1
|
Khelghati F, Rahmanian M, Eghbal E, Seghatoleslami ZS, Goudarzi M, Keramatinia A, Ong CWM, Goletti D, D'Ambrosio L, Centis R, Nasiri MJ, Migliori GB. Risk of tuberculosis disease in patients receiving TNF-α antagonist therapy: A meta-analysis of randomized controlled trials. New Microbes New Infect 2024; 62:101533. [PMID: 39639969 PMCID: PMC11617757 DOI: 10.1016/j.nmni.2024.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Tuberculosis (TB) risk associated with tumor necrosis factor-alpha (TNF-α) antagonist therapy in patients with autoimmune diseases is a significant concern. This study aims to evaluate the risk of TB disease associated with TNF-α antagonist therapy. Methods An extensive search of PubMed/MEDLINE, EMBASE, and the Cochrane CENTRAL databases was conducted to identify randomized controlled trials (RCTs) assessing TB disease risk in patients receiving TNF-α antagonist therapy available until November 1, 2024. The pooled statistic used was the weighted odds ratio (OR) and a corresponding 95 % confidence interval (CI). Statistical analysis was performed using Comprehensive Meta-Analysis software, version 3.0 (Biostat Inc., Englewood, NJ, USA). Results Fifty-six RCTs, totaling 22,212 adult patients, met the specified eligibility criteria. Pooled analysis revealed an increased risk of TB disease associated with TNF-α antagonist therapy (OR 1.52, 95 % CI 1.03-2.26, p = 0.03). Subgroup analyses indicated a higher risk in patients with rheumatoid arthritis (RA) (OR 2.25, 95 % CI 1.13-4.45, p = 0.02), while no significant associations were found in patients with ankylosing spondylitis (AS) or psoriasis (Ps). Analyses by specific TNF-α antagonist drugs did not yield significant associations with risk of TB disease. Conclusion Our study highlights an increased risk of TB disease associated with TNF-α antagonist therapy, particularly in patients with RA. However, the absence of significant associations in AS or Ps patients suggests disease-specific variations in risk of TB disease. Further research is needed to elucidate the long-term safety profile of TNF-α antagonist drugs and their associations with risk of TB disease in different patient populations.
Collapse
Affiliation(s)
- Fatemeh Khelghati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmanian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Eghbal
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliasghar Keramatinia
- Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catherine WM. Ong
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Roma, Italy
| | | | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
2
|
Cheekati M, Murakhovskaya I. Anti-B-Cell-Activating Factor (BAFF) Therapy: A Novel Addition to Autoimmune Disease Management and Potential for Immunomodulatory Therapy in Warm Autoimmune Hemolytic Anemia. Biomedicines 2024; 12:1597. [PMID: 39062171 PMCID: PMC11275058 DOI: 10.3390/biomedicines12071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Although rituximab is not specifically approved for the treatment of warm autoimmune hemolytic anemia (WAIHA), the First International Consensus Group recommends considering its use as part of the initial therapy for patients with severe disease and as a second-line therapy for primary WAIHA. Some patients do not respond to rituximab, and relapses are common. These relapses are associated with elevated B-cell-activating factor (BAFF) levels and the presence of quiescent long-lived plasma cells (LLPCs) in the spleen. A new group of immunomodulatory drugs, B-cell-activating factor inhibitors (BAFF-i), demonstrated efficacy in multiple autoimmune diseases and have the potential to improve WAIHA treatment outcomes by targeting B-cells and LLPCs. This article reviews the role of BAFF in autoimmune disorders and the currently available literature on the use of BAFF-directed therapies in various immunologic disorders, including WAIHA. Collectively, the clinical data thus far shows robust potential for targeting BAFF in WAIHA therapy.