1
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
2
|
Wang X, Deng GM. Animal models of studying the pathogenesis of multi-organ tissue damage in lupus. Clin Immunol 2024; 263:110231. [PMID: 38692449 DOI: 10.1016/j.clim.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Van Eyndhoven LC, Chouri E, Matos CI, Pandit A, Radstake TRDJ, Broen JCA, Singh A, Tel J. Unraveling IFN-I response dynamics and TNF crosstalk in the pathophysiology of systemic lupus erythematosus. Front Immunol 2024; 15:1322814. [PMID: 38596672 PMCID: PMC11002168 DOI: 10.3389/fimmu.2024.1322814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.
Collapse
Affiliation(s)
- Laura C. Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eleni Chouri
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Catarina I. Matos
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper C. A. Broen
- Regional Rheumatology Center, Máxima Medical Center, Eindhoven and Veldhoven, Eindhoven, Netherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
4
|
Hawtin S, André C, Collignon-Zipfel G, Appenzeller S, Bannert B, Baumgartner L, Beck D, Betschart C, Boulay T, Brunner HI, Ceci M, Deane J, Feifel R, Ferrero E, Kyburz D, Lafossas F, Loetscher P, Merz-Stoeckle C, Michellys P, Nuesslein-Hildesheim B, Raulf F, Rush JS, Ruzzante G, Stein T, Zaharevitz S, Wieczorek G, Siegel R, Gergely P, Shisha T, Junt T. Preclinical characterization of the Toll-like receptor 7/8 antagonist MHV370 for lupus therapy. Cell Rep Med 2023; 4:101036. [PMID: 37196635 DOI: 10.1016/j.xcrm.2023.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Genetic and in vivo evidence suggests that aberrant recognition of RNA-containing autoantigens by Toll-like receptors (TLRs) 7 and 8 drives autoimmune diseases. Here we report on the preclinical characterization of MHV370, a selective oral TLR7/8 inhibitor. In vitro, MHV370 inhibits TLR7/8-dependent production of cytokines in human and mouse cells, notably interferon-α, a clinically validated driver of autoimmune diseases. Moreover, MHV370 abrogates B cell, plasmacytoid dendritic cell, monocyte, and neutrophil responses downstream of TLR7/8. In vivo, prophylactic or therapeutic administration of MHV370 blocks secretion of TLR7 responses, including cytokine secretion, B cell activation, and gene expression of, e.g., interferon-stimulated genes. In the NZB/W F1 mouse model of lupus, MHV370 halts disease. Unlike hydroxychloroquine, MHV370 potently blocks interferon responses triggered by specific immune complexes from systemic lupus erythematosus patient sera, suggesting differentiation from clinical standard of care. These data support advancement of MHV370 to an ongoing phase 2 clinical trial.
Collapse
Affiliation(s)
- Stuart Hawtin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Cédric André
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas, 13083-887 São Paulo, Brazil
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lea Baumgartner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Damian Beck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Claudia Betschart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melanie Ceci
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jonathan Deane
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Roland Feifel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Frederique Lafossas
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Pierre Michellys
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | | | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Giulia Ruzzante
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Stein
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Samantha Zaharevitz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Grazyna Wieczorek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tamas Shisha
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
5
|
Infante B, Mercuri S, Dello Strologo A, Franzin R, Catalano V, Troise D, Cataldo E, Pontrelli P, Alfieri C, Binda V, Frontini G, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Unraveling the Link between Interferon-α and Systemic Lupus Erythematosus: From the Molecular Mechanisms to Target Therapies. Int J Mol Sci 2022; 23:ijms232415998. [PMID: 36555640 PMCID: PMC9783870 DOI: 10.3390/ijms232415998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease with a wide range of clinical expressions. The kidney is often affected, usually within 5 years of the onset of SLE, and lupus nephropathy (LN) carries a high risk for increased morbidity. The clinical heterogeneity of the disease is accompanied by complex disturbances affecting the immune system with inflammation and tissue damage due to loss of tolerance to nuclear antigens and the deposition of immune complexes in tissues. Several studies have reported that in human SLE, there is an important role of the Type-I-interferons (INF) system suggested by the upregulation of INF-inducible genes observed in serial gene expression microarray studies. This review aims to describe the transduction pathways of Type-I-interferons, in particular INFα, and its immune-regulatory function in the pathogenesis of SLE and, in particular, in LN. In addition, recent novelties concerning biologic therapy in LN will be discussed.
Collapse
Affiliation(s)
- Barbara Infante
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Andrea Dello Strologo
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Dario Troise
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Emanuela Cataldo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Valentina Binda
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giulia Frontini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0255034551; Fax: +39-0255034550
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
6
|
Crow MK. Advances in lupus therapeutics: Achieving sustained control of the type I interferon pathway. Curr Opin Pharmacol 2022; 67:102291. [PMID: 36183477 DOI: 10.1016/j.coph.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023]
Abstract
Achieving sustained control of disease activity in patients with systemic lupus erythematosus has been impeded by the complexity of its immunopathogenesis as well its clinical heterogeneity. In spite of these challenges, gains in understanding disease mechanisms have identified immune targets that are currently under study in trials of candidate therapeutics. Defining the type I interferon (IFN-I) pathway and autoantibodies specific for nucleic acid binding proteins as core pathogenic mediators allows an analysis of approaches that could control production of those mediators and improve patient outcomes. This review describes therapeutic targets and agents that could achieve control of the IFN-I pathway. Toll-like receptor 7, involved in IFN-I production and differentiation of B cells, and long-lived plasma cells, the producers of autoantibodies specific for RNA-binding proteins, components of the immune complex drivers of IFN-I, are particularly attractive therapeutic targets.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
7
|
Ridgewell D, Thalayasingam N, Ng WF. Sjögren's syndrome: shedding light on emerging and key drug targets. Expert Opin Ther Targets 2022; 26:869-882. [PMID: 36576336 DOI: 10.1080/14728222.2022.2157259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sjögren's syndrome (SS) is an immune-mediated inflammatory condition characterized by sicca syndrome, musculoskeletal pain, and fatigue. Extra-glandular manifestations are common and there is a markedly increased risk of lymphoma development. SS is associated with high health-economic burden driven largely by the symptom burden on patients. Currently, there is no approved disease-modifying treatment and management is based on empirical evidence. Progress in the understanding of SS pathogenesis has led to an expanding portfolio of more targeted therapies under development. AREAS COVERED This review summarizes the key development in targeted biological therapies in SS including emerging targets. It also highlights the challenges in therapeutic development in SS such as disease heterogeneity and defining appropriate disease assessment tools to evaluate therapeutic efficacy. EXPERT OPINION Early trials in SS failed to meet their primary outcomes which may in part due to the use of inappropriate or insensitive study endpoints. Recent trials targeting B-cells, B-T cell co-stimulation and IFN signaling have shown promising results. Development of composite endpoints including patient reported outcomes and objective disease measure may provide a more holistic approach to disease assessment. The impact of these new tools on therapeutic development that benefit patients remains to be fully evaluated.
Collapse
Affiliation(s)
- Dominic Ridgewell
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nishanthi Thalayasingam
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Wan-Fai Ng
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Hojjatipour T, Aslani S, Salimifard S, Mikaeili H, Hemmatzadeh M, Gholizadeh Navashenaq J, Ahangar Parvin E, Jadidi-Niaragh F, Mohammadi H. NK cells - Dr. Jekyll and Mr. Hyde in autoimmune rheumatic diseases. Int Immunopharmacol 2022; 107:108682. [DOI: 10.1016/j.intimp.2022.108682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
9
|
Robinson GA, Wilkinson MGL, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 12:806560. [PMID: 35154082 PMCID: PMC8826250 DOI: 10.3389/fimmu.2021.806560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which pathogenic abnormalities within both the innate and adaptive immune response have been described. In order to activated, proliferate and maintain this immunological response a drastic upregulation in energy metabolism is required. Recently, a greater understanding of these changes in cellular bioenergetics have provided new insight into the links between immune response and the pathogenesis of a number of diseases, ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the latest understanding of the role of immunometabolism in SLE with particular focus on the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the immunological phenomenon observed in the SLE. We also consider what implications this has for future therapeutic options in the management of the disease in future.
