.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Tung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jyu Tsai
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Ye Hong
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan
| | - Ming-Hsien Chien
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Chen G, Chen X, Sukumar A, Gao B, Curley J, Schnaper HW, Ingram AJ, Krepinsky JC. TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 2013; 126:3697-712. [PMID: 23781022 DOI: 10.1242/jcs.126714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increased intraglomerular pressure is an important pathogenic determinant of kidney fibrosis in the progression of chronic kidney disease, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical stretch. MC produce extracellular matrix and profibrotic cytokines, including connective tissue growth factor (CTGF) when stretched. We show that p21-activated kinase 1 (Pak1) is activated by stretch in MC in culture and in vivo in a process marked by elevated intraglomerular pressures. Its activation is essential for CTGF upregulation. Rac1 is an upstream regulator of Pak1 activation. Stretch induces transactivation of the type I transforming growth factor β1 receptor (TβRI) independently of ligand binding. TβRI transactivation is required not only for Rac1/Pak1 activation, but also for activation of the canonical TGFβ signaling intermediate Smad3. We show that Smad3 activation is an essential requirement for CTGF upregulation in MC under mechanical stress. Pak1 regulates Smad3 C-terminal phosphorylation and transcriptional activation. However, a second signaling pathway, that of RhoA/Rho-kinase and downstream Erk activation, is also required for stretch-induced CTGF upregulation in MC. Importantly, this is also regulated by Pak1. Thus, Pak1 serves as a novel central mediator in the stretch-induced upregulation of CTGF in MC.
Collapse
Affiliation(s)
- Guang Chen
- Division of Nephrology, St. Joseph's Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Leask A. Integrin β1: A Mechanosignaling Sensor Essential for Connective Tissue Deposition by Fibroblasts. Adv Wound Care (New Rochelle) 2013; 2:160-166. [PMID: 24527339 DOI: 10.1089/wound.2012.0365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 01/08/2023] Open
Abstract
SIGNIFICANCE There is no effective drug treatment for fibrosis (i.e., pathological scarring). Identifying the fundamental mechanisms responsible for normal and pathological connective tissue deposition is likely to yield novel insights into how to control fibrotic conditions. RECENT ADVANCES An increasing body of evidence suggests a link between mechanical tension and the development of scar tissue. Integrins are the cell surface receptors that mediate interactions between the cell and the surrounding extracellular matrix (ECM). Recent evidence has suggested that, in fibroblasts, the integrin β1-subunit plays an essential role in mechanosignaling and in dermal homeostasis, repair, and fibrosis. The mechanism underlying these activities of integrin β1 appears to involve its ability to (1) mediate activation of latent transforming growth factor beta-1 via ECM contraction and (2) modulate collagen production via a focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive oxygen species (ROS) pathway. Moreover, the integrin β1-binding protein CCN2, a secreted matricellular protein located within the cellular microenvironment, is required for dermal fibrogenesis. CRITICAL ISSUES Mechanical tension is a key feature underlying the development of scar tissue. The mechanosignaling sensor integrin β1 is an essential, central mediator of dermal fibrosis, wound healing, and homeostasis. FUTURE DIRECTIONS Drugs targeting the molecular mechanism underlying integrin β1-mediated signaling may represent a novel therapeutic approach for treating fibroproliferative disorders. Clinical trials directly testing this hypothesis are warranted.
Collapse
Affiliation(s)
- Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|
13
|
FAK-related nonkinase is a multifunctional negative regulator of pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1572-84. [PMID: 23499373 DOI: 10.1016/j.ajpath.2013.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease whose underlying molecular mechanisms are largely unknown. Herein, we show that focal adhesion kinase-related nonkinase (FRNK) plays a key role in limiting the development of lung fibrosis. Loss of FRNK function in vivo leads to increased lung fibrosis in an experimental mouse model. The increase in lung fibrosis is confirmed at the histological, biochemical, and physiological levels. Concordantly, loss of FRNK function results in increased fibroblast migration and myofibroblast differentiation and activation of signaling proteins that drive these phenotypes. FRNK-deficient murine lung fibroblasts also have an increased capacity to produce and contract matrix proteins. Restoration of FRNK expression in vivo and in vitro reverses these profibrotic phenotypes. These data demonstrate the multiple antifibrotic actions of FRNK. More important, FRNK expression is down-regulated in human IPF, and down-regulation of FRNK in normal human lung fibroblasts recapitulates the profibrotic phenotype seen in FRNK-deficient cells. The effect of loss and gain of FRNK in the experimental model, when taken together with its down-regulation in human IPF, suggests that FRNK acts as an endogenous negative regulator of lung fibrosis by repressing multiple profibrotic responses.