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Lin J, Li Y, Gui M, Bu B, Li Z. Effectiveness and safety of telitacicept for refractory generalized myasthenia gravis: a retrospective study. Ther Adv Neurol Disord 2024; 17:17562864241251476. [PMID: 38751755 PMCID: PMC11095194 DOI: 10.1177/17562864241251476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Refractory generalized myasthenia gravis (GMG) remains a substantial therapeutic challenge. Telitacicept, a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein, holds promise for interrupting the immunopathology of this condition. Objectives This study retrospectively assessed the effectiveness and safety of telitacicept in patients with refractory GMG. Design A single-center retrospective study. Methods Patients with refractory GMG receiving telitacicept (160 mg/week or biweekly) from January to September in 2023 were included. We assessed effectiveness using Myasthenia Gravis Foundation of America post-intervention status (MGFA-PIS), myasthenia gravis treatment status and intensity (MGSTI), quantitative myasthenia gravis (QMG), and MG-activity of daily living (ADL) scores, alongside reductions in prednisone dosage at 3- and 6-month intervals. Safety profiles were also evaluated. Results Sixteen patients with MGFA class II-V refractory GMG were included, with eight females and eight males. All patients were followed up for at least 3 months, and 11 patients reached 6 months follow-up. At the 3-month evaluation, 75% (12/16) demonstrated clinical improvement with MGFA-PIS. One patient achieved pharmacological remission, two attained minimal manifestation status, and nine showed functional improvement; three remained unchanged, and one deteriorated. By the 6-month visit, 90.1% (10/11) sustained significant symptomatic improvement. MGSTI scores and prednisone dosages significantly reduced at both follow-ups (p < 0.05). MG-ADL and QMG scores showed marked improvement at 6 months (p < 0.05). The treatment was well tolerated, with no severe adverse events such as allergy or infection reported. Conclusion Our exploratory investigation suggests that telitacicept is a feasible and well-tolerated add-on therapy for refractory GMG, offering valuable clinical evidence for this novel treatment option.
Collapse
Affiliation(s)
- Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
4
|
Curtis JR, Wollenhaupt J, Tas SW, Chatzidionysiou K, Wang L, Roberts K, Tsekouras V. Determinants of tofacitinib discontinuation in adult patients with rheumatoid arthritis during long-term extension studies up to 9.5 years. Rheumatol Adv Pract 2024; 8:rkae063. [PMID: 38854417 PMCID: PMC11157138 DOI: 10.1093/rap/rkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/05/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives To examine determinants of tofacitinib discontinuation due to voluntary (i.e. patient-driven) or involuntary reasons (i.e. protocol mandated) in long-term extension (LTE) studies of patients with RA to inform clinical practice, clinical study execution and data capture. Methods This post hoc analysis used pooled data from patients receiving tofacitinib 5 or 10 mg twice daily (BID) in LTE studies. Outcomes included time to voluntary/involuntary discontinuation (and baseline predictors), including by geographic region. Exposure-adjusted event rates (EAERs) were calculated for adverse events (AEs), serious AEs (SAEs) and discontinuations due to AEs/SAEs. Results Of 4967 patients, 2463 (49.6%) discontinued [1552/4967 (31.2%) voluntarily, 911/4967 (18.3%) involuntarily] and 55 (1.1%) died over the course of 9.5 years. When involuntary discontinuation was present as a competing risk for voluntary discontinuation, patients who stayed on combination therapy and with higher patient-assessed pain were significantly more likely to discontinue for voluntary reasons (P < 0.05). Older patients, those enrolled in Asia, Europe or Latin America (vs USA or Canada) or with RF+/anti-CCP+ status were significantly less likely to discontinue for voluntary reasons (P < 0.05). Small numeric differences in disease activity were observed between geographic regions in patients who discontinued or completed the studies. EAERs were generally higher for tofacitinib 10 vs 5 mg BID, irrespective of discontinuation reason. Conclusion The factors associated with voluntary/involuntary discontinuation of tofacitinib suggest that treatment persistence in RA studies is partly predictable, which may be reflected in clinical practice. Applying these results may improve our understanding of attrition and inform future study design/execution. Trial registrations ClinicalTrials.gov (http://clinicaltrials.gov): NCT00413699 and NCT00661661.