Collapse
Affiliation(s)
- George Anthony Robinson
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom.,Department of Rheumatology, University College London Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research and Teaching Department, University College London, London, United Kingdom
| | - Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| |
Collapse
|
10
|
Hubbard EL, Pisetsky DS, Lipsky PE. Anti-RNP antibodies are associated with the interferon gene signature but not decreased complement levels in SLE. Ann Rheum Dis 2022; 81:632-643. [PMID: 35115332 DOI: 10.1136/annrheumdis-2021-221662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The goals of these studies were to elucidate the inter-relationships of specific anti-nuclear antibody (ANA), complement, and the interferon gene signature (IGS) in the pathogenesis of systemic lupus erythematosus (SLE). METHODS Data from the Illuminate trials were analysed for antibodies to dsDNA as well as RNA-binding proteins (RBP), levels of C3, C4 and various IGS. Statistical hypothesis testing, linear regression analyses and classification and regression trees analysis were employed to assess relationships between the laboratory features of SLE. RESULTS Inter-relationships of ANAs, complement and the IGS differed between patients of African Ancestry (AA) and European Ancestry (EA); anti-RNP and multiple autoantibodies were more common in AA patients and, although both related to the presence of the IGS, relationships between autoantibodies and complement differed. Whereas, anti-dsDNA had an inverse relationship to C3 and C4, levels of anti-RNP were not related to these markers. The IGS was only correlated with anti-dsDNA in EA SLE and complement was more correlated to the IGS in AA SLE. Finally, autoantibodies occurred in the presence and absence of the IGS, whereas the IGS was infrequent in anti-dsDNA/anti-RBP-negative SLE patients. CONCLUSION There is a complex relationship between autoantibodies and the IGS, with anti-RNP associated in AA and both anti-dsDNA and RNP associated in EA. Moreover, there was a difference in the relationship between anti-dsDNA, but not anti-RBP, with complement levels. The lack of a relationship of anti-RNP with C3 and C4 suggests that anti-RNP immune complexes (ICs) may drive the IGS without complement fixation, whereas anti-dsDNA ICs involve complement consumption.
Collapse
Affiliation(s)
- Erika L Hubbard
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA.,RILITE Foundation, Charlottesville, Virginia, USA
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Rheumatology, Durham VA Medical Center, Durham, North Carolina, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA .,RILITE Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Wood RA, Guthridge L, Thurmond E, Guthridge CJ, Kheir JM, Bourn RL, Wagner CA, Chen H, DeJager W, Macwana SR, Kamp S, Lu R, Arriens C, Chakravarty EF, Thanou A, Merrill JT, Guthridge JM, James JA. Serologic markers of Epstein-Barr virus reactivation are associated with increased disease activity, inflammation, and interferon pathway activation in patients with systemic lupus erythematosus. J Transl Autoimmun 2022; 4:100117. [PMID: 35005588 PMCID: PMC8716608 DOI: 10.1016/j.jtauto.2021.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
SLE is a clinically heterogeneous disease characterized by an unpredictable relapsing-remitting disease course. Although the etiology and mechanisms of SLE flares remain elusive, Epstein-Barr virus (EBV) reactivation is implicated in SLE pathogenesis. This study examined the relationships between serological measures of EBV reactivation, disease activity, and interferon (IFN)-associated immune pathways in SLE patients. Sera from adult SLE patients (n = 175) and matched unaffected controls (n = 47) were collected and tested for antibodies against EBV-viral capsid antigen (EBV-VCA; IgG and IgA), EBV-early antigen (EBV-EA; IgG), cytomegalovirus (CMV; IgG), and herpes simplex virus (HSV-1; IgG). Serological evidence of EBV reactivation was more common in SLE patients compared to controls as demonstrated by seropositivity to EBV-EA IgG (39% vs 13%; p = 0.0011) and EBV-VCA IgA (37% vs 17%; p = 0.018). EBV-VCA, CMV1, and HSV-1 IgG seropositivity rates did not differ between SLE patients and controls. Furthermore, concentrations of EBV-VCA (IgG and IgA) and EBV-EA (IgG) were higher in SLE patients. SLE patients with high disease activity had increased concentrations of EBV-VCA IgA (mean ISR 1.34 vs. 0.97; p = 0.041) and EBV-EA IgG levels (mean ISR 1.38 vs. 0.90; p = 0.007) compared with those with lower disease activity. EBV reactivation was associated with enhanced levels of the IFN-associated molecule IP-10 (p < 0.001) and the soluble mediators BLyS (p < 0.001) and IL-10 (p = 0.0011). In addition, EBV-EA IgG responses were enriched in two previously defined patient clusters with robust expression of IFN and inflammatory or lymphoid and monocyte responses. Patients in these clusters were also more likely to have major organ involvement, such as renal disease. This study supports a possible role for EBV reactivation in SLE disease activity. Serologic markers of EBV reactivation are more common in SLE patients. Elevated EBV reactivation is associated with higher SLE disease activity. EBV serologic reactivation correlates with elevated IP-10, IL-10, and BLyS levels. EBV reactivation occurs in SLE clusters with robust inflammatory and IFN responses.
Collapse
Affiliation(s)
- Rebecca A Wood
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lauren Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Emma Thurmond
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Carla J Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joseph M Kheir
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Catriona A Wagner
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Hua Chen
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Wade DeJager
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan R Macwana
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stan Kamp
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rufei Lu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cristina Arriens
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Eliza F Chakravarty
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Aikaterini Thanou
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joan T Merrill
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
12
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
13
|
Wang K, Zhao J, Wu W, Xu W, Sun S, Chen Z, Fu Y, Guo L, Du H, Ye S. RNA-Containing Immune Complexes Formed by Anti-Melanoma Differentiation Associated Gene 5 Autoantibody Are Potent Inducers of IFN-α. Front Immunol 2021; 12:743704. [PMID: 34721411 PMCID: PMC8554111 DOI: 10.3389/fimmu.2021.743704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody is a distinctive serology hallmark of dermatomyositis (DM). As an autoantigen, MDA5 is a cytoplasmic RNA recognition receptor. The aim of this study was to address the question of whether the RNA-containing immune complex (IC) formed by MDA5 and anti-MDA5 could activate type I interferon (IFN) response. Method Patients with anti-MDA5+ DM (n = 217), anti-MDA5− DM (n = 68), anti-synthase syndrome (ASyS, n = 57), systemic lupus erythematosus (SLE, n = 245), rheumatoid arthritis (RA, n = 89), and systemic sclerosis (SSc, n = 30) and healthy donors (HD, n = 94) were enrolled in our studies. Anti-MDA5 antibody was detected by line blotting, enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, and Western blotting. Cytokine profiling was determined by multiplex flow cytometry, and IFN-α was further measured by ELISA. Type I IFN-inducible genes were detected by quantitative PCR (qPCR). RNA–IC binding was analyzed by RNA immunoprecipitation. Plasmacytoid dendritic cells (pDCs) derived from healthy donors were cultivated and stimulated with MDA5 ICs with or without RNase and Toll-like receptor 7 (TLR-7) agonist. The interaction between MDA5 ICs and TLR7 was evaluated by immunoprecipitation and confocal microscopy. Results According to our in-house ELISA, the presence of anti-MDA5 antibody in 76.1% of DM patients, along with 14.3% of SLE patients who had a lower titer yet positive anti-MDA5 antibody, was related to the high level of peripheral IFN-α. ICs formed by MDA5 and anti-MDA5 were potent inducers of IFN-α via TLR-7 in an RNA-dependent manner in vitro. Conclusion Our data provided evidence of the mechanistic relevance between the anti-MDA5 antibody and type I IFN pathway.