Collapse
|
14
|
Storck EM, Wojciak-Stothard B. Rho GTPases in pulmonary vascular dysfunction. Vascul Pharmacol 2013; 58:202-10. [DOI: 10.1016/j.vph.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/05/2012] [Accepted: 09/09/2012] [Indexed: 12/19/2022]
|
15
|
Leask A. Getting out of a sticky situation: targeting the myofibroblast in scleroderma. Open Rheumatol J 2012; 6:163-9. [PMID: 22802915 PMCID: PMC3396281 DOI: 10.2174/1874312901206010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023] Open
Abstract
There is no treatment for the fibrosis observed in scleroderma (systemic sclerosis, SSc). Although genome-wide expression profiling has suggested that differences in gene expression patters between non-lesional and lesional skin are minimal, phenotypically these areas of tissue are quite different. In fact, lesional areas of scleroderma patients can be distinguished by the presence of a differentiated form of fibroblast, termed the myofibroblast. This cell type expresses the highly contractile protein α-smooth muscle actin (α-SMA). Fibroblasts isolated from SSc lesions excessively synthesize, adhere to and contract extracellular matrix (ECM) and display activated adhesive signaling pathways. Strategies aimed at blocking myofibroblast differentiation, persistence and activity are therefore likely to be useful in alleviating the fibrosis in scleroderma.
Collapse
Affiliation(s)
- Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, N6A 5C1, Canada
| |
Collapse
|
16
|
Elliott CG, Wang J, Guo X, Xu SW, Eastwood M, Guan J, Leask A, Conway SJ, Hamilton DW. Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J Cell Sci 2012; 125:121-32. [PMID: 22266908 DOI: 10.1242/jcs.087841] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The matricellular protein periostin is expressed in the skin. Although periostin has been hypothesized to contribute to dermal homeostasis and repair, this has not been directly tested. To assess the contribution of periostin to dermal healing, 6 mm full-thickness excisional wounds were created in the skin of periostin-knockout and wild-type, sex-matched control mice. In wild-type mice, periostin was potently induced 5-7 days after wounding. In the absence of periostin, day 7 wounds showed a significant reduction in myofibroblasts, as visualized by expression of α-smooth muscle actin (α-SMA) within the granulation tissue. Delivery of recombinant human periostin by electrospun collagen scaffolds restored α-SMA expression. Isolated wild-type and knockout dermal fibroblasts did not differ in in vitro assays of adhesion or migration; however, in 3D culture, periostin-knockout fibroblasts showed a significantly reduced ability to contract a collagen matrix, and adopted a dendritic phenotype. Recombinant periostin restored the defects in cell morphology and matrix contraction displayed by periostin-deficient fibroblasts in a manner that was sensitive to a neutralizing anti-β1-integrin and to the FAK and Src inhibitor PP2. We propose that periostin promotes wound contraction by facilitating myofibroblast differentiation and contraction.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Parapuram SK, Shi-wen X, Elliott C, Welch ID, Jones H, Baron M, Denton CP, Abraham DJ, Leask A. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J Invest Dermatol 2011; 131:1996-2003. [PMID: 21654839 DOI: 10.1038/jid.2011.156] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrosis represents a common pathway leading to organ failure and death in many diseases and has no effective therapy. Dysregulated repair and excessive tissue scarring provides a unifying mechanism for pathological fibrosis. The protein phosphatase and tensin homolog (PTEN) acts to dephosphorylate proteins, which promotes tissue repair and thus could be a key fibrogenic mediator. To test this