Collapse
Affiliation(s)
- Jeffrey R Curtis
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katerina Chatzidionysiou
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
5
|
Mardani-Jouneghani R, Irani S, Habibi-Anbouhi M, Behdani M. Development and Characterization of a Novel Single-Chain Antibody Against B-Cell Activating Factor. Mol Biotechnol 2023; 65:1968-1978. [PMID: 36906729 DOI: 10.1007/s12033-023-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023]
Abstract
As a member of the tumor necrosis factor (TNF) superfamily, the B-cell activating factor (BAFF) plays a crucial role in B-cell survival and differentiation. Overexpression of this protein has been closely linked to autoimmune disorders and some B-cell malignancies. Using monoclonal antibodies (mAbs) against the BAFF soluble domain appears to be a complementary treatment for some of these diseases. This study aimed to produce and develop a specific Nanobody (Nb), a variable camelid antibody domain, against the soluble domain of BAFF protein. After camel immunization with recombinant protein and preparing cDNA from total RNAs separated from camel lymphocytes, an Nb library was developed. Individual colonies capable of binding selectively to rBAFF were obtained by periplasmic-ELISA, sequenced, and expressed in a bacterial expression system. The specificity and affinity of selected Nb were determined and its target identification and functionality were evaluated using flow cytometry.
Collapse
Affiliation(s)
- Rasoul Mardani-Jouneghani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran.
- Zoonoses Research Centre, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
6
|
Taylor PC, Weinblatt ME, McInnes IB, Atsumi T, Strand V, Takeuchi T, Bracher M, Brooks D, Davies J, Goode C, Gupta A, Mukherjee S, O'Shea C, Saurigny D, Schifano LA, Shelton C, Smith JE, Wang M, Wang R, Watts S, Fleischmann RM. Anti-GM-CSF otilimab versus sarilumab or placebo in patients with rheumatoid arthritis and inadequate response to targeted therapies: a phase III randomised trial (contRAst 3). Ann Rheum Dis 2023; 82:1527-1537. [PMID: 37696589 PMCID: PMC10646837 DOI: 10.1136/ard-2023-224449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES To investigate the efficacy and safety of otilimab, an anti-granulocyte-macrophage colony-stimulating factor antibody, in patients with active rheumatoid arthritis and an inadequate response to conventional synthetic (cs) and biologic disease-modifying antirheumatic drugs (DMARDs) and/or Janus kinase inhibitors. METHODS ContRAst 3 was a 24-week, phase III, multicentre, randomised controlled trial. Patients received subcutaneous otilimab (90/150 mg once weekly), subcutaneous sarilumab (200 mg every 2 weeks) or placebo for 12 weeks, in addition to csDMARDs. Patients receiving placebo were switched to active interventions at week 12 and treatment continued to week 24. The primary end point was the proportion of patients achieving an American College of Rheumatology ≥20% response (ACR20) at week 12. RESULTS Overall, 549 patients received treatment. At week 12, there was no significant difference in the proportion of ACR20 responders with otilimab 90 mg and 150 mg versus placebo (45% (p=0.2868) and 51% (p=0.0596) vs 38%, respectively). There were no significant differences in Clinical Disease Activity Index, Health Assessment Questionnaire-Disability Index, pain Visual Analogue Scale or Functional Assessment of Chronic Illness Therapy-Fatigue scores with otilimab versus placebo at week 12. Sarilumab demonstrated superiority to otilimab in ACR20 response and secondary end points. The incidence of adverse or serious adverse events was similar across treatment groups. CONCLUSIONS Otilimab demonstrated an acceptable safety profile but failed to achieve the primary end point of ACR20 and improve secondary end points versus placebo or demonstrate non-inferiority to sarilumab in this patient population. TRIAL REGISTRATION NUMBER NCT04134728.