Collapse
Affiliation(s)
- Kaiwen Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangfeng Zhao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanlong Wu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhui Sun
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Chen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakai Fu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Du
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Wincup C, Sawford N, Rahman A. Pathological mechanisms of abnormal iron metabolism and mitochondrial dysfunction in systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:957-967. [PMID: 34263712 PMCID: PMC8452144 DOI: 10.1080/1744666x.2021.1953981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Introduction: Systemic lupus erythematosus [SLE] is a chronic, autoimmune condition characterized by the formation of autoantibodies directed against nuclear components and by oxidative stress. Recently, a number of studies have demonstrated the essential role of iron in the immune response and there is growing evidence that abnormal iron homeostasis can occur in the chronic inflammatory state seen in SLE. Not only is iron vital for hematopoiesis, it is also important for a number of other key physiological processes, in particular in maintaining healthy mitochondrial function.Areas covered: In this review, we highlight the latest understanding with regards to how patients with SLE may be at risk of cellular iron depletion as a result of both absolute and functional iron deficiency. Furthermore, we aim to explain the latest evidence of mitochondrial dysfunction in the pathogenesis of the disease.Expert opinion: Growing evidence suggests that both abnormal iron homeostasis and subsequent mitochondrial dysfunction can impair effector immune cell function. Through a greater understanding of these abnormalities, therapeutic options that directly target iron and mitochondria may ultimately represent novel treatment targets that may translate into clinical care of patients with SLE in the near future.
Collapse
Affiliation(s)
- Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Natalie Sawford
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Anisur Rahman
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
15
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
17
|
Chasset F, Ribi C, Trendelenburg M, Huynh-Do U, Roux-Lombard P, Courvoisier DS, Chizzolini C. Identification of highly active systemic lupus erythematosus by combined type I interferon and neutrophil gene scores vs classical serologic markers. Rheumatology (Oxford) 2021; 59:3468-3478. [PMID: 32375176 DOI: 10.1093/rheumatology/keaa167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In SLE, heterogeneous clinical expression and activity may reflect diverse pathogenic and/or effector mechanisms. We investigated SLE heterogeneity by assessing the expression of three gene sets representative of type I IFN (IFN-I), polymorphonuclear neutrophil (PMN) and plasmablast (PB) signatures in a well-characterized, multidisciplinary cohort of SLE patients. We further assessed whether individual gene products could be representative of these three signatures. METHODS Whole blood, serum and clinical data were obtained from 140 SLE individuals. Gene expression was assessed by NanoString technology, using a panel of 37 probes to compute six IFN-I, one PMN and one PB scores. Protein levels were measured by ELISA. RESULTS Depending on the score, 45-50% of SLE individuals showed high IFN-I gene expression. All six IFN-I scores were significantly associated with active skin involvement, and two of six were associated with arthritis. IFN-induced Mx1 protein (MX1) level was correlated with IFN-I score (P < 0.0001) and associated with a similar clinical phenotype. In all, 25% of SLE individuals showed high PMN gene expression, associated with SLE fever, serositis, leukopoenia and glucocorticoid use. PB gene expression was highly affected by immunosuppressant agents, with no association with SLE features. Combined IFN-I and PMN gene scores were significantly associated with high disease activity and outperformed anti-dsDNA and anti-C1q autoantibody and complement levels for predicting SLE activity. CONCLUSION IFN-I and PMN gene scores segregate with distinct SLE clinical features, and their combination may identify high disease activity. MX1 protein level performed similar to IFN-I gene expression.
Collapse
Affiliation(s)
- François Chasset
- Division of Immunology and Allergy, University Hospital and School of Medicine, Geneva.,Department of Pathology and Immunology, School of Medicine, Geneva, Switzerland.,Faculté de Médecine Sorbonne Université, AP-HP, Service de Dermatologie et Allergologie, Hoôpital Tenon, Paris, France
| | - Camillo Ribi
- Division of Immunology and Allergy, University Hospital Center of Lausanne, Lausanne
| | - Marten Trendelenburg
- Laboratory for Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University Hospital of Basel, Basel
| | - Uyen Huynh-Do
- Division of Nephrology and Hypertension, Inselspital, Bern University Hospital, Bern
| | - Pascale Roux-Lombard
- Division of Immunology and Allergy, University Hospital and School of Medicine, Geneva
| | - Delphine S Courvoisier
- Division of Rheumatology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Carlo Chizzolini
- Division of Immunology and Allergy, University Hospital and School of Medicine, Geneva.,Department of Pathology and Immunology, School of Medicine, Geneva, Switzerland
| | | |
Collapse
|
18
|
Posada J, Valadkhan S, Burge D, Davies K, Tarn J, Casement J, Jobling K, Gallagher P, Wilson D, Barone F, Fisher BA, Ng W. Improvement of Severe Fatigue Following Nuclease Therapy in Patients With Primary Sjögren's Syndrome: A Randomized Clinical Trial. Arthritis Rheumatol 2021; 73:143-150. [PMID: 32798283 PMCID: PMC7839752 DOI: 10.1002/art.41489] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess the safety and efficacy of RSLV-132, an RNase Fc fusion protein, in a phase II randomized, double-blind, placebo-controlled clinical trial in patients with primary Sjögren's syndrome (SS). METHODS Thirty patients with primary SS were randomized to receive treatment with RSLV-132 or placebo intravenously once per week for 2 weeks, and then every 2 weeks for 12 weeks. Eight patients received placebo and 20 patients received RSLV-132 at a dose of 10 mg/kg. Clinical efficacy measures included the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index, EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), Profile of Fatigue (ProF), and the Digit Symbol Substitution Test (DSST). RESULTS Patients randomized to receive RSLV-132 experienced clinically meaningful improvements in the ESSPRI score (P = 0.27), FACIT-F score (P = 0.05), ProF score (P = 0.07), and DSST (P = 0.02) from baseline to day 99, whereas patients who received placebo showed no changes in any of these clinical efficacy measures. This improvement was significantly correlated with increased expression of selected interferon-inducible genes (Pearson's correlations, each P < 0.05). CONCLUSION Administration of RSLV-132 improved severe fatigue, as determined by 4 independent patient-reported measures of fatigue, in patients with primary SS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kerry Jobling
- Newcastle Biomedical Research Centre and Newcastle upon Tyne Hospital NHS Foundation TrustNewcastle upon TyneUK
| | | | | | | | - Benjamin A. Fisher
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust, and University of BirminghamBirminghamUK
| | - Wan‐Fai Ng
- Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
19
|
Elbagir S, Sohrabian A, Elshafie AI, Elagib EM, Mohammed NEA, Nur MAM, Svenungsson E, Gunnarsson I, Rönnelid J. Accumulation of antinuclear associated antibodies in circulating immune complexes is more prominent in SLE patients from Sudan than Sweden. Sci Rep 2020; 10:21126. [PMID: 33273662 PMCID: PMC7712658 DOI: 10.1038/s41598-020-78213-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
The role of anti-nuclear autoantibody (ANA) specificities in immune complexes (IC) formation has been studied to a limited extent in SLE, and not at all in African SLE patients. We compared ANA in IC from Sudanese and Swedish SLE patients. We included 93 Sudanese and 332 Swedish SLE patients fulfilling the 1982 ACR criteria. IC were captured using C1q-coated beads. ANA specificities were quantified in sera and IC. Results were related to modified SLEDAI. Whereas serum levels of anti-Sm, anti-dsDNA and anti-ribosomal P were higher in Swedish patients, IC levels of most ANA specificities were higher among Sudanese patients. This difference was especially prominent for anti-chromatin antibodies, which remained after adjustment for age, disease duration and treatment. Total levels of C1q-binding IC correlated with levels of specific ANA in IC, with highest correlations for anti-chromatin antibodies among Sudanese patients. Whereas occurrence of anti- SSA/Ro60, anti-histone and anti-U1RNP in both serum and IC associated with high SLEDAI score, anti-dsDNA in IC but not in serum associated with high SLEDAI. ANA, especially antibodies targeting chromatin, accumulate more in IC from Sudanese SLE patients. If the autoantibody fraction forming IC is pathogenically important, this might explain the generally described severe SLE in black populations.
Collapse
Affiliation(s)
- Sahwa Elbagir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden.