hypothesis, we first showed that PTEN expression was reduced in skin fibroblasts from patients with the fibrotic autoimmune disease diffuse systemic sclerosis (dSSc). To evaluate whether this deficiency could be sufficient for fibrogenesis in vivo, we deleted PTEN in adult mouse fibroblasts. Compared with littermate control mice, loss of PTEN resulted in a 3-fold increase in dermal thickness due to excess deposition of collagen. PTEN-deleted fibroblasts showed elevated Akt phosphorylation and increased expression of connective tissue growth factor (CTGF/CCN2). Selective inhibition of the phosphatidylinositol 3-kinase/Akt pathway reduced the overexpression of collagen and CCN2 by PTEN-deficient fibroblasts. Overexpression of PTEN reduced the overexpression of type I collagen and CCN2 by dSSc fibroblasts. Thus, PTEN appears to be a potential in vivo master regulator of fibrogenesis; PTEN agonists may represent anti-fibrotic treatments.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Dentistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leask A. CCN2: a bona fide target for anti-fibrotic drug intervention. J Cell Commun Signal 2011; 5:131-3. [PMID: 21484186 DOI: 10.1007/s12079-011-0125-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 12/29/2022] Open
Abstract
CCN2 (formerly known as connective tissue growth factor) was identified by several different laboratories approximately 20 years ago. Almost since its identification as a factor induced in normal fibroblasts by transforming growth factor β and overexpressed in fibrotic disease, CCN2 has been hypothesized to be not only a marker but also a central mediator of fibrosis in vivo. Finally, in vivo data are emerging to validate this key hypothesis. For example, a neutralizing anti-CCN2 antibody was found to attenuate fibrogenesis in three separate animal models (Wang et al. in Fibrogenesis Tissue Repair 4:1-4, 2011). This commentary addresses recent data indicating that CCN2 appears to represent a key central mediator of fibrosis and a good target for anti-fibrotic drug intervention.
Collapse
Affiliation(s)
- Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, ON, Canada, N6A 5C1,
| |
Collapse
|
19
|
Fett N, Werth VP. Update on morphea. J Am Acad Dermatol 2011; 64:217-28; quiz 229-30. [PMID: 21238823 DOI: 10.1016/j.jaad.2010.05.045] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/17/2010] [Accepted: 05/25/2010] [Indexed: 01/26/2023]
|
20
|
Liu S, Shi-wen X, Blumbach K, Eastwood M, Denton CP, Eckes B, Krieg T, Abraham DJ, Leask A. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J Cell Sci 2010; 123:3674-82. [DOI: 10.1242/jcs.070672] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In tissue repair, fibroblasts migrate into the wound to produce and remodel extracellular matrix (ECM). Integrins are believed to be crucial for tissue repair, but their tissue-specific role in this process is poorly understood. Here, we show that mice containing a fibroblast-specific deletion of integrin β1 exhibit delayed cutaneous wound closure and less granulation tissue formation, including reduced production of new ECM and reduced expression of α-smooth muscle actin (α-SMA). Integrin-β1-deficient fibroblasts showed reduced expression of type I collagen and connective tissue growth factor, and failed to differentiate into myofibroblasts as a result of reduced α-SMA stress fiber formation. Loss of integrin β1 in adult fibroblasts reduced their ability to adhere to, to spread on and to contract ECM. Within stressed collagen matrices, integrin-β1-deficient fibroblasts showed reduced activation of latent TGFβ. Addition of active TGFβ alleviated the phenotype of integrin-β1-deficient mice. Thus integrin β1 is essential for normal wound healing, where it acts, at least in part, through a TGFβ-dependent mechanism in vivo.