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael E Weinblatt
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Iain B McInnes
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Vibeke Strand
- Division of Immunology/Rheumatology, Stanford University, Palo Alto, California, USA
| | - Tsutomu Takeuchi
- Department of Internal Medicine, Division of Rheumatology, Keio University School of Medicine, Tokyo, Japan
- Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Roy M Fleischmann
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Metroplex Clinical Research Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Westhovens R, Verschueren P. Lessons from negative phase 3 trials in rheumatoid arthritis anno 2023. Ann Rheum Dis 2023; 82:1503-1505. [PMID: 37903542 DOI: 10.1136/ard-2023-224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Affiliation(s)
- René Westhovens
- University Hospitals Leuven and KU Leuven Belgium, Leuven, Belgium
| | | |
Collapse
|
8
|
Yamashita M, Takayasu M, Maruyama H, Hirayama K. The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2014. [PMID: 38004064 PMCID: PMC10673378 DOI: 10.3390/medicina59112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Combination therapy with glucocorticoids, cyclophosphamide, and plasmapheresis is recommended as the standard treatment for anti-glomerular basement membrane (anti-GBM) disease, but the prognosis of this disease remains poor. Several immunobiological agents have been administered or are expected to be useful for anti-GBM disease in light of refractory disease or the standard treatments' tolerability. Many data regarding the use of biologic agents for anti-GBM disease have accumulated, verifying the effectiveness and potential of biologic agents as a new treatment option for anti-GBM disease. Tumor necrosis factor (TNF) inhibitors were shown to be useful in animal studies, but these agents have no clinical use and were even shown to induce anti-GBM disease in several cases. Although the efficacy of the TNF-receptor antagonist has been observed in animal models, there are no published case reports of its clinical use. There are also no published reports of animal or clinical studies of anti-B-cell-activating factor, which is a member of the TNF family of agents. Anti-interleukin (IL)-6 antibodies have been demonstrated to have no effect on or to exacerbate nephritis in animal models. Anti-C5 inhibitor was observed to be useful in a few anti-GBM disease cases. Among the several immunobiological agents, only rituximab has been demonstrated to be useful in refractory or poor-tolerance patients or small uncontrolled studies. Rituximab is usually used in combination with steroids and plasma exchange and is used primarily as an alternative to cyclophosphamide, but there is insufficient evidence regarding the efficacy of rituximab for anti-GBM disease, and thus, randomized controlled studies are required.
Collapse
Affiliation(s)
| | | | | | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan; (M.Y.); (M.T.); (H.M.)
| |
Collapse
|
9
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Parodis I, Gatto M, Sjöwall C. B cells in systemic lupus erythematosus: Targets of new therapies and surveillance tools. Front Med (Lausanne) 2022; 9:952304. [PMID: 36111105 PMCID: PMC9468481 DOI: 10.3389/fmed.2022.952304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
B cell hyperactivity is a hallmark of the complex autoimmune disease systemic lupus erythematosus (SLE), which has justified drug development focusing on B cell altering agents during the last decades, as well as the off-label use of B cell targeting biologics. About a decade ago, the anti-B cell activating factor (BAFF) belimumab was the first biological agent to be licensed for the treatment of adult patients with active yet non-renal and non-neuropsychiatric SLE, to later be expanded to include treatment of pediatric SLE and, recently, lupus nephritis. B cell depletion is recommended as an off-label option in refractory cases, with the anti-CD20 rituximab having been the most used B cell depleting agent to date while agents with a slightly different binding specificity