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| | - Amir I Elshafie
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| | | | | | - Musa A M Nur
- Rheumatology Unit, Alribat University Hospital, Khartoum, Sudan
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| |
Collapse
|
20
|
Psarras A, Alase A, Antanaviciute A, Carr IM, Md Yusof MY, Wittmann M, Emery P, Tsokos GC, Vital EM. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat Commun 2020; 11:6149. [PMID: 33262343 PMCID: PMC7708979 DOI: 10.1038/s41467-020-19918-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Ian M Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
21
|
Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR, Mirzaei H. Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol 2020; 90:107177. [PMID: 33249046 DOI: 10.1016/j.intimp.2020.107177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptotic cells are tolerogenic and can present self-antigens in the absence of inflammation, to antigen-presenting cells by the process of efferocytosis, resulting in anergy and depletion of immune effector cells. This tolerance is essential to maintain immune homeostasis and prevent systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Consequently, effective efferocytosis can result in the induction of immune tolerance mediated via triggering modulatory lymphocytes and anti-inflammatory responses. Furthermore, several distinct soluble factors, receptors and pathways have been found to be involved in the efferocytosis, which are able to regulate immune tolerance by lessening antigen presentation, inhibition of T-cell proliferation and induction of regulatory T-cells. Some newly developed nanotechnology-based approaches can induce antigen-specific immunological tolerance without any systemic immunosuppression. These strategies have been explored to reverse autoimmune responses induced against various protein antigens in different diseases. In this review, we describe some nanotechnology-based approaches for the maintenance of self-tolerance using the apoptotic cell clearance process (efferocytosis) that may be able to induce immune tolerance and treat autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
22
|
Hagberg N, Lundtoft C, Rönnblom L. Immunogenetics in systemic lupus erythematosus: Transitioning from genetic associations to cellular effects. Scand J Immunol 2020; 92:e12894. [DOI: 10.1111/sji.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Niklas Hagberg
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
23
|
Patel J, Borucki R, Werth VP. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice. Curr Rheumatol Rep 2020; 22:69. [PMID: 32845411 DOI: 10.1007/s11926-020-00946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Understanding the pathogenesis of cutaneous lupus erythematosus (CLE) is an important step in developing new medications and providing effective treatment to patients. This review focuses on novel research within CLE pathogenesis, as well as some of the medications being developed based on this knowledge. RECENT FINDINGS The subtle differences between systemic lupus erythematosus (SLE) and CLE pathogenesis are highlighted by differences in the circulating immune cells found in each disease, as well as the specific pathways activated by ultraviolet light. Plasmacytoid dendritic cells and the related type I interferon pathway are major components of CLE pathogenesis, and as such, therapies targeting components of this pathway have been successful in recent clinical trials. B cell-depleting therapies have shown success in SLE; however, their role in CLE is less clear. Understanding the differences between these manifestations of lupus allows for the development of therapies that are more effective in skin-specific disease. Discovering key pathways in CLE pathogenesis is critical for understanding the clinical features of the disease and ultimately developing new and effective therapies.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Borucki
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, Suite 1-330A, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Hjorton K, Hagberg N, Pucholt P, Eloranta ML, Rönnblom L. The regulation and pharmacological modulation of immune complex induced type III IFN production by plasmacytoid dendritic cells. Arthritis Res Ther 2020; 22:130. [PMID: 32503683 PMCID: PMC7275601 DOI: 10.1186/s13075-020-02186-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have an ongoing interferon (IFN) production due to an activation of plasmacytoid dendritic cells (pDCs), which can be triggered to type I IFN synthesis by RNA containing immune complexes (RNA-IC). Considering emerging data suggesting a role of type III IFN in the SLE disease process, we asked if RNA-IC can induce type III IFN production in pDC and how this production can be regulated. METHODS Peripheral blood mononuclear cells (PBMCs) or immune cell subsets were isolated from healthy blood donors or SLE patients and stimulated with IC containing U1 snRNP and SLE-IgG (RNA-IC). Hydroxychloroquine (HCQ) and an interleukin receptor 1-associated kinase 4 inhibitor (IRAK4i) were added to cell cultures. Cytokine mRNA levels were determined with a microarray and protein levels with immunoassays. Single-cell RNA sequencing of pDCs using ddSEQ technology was performed. RESULTS Type III IFN mRNA and protein was induced in RNA-IC-stimulated pDC-NK and pDC-B cell co-cultures. A subset of activated pDCs (3%) expressed both type III and type I IFN mRNA. IFN-λ2, IFN-α2b, interleukin (IL)-3, IL-6, or granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced IFN-λ1/3 production 2-5-fold. HCQ and an IRAK4i blocked the RNA-IC-triggered IFN-λ1/3 production (p < 0.01). IFN-α2b and GM-CSF increased the proportion of SLE patients producing IFN-λ1/3 in response to RNA-IC from 11 to 33%. CONCLUSIONS Type III IFN production is triggered by RNA-IC in pDCs in a TLR-MyD88-dependent manner, enhanced by NK and B cells as well as several pro-inflammatory cytokines. These results support a contributing role for both type I and type III IFNs in SLE, which needs to be considered when targeting the IFN system in this disease.
Collapse
Affiliation(s)
- Karin Hjorton
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden.
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| |
Collapse
|
25
|
Kwon OC, Kim YG, Park JH, Park MC. Seroconversion to antinuclear antibody negativity and its association with disease flare in patients with systemic lupus erythematosus. Lupus 2020; 29:697-704. [PMID: 32279583 DOI: 10.1177/0961203320917748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate the rate of seroconversion to antinuclear-antibody negativity in patients with systemic lupus erythematosus and its association with subsequent systemic lupus erythematosus flare risk. METHODS Medical records of patients with systemic lupus erythematosus with positive antinuclear antibodies (titer ≥1 : 40) at diagnosis and at least one repeat antinuclear antibody test were reviewed. We determined the frequency of seroconversion to antinuclear antibody negativity among these patients and investigated whether seroconversion to antinuclear antibody negativity was associated with subsequent systemic lupus erythematosus flare risk. The seroconversion to antinuclear antibody negativity was defined as a conversion of positive antinuclear antibodies to a titer below the cut-off of 1 : 40. Systemic lupus erythematosus flare was defined as one new British Isles Lupus Assessment Group A or two new British Isles Lupus Assessment Group B domain scores. To estimate hazard ratios and 95% confidence intervals for systemic lupus erythematosus flare according to seroconversion to antinuclear antibody negativity, Cox regression analysis with adjustment for known systemic lupus erythematosus flare risk factors was performed. Kaplan-Meier analysis was used to compare flare-free survival rates between negative converters and non-converters. RESULTS Among the total 175 patients, seroconversion to antinuclear antibody negativity was found in 17 (9.7%) patients in a median 53.5 (range: 25.7-84.0) months. After the last antinuclear antibody tests, 53 systemic lupus erythematosus flare cases were identified during 14.3 (range: 8.2-21.7) months of follow-up. Systemic lupus erythematosus flare risk was significantly lower in patients with negatively seroconverted antinuclear antibodies (adjusted hazard ratio 0.13, 95% confidence interval 0.03-0.58, p = 0.007). Kaplan-Meier analysis showed significantly higher flare-free survival in negative converters than in non-converters (p = 0.004). CONCLUSION Seroconversion to antinuclear antibody negativity occurred in 9.7% of patients over 53.5 months and was associated with a lower future systemic lupus erythematosus flare risk.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jung Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Berggren O, Pucholt P, Amcoff C, Rönnblom L, Eloranta ML. Activation of plasmacytoid dendritic cells and B cells with two structurally different Toll-like receptor 7 agonists. Scand J Immunol 2020; 91:e12880. [PMID: 32219875 DOI: 10.1111/sji.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Synthetic Toll-like receptor (TLR) 7 agonists have been suggested as immune modulators in a range of conditions. In contrast, self-derived TLR7 activators, such as RNA-containing immune complexes (RNA-IC), can contribute to autoimmune diseases due to endogenous immune activation. The exact difference in immune cell response between synthetic and endogenous TLR7 triggers is only partly known. An understanding of these differences could aid in the development of new therapeutic agents and provide insights into autoimmune disease mechanisms. We therefore compared the stimulatory capacity of two TLR7 agonists, RNA-IC and a synthetic small molecule DSR-6434, on blood leucocytes, plasmacytoid dendritic cells (pDCs) and B cells from healthy individuals. IFN-α, IL-6, IL-8 and TNF levels were measured by immunoassays, and gene expression in pDCs was analysed by an expression array. DSR-6434 triggered 20-fold lower levels of IFN-α by pDCs, but higher production of IL-6, IL-8 and TNF, compared to RNA-IC. Furthermore, IFN-α and TNF production were increased with exogenous IFN-α2b priming, whereas IL-8 synthesis by B cells was reduced for both stimuli. Cocultivation of pDCs and B cells increased the RNA-IC-stimulated IFN-α and TNF levels, while only IL-6 production was enhanced in the DSR-6434-stimulated cocultures. When comparing pDCs stimulated with RNA-IC and DSR-6434, twelve genes were differentially expressed (log2 fold change >2, adjusted P-value <.05). In conclusion, RNA-IC, which mimics an endogenous TLR7 stimulator, and the synthetic TLR7 agonist DSR-6434 trigger distinct inflammatory profiles in immune cells. This demonstrates the importance of using relevant stimuli when targeting the TLR7 pathway for therapeutic purposes.