Collapse
Affiliation(s)
- Shangxi Liu
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON N6A 5C1, Canada
| | - Xu Shi-wen
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Katrin Blumbach
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - Mark Eastwood
- Division of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Beate Eckes
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, UCL-Medical School (Royal Free Campus), University College London, London NW3 2PF, UK
| | - Andrew Leask
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON N6A 5C1, Canada
| |
Collapse
|
21
|
Li J, Zhu H, Shen E, Wan L, Arnold JMO, Peng T. Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 2010; 59:2033-42. [PMID: 20522592 PMCID: PMC2911061 DOI: 10.2337/db09-1800] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Our recent study demonstrated that Rac1 and NADPH oxidase activation contributes to cardiomyocyte apoptosis in short-term diabetes. This study was undertaken to investigate if disruption of Rac1 and inhibition of NADPH oxidase would prevent myocardial remodeling in chronic diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by injection of streptozotocin in mice with cardiomyocyte-specific Rac1 knockout and their wild-type littermates. In a separate experiment, wild-type diabetic mice were treated with vehicle or apocynin in drinking water. Myocardial hypertrophy, fibrosis, endoplasmic reticulum (ER) stress, inflammatory response, and myocardial function were investigated after 2 months of diabetes. Isolated adult rat cardiomyocytes were cultured and stimulated with high glucose. RESULTS In diabetic hearts, NADPH oxidase activation, its subunits' expression, and reactive oxygen species production were inhibited by Rac1 knockout or apocynin treatment. Myocardial collagen deposition and cardiomyocyte cross-sectional areas were significantly increased in diabetic mice, which were accompanied by elevated expression of pro-fibrotic genes and hypertrophic genes. Deficiency of Rac1 or apocynin administration reduced myocardial fibrosis and hypertrophy, resulting in improved myocardial function. These effects were associated with a normalization of ER stress markers' expression and inflammatory response in diabetic hearts. In cultured cardiomyocytes, high glucose-induced ER stress was inhibited by blocking Rac1 or NADPH oxidase. CONCLUSIONS Rac1 via NADPH oxidase activation induces myocardial remodeling and dysfunction in diabetic mice. The role of Rac1 signaling may be associated with ER stress and inflammation. Thus, targeting inhibition of Rac1 and NADPH oxidase may be a therapeutic approach for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jianmin Li
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Huaqing Zhu
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - E Shen
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Li Wan
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - J. Malcolm O. Arnold
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
- Corresponding author: Tianqing Peng,
| |
Collapse
|
22
|
Zhou HM, Wang J, Elliott C, Wen W, Hamilton DW, Conway SJ. Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J Cell Commun Signal 2010; 4:99-107. [PMID: 20531985 DOI: 10.1007/s12079-010-0090-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/04/2010] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Differentiation of fibroblasts to myofibroblasts and collagen fibrillogenesis are two processes essential for normal cutaneous development and repair, but their misregulation also underlies skin-associated fibrosis. Periostin is a matricellular protein normally expressed in adult skin, but its role in skin organogenesis, incisional wound healing and skin pathology has yet to be investigated in any depth. Using C57/BL6 mouse skin as model, we first investigated periostin protein and mRNA spatiotemporal expression and distribution during development and after incisional wounding. Secondarily we assessed whether periostin is expressed in human skin pathologies, including keloid and hypertrophic scars, psoriasis and atopic dermatitis. During development, periostin is expressed in the dermis, basement membrane and hair follicles from embryonic through neonatal stages and in the dermis and hair follicle only in adult. In situ hybridization demonstrated that dermal fibroblasts and basal keratinocytes express periostin mRNA. After incisional wounding, periostin becomes re-expressed in the basement membrane within the dermal-epidermal junction at the wound edge re-establishing the embryonic deposition pattern present in the adult. Analysis of periostin expression in human pathologies demonstrated that it is over-expressed in keloid and hypertrophic scars, atopic dermatitis, but is largely absent from sites of inflammation and inflammatory conditions such as psoriasis. Furthermore, in vitro we demonstrated that periostin is a transforming growth factor beta 1 inducible gene in human dermal fibroblasts. We conclude that periostin is an important ECM component during development, in wound healing and is strongly associated with pathological skin remodeling. SUMMARY Periostin is a fibrogenic protein that mediates fibroblast differentiation and extracellular matrix synthesis. Here, we show that periostin is dynamically and temporally expressed during skin development, is induced by TGF-beta1 in vitro and is significantly upregulated during wound repair as well as cutaneous pathologies.
Collapse
|
23
|
|
24
|
Current world literature. Curr Opin Rheumatol 2009; 21:656-65. [PMID: 20009876 DOI: 10.1097/bor.0b013e3283328098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Shi-wen X, Liu S, Eastwood M, Sonnylal S, Denton CP, Abraham DJ, Leask A. Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS One 2009; 4:e7438. [PMID: 19823586 PMCID: PMC2757676 DOI: 10.1371/journal.pone.0007438] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce α−smooth muscle actin (α-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. Methods and Findings Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and α−SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and α−SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. Conclusion Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.