Collapse
Affiliation(s)
- Olof Berggren
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cane Amcoff
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Linge P, Arve S, Olsson LM, Leonard D, Sjöwall C, Frodlund M, Gunnarsson I, Svenungsson E, Tydén H, Jönsen A, Kahn R, Johansson Å, Rönnblom L, Holmdahl R, Bengtsson A. NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus. Ann Rheum Dis 2020; 79:254-261. [PMID: 31704719 DOI: 10.1136/annrheumdis-2019-215820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES: A single nucleotide polymorphism in the NCF1 gene (NCF1-339, rs201802880), encoding NADPH oxidase type II subunit NCF1/p47phox, reducing production of reactive oxygen species (ROS) is strongly associated with the development of systemic lupus erythematosus (SLE). This study aimed at characterising NCF1-339 effects on neutrophil extracellular trap (NET) formation, type I interferon activity and antibody profile in patients with SLE. METHODS: Neutrophil NET-release pathways (n=31), serum interferon (n=141) and finally antibody profiles (n=305) were investigated in SLE subjects from Lund, genotyped for NCF1-339. Then, 1087 SLE subjects from the rheumatology departments of four Swedish SLE centres, genotyped for NCF1-339, were clinically characterised to validate these findings. RESULTS: Compared with patients with normal-ROS NCF1-339 genotypes, neutrophils from patients with SLE with low-ROS NCF1-339 genotypes displayed impaired NET formation (p<0.01) and increased dependence on mitochondrial ROS (p<0.05). Low-ROS patients also had increased frequency of high serum interferon activity (80% vs 21.4%, p<0.05) and positivity for anti-β2 glycoprotein I (p<0.01) and anticardiolipin antibodies (p<0.05) but were not associated with other antibodies. We confirmed an over-representation of having any antiphospholipid antibody, OR 1.40 (95% CI 1.01 to 1.95), anti-β2 glycoprotein I, OR 1.82 (95% CI 1.02 to 3.24) and the antiphospholipid syndrome (APS), OR 1.74 (95% CI 1.19 to 2.55) in all four cohorts (n=1087). CONCLUSIONS: The NCF1-339 SNP mediated decreased NADPH oxidase function, is associated with high interferon activity and impaired formation of NETs in SLE, allowing dependence on mitochondrial ROS. Unexpectedly, we revealed a striking connection between the ROS deficient NCF1-339 genotypes and the presence of phospholipid antibodies and APS.
Collapse
Affiliation(s)
- Petrus Linge
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Sabine Arve
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Lina M Olsson
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Christopher Sjöwall
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Martina Frodlund
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Helena Tydén
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Robin Kahn
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Skane, Sweden
- Wallenberg Center for Molecular Medicin, Lund University, Lund, Skane, Sweden
| | - Åsa Johansson
- Division for Hematology and Transfusion Medicine, Department of laboratory medicine, Lund University, Lund, Skane, Sweden
- Regional Laboratories Region Skane, Department of Clinical Immunology and Transfusion Medicine, Skanes universitetssjukhus Lund Labmedicin Skane, Lund, Skane, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Anders Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| |
Collapse
|
28
|
Wirestam L, Arve S, Linge P, Bengtsson AA. Neutrophils-Important Communicators in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Front Immunol 2019; 10:2734. [PMID: 31824510 PMCID: PMC6882868 DOI: 10.3389/fimmu.2019.02734] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are two autoimmune diseases that can occur together or separately. Insights into the pathogenesis have revealed similarities, such as development of autoantibodies targeting subcellular antigens as well as a shared increased risk of cardiovascular morbidity, potentially due to mutual pathologic mechanisms. In this review, we will address the evidence implicating neutrophils in the pathogenesis of these conditions, highlighting their shared features. The neutrophil is the most abundant leukocyte, recognized for its role in infectious and inflammatory diseases, but dysregulation of neutrophil effector functions, including phagocytosis, oxidative burst and formation of neutrophil extracellular traps (NETs) may also contribute to an autoimmune process. The phenotype of neutrophils in SLE and APS differs from neutrophils of healthy individuals, where neutrophils in SLE and APS are activated and prone to aggregate. A specific subset of low-density neutrophils with different function compared to normal-density neutrophils can also be found within the peripheral blood mononuclear cell (PBMC) fraction after density gradient centrifugation of whole blood. Neutrophil phagocytosis is required for regular clearance of cell remnants and nuclear material. Reactive oxygen species (ROS) released by neutrophils during oxidative burst are important for immune suppression and impairment of ROS production is seen in SLE. NETs mediate pathology in both SLE and APS via several mechanisms, including exposure of autoantigens, priming of T-cells and activation of autoreactive B-cells. NETs are also involved in cardiovascular events by forming a pro-thrombotic scaffolding surface. Lastly, neutrophils communicate with other cells by producing cytokines, such as Interferon (IFN) -α, and via direct cell-cell contact. Physiological neutrophil effector functions are necessary to prevent autoimmunity, but in SLE and APS these are altered.
Collapse
Affiliation(s)
- Lina Wirestam
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sabine Arve
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petrus Linge
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Urbonaviciute V, Luo H, Sjöwall C, Bengtsson A, Holmdahl R. Low Production of Reactive Oxygen Species Drives Systemic Lupus Erythematosus. Trends Mol Med 2019; 25:826-835. [DOI: 10.1016/j.molmed.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
30
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
31
|
Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies. Nat Rev Rheumatol 2019; 15:519-532. [PMID: 31399711 DOI: 10.1038/s41584-019-0272-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 01/07/2023]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease that can present as an isolated skin disease or as a manifestation within the spectrum of systemic lupus erythematosus. The clinical spectrum of CLE is broad, ranging from isolated discoid plaques to widespread skin lesions. Histologically, skin lesions present as interface dermatitis (inflammation of the skin mediated by anti-epidermal responses), which is orchestrated by type I and type III interferon-regulated cytokines and chemokines. Both innate and adaptive immune pathways are strongly activated in the formation of skin lesions owing to continuous re-activation of innate pathways via pattern recognition receptors (PRRs). These insights into the molecular pathogenesis of skin lesions in CLE have improved our understanding of the mechanisms underlying established therapies and have triggered the development of targeted treatment strategies that focus on immune cells (for example, B cells, T cells or plasmacytoid dendritic cells), as well as immune response pathways (for example, PRR signalling, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signalling and nuclear factor-κB signalling) and their cytokines and chemokines (for example, type I interferons, CXC-chemokine ligand 10 (CXCL10), IL-6 and IL-12).