Collapse
Affiliation(s)
- Xu Shi-wen
- Centre for Rheumatology, Department of Medicine, University College London (Royal Free Campus), London, United Kingdom
| | - Shangxi Liu
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mark Eastwood
- School of Biosciences, University of Westminster, London, United Kingdom
| | - Sonali Sonnylal
- University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Medicine, University College London (Royal Free Campus), London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology, Department of Medicine, University College London (Royal Free Campus), London, United Kingdom
| | - Andrew Leask
- The Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Ishikawa H, Takeda K, Okamoto A, Matsuo SI, Isobe KI. Induction of Autoimmunity in a Bleomycin-Induced Murine Model of Experimental Systemic Sclerosis: An Important Role for CD4+ T Cells. J Invest Dermatol 2009; 129:1688-95. [DOI: 10.1038/jid.2008.431] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Liu S, Kapoor M, Leask A. Rac1 expression by fibroblasts is required for tissue repair in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1847-56. [PMID: 19349358 DOI: 10.2353/ajpath.2009.080779] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue repair requires that fibroblasts migrate into the wound to produce and remodel extracellular matrix, a process that requires adhesion. Failure to suppress the tissue repair program results in fibrotic disorders that are characterized by excessive adhesive signaling. The role of specific components of adhesive signaling in fibrogenic responses is unclear, but may involve small GTPases such as Rac1. To address the functions of Rac1 in fibroblasts, we generated mice containing a fibroblast-specific deletion of Rac1. These mice show delayed cutaneous wound closure, including reduced collagen production and myofibroblast formation. In cultured Rac1-deficient fibroblasts, adhesion, spreading, and migration were significantly inhibited. Rac1-deficient fibroblasts possessed impaired myofibroblast formation and function as visualized by reduced alpha-smooth muscle actin expression as well as matrix contraction. Both in vivo and in vitro, Rac1- deficient fibroblasts showed a reduced generation of reactive oxygen species; in vitro, hydrogen peroxide alleviated the phenotype of Rac1-deficient fibroblasts. Thus, Rac1 is an essential signaling integrator that is required for normal wound healing and dermal homeostasis.
Collapse
Affiliation(s)
- Shangxi Liu
- Department of Physiology and Pharmacology, Division of Oral Biology, Schulich School of Medicine and Dentistry, Canadian Institute of Health Research Group in Skeletal Development and Remodeling, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
28
|
Leask A, Shi-wen X, Khan K, Chen Y, Holmes A, Eastwood M, Denton CP, Black CM, Abraham DJ. Loss of protein kinase Cϵ results in impaired cutaneous wound closure and myofibroblast function. J Cell Sci 2008; 121:3459-3467. [DOI: 10.1242/jcs.029215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cutaneous wound repair requires the de novo induction of a specialized form of fibroblast, the α-smooth muscle actin (α-SMA)-expressing myofibroblast, which migrates into the wound where it adheres to and contracts extracellular matrix (ECM), resulting in wound closure. Persistence of the myofibroblast results in scarring and fibrotic disease. In this report, we show that, compared with wild-type littermates, PKCϵ-/- mice display delayed impaired cutaneous wound closure and a reduction in myofibroblasts. Moreover, both in the presence and absence of TGFβ, dermal fibroblasts from PKCϵ-/- mice cultured on fibronectin show impaired abilities to form `supermature' focal adhesions and α-SMA stress fibers, and reduced pro-fibrotic gene expression. Smad3 phosphorylation in response to TGFβ1 was impaired in PKCϵ-/- fibroblasts. PKCϵ-/- fibroblasts show reduced FAK and Rac activation, and adhesive, contractile and migratory abilities. Overexpressing constitutively active Rac1 rescues the defective FAK phosphorylation, cell migration, adhesion and stress fiber formation of these PKCϵ-/- fibroblasts, indicating that Rac1 operates downstream of PKCϵ, yet upstream of FAK. These results suggest that loss of PKCϵ severely impairs myofibroblast formation and function, and that targeting PKCϵ may be beneficial in selectively modulating wound healing and fibrotic responses in vivo.
Collapse
Affiliation(s)
- Andrew Leask
- CIHR Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London ON, Canada N6A 5C1
| | - Xu Shi-wen
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Korsa Khan
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Yunliang Chen
- Centre for Tissue Engineering Research, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
| | - Alan Holmes
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Mark Eastwood
- Centre for Tissue Engineering Research, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - Carol M. Black
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|