Collapse
|
32
|
Pisetsky DS, Thompson DK, Wajdula J, Diehl A, Sridharan S. Variability in Antinuclear Antibody Testing to Assess Patient Eligibility for Clinical Trials of Novel Treatments for Systemic Lupus Erythematosus. Arthritis Rheumatol 2019; 71:1534-1538. [PMID: 31385442 DOI: 10.1002/art.40910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/11/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In the development of novel therapies for systemic lupus erythematosus, antinuclear antibody (ANA) positivity represents a criterion for trial eligibility. Since as many as 30% of patients enrolled in trials have been ANA negative, we evaluated the performance characteristics of immunofluorescence assays (IFAs) for ANA determinations for screening. METHODS This study used 5 commercially available IFAs to assess the ANA status of 181 patients enrolled in a phase II clinical trial for an anti-interleukin-6 antibody. Enrollment included a detailed review of medical records to verify a historical ANA value. IFA results were related to various clinical and serologic features at enrollment. RESULTS While the frequency of ANA negativity assessed by the central laboratory was 23.8% in a cohort of 181 patients, the evaluated IFA kits demonstrated frequencies of negativity from 0.6 to 27.6%. With 2 IFA kits showing a significant frequency of ANA negativity, positive and negative samples differed in levels of anti-double-stranded DNA, C3, and presence of other ANAs as well as the frequency of high interferon (IFN) expression. CONCLUSION These findings indicate that, when used for screening, IFAs can vary because of performance characteristics of kits and thus can affect determination of trial eligibility. With kits producing a significant frequency of ANA negativity, ANA status can be associated with other serologic measures as well as the presence of the IFN signature, potentially affecting responsiveness to a trial agent.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center and Veterans Affairs Medical Center, Durham, North Carolina
| | - Dana Kathryn Thompson
- Duke University Medical Center and Veterans Affairs Medical Center, Durham, North Carolina
| | | | | | | |
Collapse
|
33
|
Wang T, Marken J, Chen J, Tran VB, Li QZ, Li M, Cerosaletti K, Elkon KB, Zeng X, Giltiay NV. High TLR7 Expression Drives the Expansion of CD19 +CD24 hiCD38 hi Transitional B Cells and Autoantibody Production in SLE Patients. Front Immunol 2019; 10:1243. [PMID: 31231380 PMCID: PMC6559307 DOI: 10.3389/fimmu.2019.01243] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Signaling through Toll-like receptor 7 (TLR7) drives the production of type I IFN and promotes the activation of autoreactive B cells and is implicated in the pathogenesis of systemic lupus erythematosus (SLE). While TLR7 has been extensively studied in murine lupus, much less is known about its role in the pathogenesis of human SLE. Genetic studies support a link between the TLR7 rs3853839 C/G polymorphism, which affects TLR7 mRNA turnover, and SLE susceptibility; however, the effects of this polymorphism on B cells have not been studied. Here we determined how changes in TLR7 expression affect peripheral B cells and auto-Ab production in SLE patients. High TLR7 expression in SLE patients driven by TLR7 rs3853839 C/G polymorphism was associated with more active disease and upregulation of IFN-responsive genes. TLR7hi SLE patients showed an increase in peripheral B cells. Most notably, the percentage and numbers of CD19+CD24++CD38++ newly-formed transitional (TR) B cells were increased in TLR7hi SLE patients as compared to HCs and TLR7norm/lo SLE patients. Using auto-Ab arrays, we found an increase and enrichment of auto-Ab specificities in the TLR7hi SLE group, including the production of anti-RNA/RNP-Abs. Upon in vitro TLR7 ligand stimulation, TR B cells isolated from TLR7hi but not TLR7norm/lo SLE patients produced anti-nuclear auto-Abs (ANA). Exposure of TR B cells isolated from cord blood to IFNα induced the expression of TLR7 and enabled their activation in response to TLR7 ligation in vitro. Our study shows that overexpression of TLR7 in SLE patients drives the expansion of TR B cells. High TLR7 signaling in TR B cells promotes auto-Ab production, supporting a possible pathogenic role of TR B cells in human SLE.
Collapse
Affiliation(s)
- Ting Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - John Marken
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Janice Chen
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Van Bao Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Keith B Elkon
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Pisetsky DS, Rovin BH, Lipsky PE. New Perspectives in Rheumatology: Biomarkers as Entry Criteria for Clinical Trials of New Therapies for Systemic Lupus Erythematosus: The Example of Antinuclear Antibodies and Anti-DNA. Arthritis Rheumatol 2019; 69:487-493. [PMID: 27899010 DOI: 10.1002/art.40008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center and Medical Research Service, Durham VA Medical Center, Durham, North Carolina
| | - Brad H Rovin
- The Ohio State University, Wexner Medical Center, Columbus
| | | |
Collapse
|
36
|
Rahmatpanah F, Agrawal S, Jaiswal N, Nguyen HM, McClelland M, Agrawal A. Airway epithelial cells prime plasmacytoid dendritic cells to respond to pathogens via secretion of growth factors. Mucosal Immunol 2019; 12:77-84. [PMID: 30279511 PMCID: PMC6301110 DOI: 10.1038/s41385-018-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) are critical for defense against respiratory viruses because of their propensity to secrete high levels of type I interferons (IFN). The functions of PDCs in the lung can be influenced by airway epithelial cells. We examined the effect of human primary bronchial epithelial cells (PBECs) on PDC functions by performing RNA-sequencing of PDCs after co-culture with air liquid interface differentiated PBECs. Functional analysis revealed that PDCs co-cultured with PBECs displayed upregulation of type I IFN production and response genes. Upregulated transcripts included those encoding cytosolic sensors of DNA, ZBP-1,IRF-3, and NFkB as well as genes involved in amplification of the IFN response, such as IFNAR1, JAK/STAT, ISG15. In keeping with the RNA-seq data, we observe increased secretion of type I IFN and other cytokines in response to influenza in PDCs co-cultured with PBECs. The PDCs also primed Th1 responses in T cells. The enhanced response of PDCs co-cultured with PBECs was due to the action of growth factors, GMCSF, GCSF, and VEGF, which were secreted by PBECs on differentiation. These data highlight possible mechanisms to enhance the production of type-I IFN in the airways, which is critical for host defense against respiratory infections.
Collapse
Affiliation(s)
- Farah Rahmatpanah
- 0000 0001 0668 7243grid.266093.8Department of pathology, University of California, Irvine, CA 92697 USA
| | - Sudhanshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Natasha Jaiswal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Hannah M. Nguyen
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Michael McClelland
- 0000 0001 0668 7243grid.266093.8Microbiology & Molecular Genetics, University of California, Irvine, CA 92697 USA
| | - Anshu Agrawal
- 0000 0001 0668 7243grid.266093.8Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
37
|
Hjorton K, Hagberg N, Israelsson E, Jinton L, Berggren O, Sandling JK, Thörn K, Mo J, Eloranta ML, Rönnblom L. Cytokine production by activated plasmacytoid dendritic cells and natural killer cells is suppressed by an IRAK4 inhibitor. Arthritis Res Ther 2018; 20:238. [PMID: 30355354 PMCID: PMC6235225 DOI: 10.1186/s13075-018-1702-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/16/2018] [Indexed: 11/10/2022] Open
Abstract
Background In systemic lupus erythematosus (SLE), immune complexes (ICs) containing self-derived nucleic acids trigger the synthesis of proinflammatory cytokines by immune cells. We asked how an interleukin (IL)-1 receptor-associated kinase 4 small molecule inhibitor (IRAK4i) affects RNA-IC-induced cytokine production compared with hydroxychloroquine (HCQ). Methods Plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells were isolated from peripheral blood mononuclear cells (PBMCs) of healthy individuals. PBMCs from SLE patients and healthy individuals were depleted of monocytes. Cells were stimulated with RNA-containing IC (RNA-IC) in the presence or absence of IRAK4i I92 or HCQ, and cytokines were measured by immunoassay or flow cytometry. Transcriptome sequencing was performed on RNA-IC-stimulated pDCs from healthy individuals to assess the effect of IRAK4i and HCQ. Results In healthy individuals, RNA-IC induced interferon (IFN)-α, tumor necrosis factor (TNF)-α, IL-6, IL-8, IFN-γ, macrophage inflammatory protein (MIP)1-α, and MIP1-β production in pDC and NK cell cocultures. IFN-α production was selective for pDCs, whereas both pDCs and NK cells produced TNF-α. IRAK4i reduced the pDC and NK cell-derived cytokine production by 74–95%. HCQ interfered with cytokine production in pDCs but not in NK cells. In monocyte-depleted PBMCs, IRAK4i blocked cytokine production more efficiently than HCQ. Following RNA-IC activation of pDCs, 975 differentially expressed genes were observed (false discovery rate (FDR) < 0.05), with many connected to cytokine pathways, cell regulation, and apoptosis. IRAK4i altered the expression of a larger number of RNA-IC-induced genes than did HCQ (492 versus 65 genes). Conclusions The IRAK4i I92 exhibits a broader inhibitory effect than HCQ on proinflammatory pathways triggered by RNA-IC, suggesting IRAK4 inhibition as a therapeutic option in SLE. Electronic supplementary material The online version of this article (10.1186/s13075-018-1702-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Hjorton
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden.
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Elisabeth Israelsson
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Jinton
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Olof Berggren
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Kristofer Thörn
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Mo
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds v 20, C11, 751 85, Uppsala, Sweden
| |
Collapse
|
38
|
Sakata K, Nakayamada S, Miyazaki Y, Kubo S, Ishii A, Nakano K, Tanaka Y. Up-Regulation of TLR7-Mediated IFN-α Production by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus. Front Immunol 2018; 9:1957. [PMID: 30210502 PMCID: PMC6121190 DOI: 10.3389/fimmu.2018.01957] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/08/2018] [Indexed: 01/05/2023] Open
Abstract
Objectives: Aberrant and persistent production of interferon-α (IFN-α) by plasmacytoid dendritic cells (pDCs) is known to play a key role in the pathogenesis of systemic lupus erythematosus (SLE). To assess the precise function of pDCs in SLE patients, we investigated the differential regulation of Toll-like receptor 7 (TLR7) and TLR9 responses during IFN-α production by pDCs. Methods: Peripheral blood mononuclear cells (PBMCs) in SLE patients without hydroxychloroquine treatment, rheumatoid arthritis patients and heathy controls were stimulated with TLR7 and TLR9 agonists. To investigate the priming effect by cytokines, PBMCs from healthy controls were pre-treated with various cytokines and stimulated with TLR7 and TLR9 agonists. The IFN-α production in pDCs was detected by flow cytometry. Results: TLR7-mediated IFN-α production was up-regulated and correlated positively with disease activity in SLE. Conversely, TLR9-mediated IFN-α production was down-regulated. Differential regulation of TLR7/9 response in SLE was independent of TLR7 and TLR9 expression levels. Furthermore, in vitro experiments indicated that TLR7-mediated IFN-α production was up-regulated by pre-treatment with type I IFN, whereas TLR9-mediated IFN-α production was down-regulated by pre-treatment with type II IFN. Conclusions: Our study indicates the association between up-regulation of TLR7- mediated IFN-α production by pDCs and disease activity and that TLR7 and TLR9 responses were reversely regulated on pDCs in SLE patients. Thus, type I IFN and TLR7-mediated IFN-α production were involved in a vicious cycle, causing hyper production of IFN-α by pDCs during the pathogenic processes of SLE.
Collapse
Affiliation(s)
- Kei Sakata
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yusuke Miyazaki
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoshi Kubo
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akina Ishii
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Kazuhisa Nakano
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
39
|
Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol 2017; 31:415-428. [PMID: 29224681 DOI: 10.1016/j.berh.2017.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects many different organ systems, with excessive production of type I interferons (IFNs) and autoantibodies against nucleic acids as hallmarks. Activation of the type I IFN system in SLE is due to continuous stimulation of plasmacytoid dendritic cells by endogenous nucleic acids, leading to sustained type I IFN production. This is reflected by an overexpression of type I IFN-regulated genes or an IFN signature. Type I IFNs have effects on both the innate and adaptive immune systems, which contribute to both loss of tolerance and the autoimmune disease process. In this review, we discuss the current understanding of IFNs in SLE, focusing on their regulation, the influence of genetic background, and environmental factors and therapies that are under development aiming to inhibit the type I IFN system in SLE.
Collapse
Affiliation(s)
- Anders A Bengtsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Rheumatology, 22185 Lund, Sweden.
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Section of Rheumatology, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
40
|
Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford) 2017; 56:1662-1675. [PMID: 28122959 DOI: 10.1093/rheumatology/kew431] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. Apart from their important role in antiviral immunity, IFN-Is are increasingly recognized as key players in autoimmune CTDs such as SLE. Novel therapies that target IFN-I appear effective in SLE in early trials, but effectiveness is related to the presence of IFN-I biomarkers. IFN-I biomarkers may also act as positive or negative predictors of response to other biologics. Despite the high failure rate of clinical trials in SLE, subgroups of patients often respond better. Fully optimizing the potential of these agents is therefore likely to require stratification of patients using IFN-I and other biomarkers. This suggests the unified concept of type I IFN-mediated autoimmune diseases as a grouping including patients with a variety of different traditional diagnoses.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Paul Emery
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Edward M Vital
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
41
|
Obreque J, Vega F, Torres A, Cuitino L, Mackern-Oberti JP, Viviani P, Kalergis A, Llanos C. Autologous tolerogenic dendritic cells derived from monocytes of systemic lupus erythematosus patients and healthy donors show a stable and immunosuppressive phenotype. Immunology 2017; 152:648-659. [PMID: 28763099 DOI: 10.1111/imm.12806] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/23/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with unrestrained T-cell and B-cell activity towards self-antigens. Evidence shows that apoptotic cells (ApoCells) trigger an autoreactive response against nuclear antigens in susceptible individuals. In this study, we focus on generating and characterizing tolerogenic dendritic cells (tolDCs) to restore tolerance to ApoCells. Monocyte-derived dendritic cells (DCs) from healthy controls and patients with SLE were treated with dexamethasone and rosiglitazone to induce tolDCs. Autologous apoptotic lymphocytes generated by UV irradiation were given to tolDCs as a source of self-antigens. Lipopolysaccharide (LPS) was used as a maturation stimulus to induce the expression of co-stimulatory molecules and secretion of cytokines. TolDCs generated from patients with SLE showed a reduced expression of co-stimulatory molecules after LPS stimulation compared with mature DCs. The same phenomenon was observed in tolDCs treated with ApoCells and LPS. In addition, ApoCell-loaded tolDCs stimulated with LPS secreted lower levels of interleukin-6 (IL-6) and IL-12p70 than mature DCs without differences in IL-10 secretion. The functionality of tolDCs was assessed by their capacity to prime allogeneic T cells. TolDCs displayed suppressor properties as demonstrated by a significantly reduced capacity to induce allogeneic T-cell proliferation and activation. ApoCell-loaded tolDCs generated from SLE monocytes have a stable immature/tolerogenic phenotype that can modulate CD4+ T-cell activation. These properties make them suitable for an antigen-specific immunotherapy for SLE.
Collapse
Affiliation(s)
- Javiera Obreque
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Vega
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andy Torres
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Cuitino
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paola Viviani
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Olsson LM, Johansson ÅC, Gullstrand B, Jönsen A, Saevarsdottir S, Rönnblom L, Leonard D, Wetterö J, Sjöwall C, Svenungsson E, Gunnarsson I, Bengtsson AA, Holmdahl R. A single nucleotide polymorphism in theNCF1gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis 2017; 76:1607-1613. [DOI: 10.1136/annrheumdis-2017-211287] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/30/2017] [Accepted: 05/05/2017] [Indexed: 01/02/2023]
Abstract
ObjectivesNcf1polymorphisms leading to low production of reactive oxygen species (ROS) are strongly associated with autoimmune diseases in animal models. The humanNCF1gene is very complex with both functional and non-functional gene copies and genotyping requires assays specific for functionalNCF1genes. We aimed at investigating association and function of the missense single nucleotide polymorphism (SNP), rs201802880 (here denoted NCF1-339) inNCF1with systemic lupus erythematosus (SLE).MethodsWe genotyped the NCF1-339 SNP in 973 Swedish patients with SLE and 1301 controls, using nested PCR and pyrosequencing. ROS production and gene expression of type 1 interferon-regulated genes were measured in isolated cells from subjects with different NCF1-339 genotypes.ResultsWe found an increased frequency of the NCF1-339 T allele in patients with SLE, 11% compared with 4% in controls, OR 3.0, 95% CI 2.4 to 3.9, p=7.0×10−20. The NCF1-339 T allele reduced extracellular ROS production in neutrophils (p=0.004) and led to an increase expression of type 1 interferon-regulated genes. In addition, the NCF1-339 T allele was associated with a younger age at diagnosis of SLE; mean age 30.3 compared with 35.9, p=2.0×1−6.ConclusionsThese results clearly demonstrate that a genetically controlled reduced production of ROS increases the risk of developing SLE and confirm the hypothesis that ROS regulate chronic autoimmune inflammatory diseases.
Collapse
|
43
|
|
44
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
45
|
Serum level of DNase1l3 in patients with dermatomyositis/polymyositis, systemic lupus erythematosus and rheumatoid arthritis, and its association with disease activity. Clin Exp Med 2016; 17:459-465. [DOI: 10.1007/s10238-016-0448-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/19/2016] [Indexed: 11/26/2022]
|
46
|
Doedens JR, Jones WD, Hill K, Mason MJ, Gersuk VH, Mease PJ, Dall'Era M, Aranow C, Martin RW, Cohen SB, Fleischmann RM, Kivitz AJ, Burge DJ, Chaussabel D, Elkon KB, Posada JA. Blood-Borne RNA Correlates with Disease Activity and IFN-Stimulated Gene Expression in Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2016; 197:2854-63. [PMID: 27534558 DOI: 10.4049/jimmunol.1601142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 12/27/2022]
Abstract
The loss of tolerance and the presence of circulating autoantibodies directed against nuclear Ags is the hallmark of systemic lupus erythematosus (SLE). Many of these Ags are complexed with short, noncoding RNAs, such as U1 and Y1. The amount of U1 and Y1 RNA complexed with SLE patient Abs and immune complexes was measured in a cross-section of 228 SLE patients to evaluate the role of these RNA molecules within the known biochemical framework of SLE. The study revealed that SLE patients had significantly elevated levels of circulating U1 and/or Y1 RNA compared with healthy volunteers. In addition, the blood-borne RNA molecules were correlated with SLE disease activity and increased expression of IFN-inducible genes. To our knowledge, this study provides the first systematic examination of the role of circulating RNA in a large group of SLE patients and provides an important link with IFN dysregulation.
Collapse
Affiliation(s)
| | | | - Kay Hill
- PlasmaLab International, Everett, WA 98201
| | | | | | - Philip J Mease
- Swedish Medical Center and University of Washington, Seattle, WA 98122
| | - Maria Dall'Era
- University of California, San Francisco, San Francisco, CA 94143
| | - Cynthia Aranow
- The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Richard W Martin
- College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | | | | | - Alan J Kivitz
- Altoona Center for Clinical Research, Duncansville, PA 16635
| | | | - Damien Chaussabel
- Benaroya Research Institute, Seattle, WA 98101; Sidra Medical and Research Center, Doha, Qatar; and
| | - Keith B Elkon
- Department of Rheumatology, University of Washington, Seattle, WA 98109
| | | |
Collapse
|
47
|
Roberts AL, Fürnrohr BG, Vyse TJ, Rhodes B. The complement receptor 3 (CD11b/CD18) agonist Leukadherin-1 suppresses human innate inflammatory signalling. Clin Exp Immunol 2016; 185:361-71. [PMID: 27118513 PMCID: PMC4991522 DOI: 10.1111/cei.12803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
Complement receptor 3 (CR3, CD11b/CD18) is a multi‐functional receptor expressed predominantly on myeloid and natural killer (NK) cells. The R77H variant of CD11b, encoded by the ITGAM rs1143679 polymorphism, is associated robustly with development of the autoimmune disease systemic lupus erythematosus (SLE) and impairs CR3 function, including its regulatory role on monocyte immune signalling. The role of CR3 in NK cell function is unknown. Leukadherin‐1 is a specific small‐molecule CR3 agonist that has shown therapeutic promise in animal models of vascular injury and inflammation. We show that Leukadherin‐1 pretreatment reduces secretion of interferon (IFN)‐γ, tumour necrosis factor (TNF) and macrophage inflammatory protein (MIP)‐1β by monokine‐stimulated NK cells. It was associated with a reduction in phosphorylated signal transducer and activator of transcription (pSTAT)‐5 following interleukin (IL)‐12 + IL‐15 stimulation (P < 0·02) and increased IL‐10 secretion following IL‐12 + IL‐18 stimulation (P < 0·001). Leukadherin‐1 pretreatment also reduces secretion of IL‐1β, IL‐6 and TNF by Toll‐like receptor (TLR)‐2 and TLR‐7/8‐stimulated monocytes (P < 0·01 for all). The R77H variant did not affect NK cell response to Leukadherin‐1 using ex‐vivo cells from homozygous donors; nor did the variant influence CR3 expression by these cell types, in contrast to a recent report. These data extend our understanding of CR3 biology by demonstrating that activation potently modifies innate immune inflammatory signalling, including a previously undocumented role in NK cell function. We discuss the potential relevance of this to the pathogenesis of SLE. Leukadherin‐1 appears to mediate its anti‐inflammatory effect irrespective of the SLE‐risk genotype of CR3, providing further evidence to support its evaluation of Leukadherin‐1 as a potential therapeutic for autoimmune disease.
Collapse
Affiliation(s)
- A L Roberts
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B G Fürnrohr
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Division of Biological Chemistry, Innrain 80/IV, Medical University Innsbruck, Innsbruck, Austria
| | - T J Vyse
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B Rhodes
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
48
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
49
|
Scott E, Dooley MA, Vilen BJ, Clarke SH. Immune cells and type 1 IFN in urine of SLE patients correlate with immunopathology in the kidney. Clin Immunol 2016; 168:16-24. [PMID: 27102764 DOI: 10.1016/j.clim.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
The immunopathological events in the kidneys of lupus nephritis (LN) patients are poorly understood due in part to the difficulty in acquiring serial biopsies and the inherent limitations in their analysis. To identify a means to circumvent these limitations, we investigated whether immune cells of kidney origin are present in patient urine and whether they correlate with kidney pathology. Flow cytometry analysis was performed on peripheral blood and urine cells of 69 SLE patients, of whom 41 were LN patients. In addition, type I IFN (IFNα/β) levels were determined in plasma and urine by bioassay. Approximately 60% of non-LN patients had urine lymphocytes. In these patients, T cells were always present and predominantly CD8(+), while B cells were either absent or a mixture of naïve and memory B cells. In contrast, >90% of LN patients had urine lymphocytes. In half, the B and T cells resembled those in non-LN patient urine; however, in the remaining patients, the B cells were exclusively Ig-secreting plasmablasts or plasma cells (PB/PCs) and the T cells were predominantly CD4(+). In addition, pDCs and IFNα/β frequently accompanied PB/PCs. The majority of patients with urine PB/PCs presented with proliferative nephritis and a significant loss of kidney function, which in some cases had progressed to end stage renal disease (ESRD). In conclusion, urine can provide access to cells of kidney resident populations for phenotypic and functional characterization. Analysis of these cells provides insight into the kidney immunopathology and may serve as biomarkers to identify patients at risk for developing LN and progressing to ESRD.
Collapse
Affiliation(s)
- Eric Scott
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Mary Anne Dooley
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
50
|
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells. J Immunol Res 2016; 2016:6269157. [PMID: 27034965 PMCID: PMC4789470 DOI: 10.1155/2016/6269157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations.
Collapse
|