to CD20 such as obinutuzumab have also shown promise, forming a part of the current pipeline. In addition, terminally differentiated B cells have also been the targets of experimental therapies, with the proteasome inhibitor bortezomib being one example. Apart from being promising drug targets, B and plasma cells have also shown promise in the surveillance of patients with SLE, especially for monitoring B cell depleting or B cell altering therapies. Inadequate B cell depletion may signify poor expected clinical response to rituximab, for example, while prominent reductions in certain B cell subsets may signify a protection against flare development in patients treated with belimumab. Toward an era with a richer therapeutic armamentarium in SLE, including to a large extent B cell altering treatments, the challenge that emerges is to determine diagnostic means for evidence-based therapeutic decision-making, that uses clinical information, serological markers, and gene expression patterns to guide individualized precision strategies.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Abuqayyas L, Cheng LE, Teixeira dos Santos M, Sullivan BA, Ruiz‐Santiago N, Wang H, Zhou Y, Chindalore V, Cohen S, Kivitz AJ, Posch MG, Parnes JR. Safety and Biological Activity of Rozibafusp alfa, a Bispecific Inhibitor of Inducible Costimulator Ligand and B Cell Activating Factor, in Patients With Rheumatoid Arthritis: Results of a Phase 1b, Randomized,
Double‐Blind
,
Placebo‐Controlled
, Multiple Ascending Dose Study. ACR Open Rheumatol 2022; 4:903-911. [PMID: 35899378 PMCID: PMC9555197 DOI: 10.1002/acr2.11487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To assess the safety and biological activity of rozibafusp alfa, a first‐in‐class bispecific antibody–peptide conjugate targeting inducible costimulator ligand (ICOSL) and B cell activating factor (BAFF), in patients with rheumatoid arthritis (RA). Methods This phase 1b, double‐blind, placebo‐controlled, multiple ascending dose study included 34 patients (18–75 years; 82.4% female) with active RA (Disease Activity Score of 28 joints–C‐reactive protein [DAS28‐CRP] >2.6, on stable methotrexate) randomized 3:1 to receive rozibafusp alfa (n = 26, in four ascending dose cohorts of 70, 140, 210, and 420 mg) or a placebo (n = 8) subcutaneously once every 2 weeks for 10 weeks (six total doses), with 24 weeks of follow‐up. The primary end point was the incidence of treatment‐emergent adverse events (TEAEs). Additional assessments included serum pharmacokinetics (PK), pharmacodynamics (PD), immunogenicity, and RA disease activity measures (DAS28‐CRP, Patient Global Assessment of Disease, and Physician Global Assessment of Disease). Results TEAEs occurred in 96.2% and 87.5% of patients receiving rozibafusp alfa and the placebo, respectively; most were mild or moderate in severity. Two (7.7%) patients treated with rozibafusp alfa reported serious TEAEs; none were considered treatment related. Multiple doses of rozibafusp alfa showed nonlinear PK (mean t1/2 = 4.6–9.5 days) and dose‐related, reversible PD (>90% ICOSL receptor occupancy in 210‐ and 420‐mg cohorts; reduction in naïve B cells and increase in memory B cells in all cohorts). Five (20%) patients developed anti–rozibafusp alfa antibodies, with no apparent impact on safety. RA disease activity showed greater numerical improvement from baseline with rozibafusp alfa versus the placebo in the 210‐ and 420‐mg cohorts. Conclusion Multiple ascending doses of rozibafusp alfa were well tolerated, with PK and PD reflecting dual ICOSL and BAFF blockade. Findings support further clinical evaluation of rozibafusp alfa in autoimmune disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Wang
- Amgen Inc. Thousand Oaks California
| | | | | | | | - Alan J. Kivitz
- Altoona Center for Clinical Research Duncansville Pennsylvania
| | | | | |
Collapse
|
12
|
Ding J, Jiang X, Cai Y, Pan S, Deng Y, Gao M, Lin Y, Zhao N, Wang Z, Yu H, Qiu H, Jin Y, Xue J, Guo Q, Ni L, Zhang Y, Hao Y, Guan Y. Telitacicept following plasma exchange in the treatment of subjects with recurrent neuromyelitis optica spectrum disorders: A single‐center, single‐arm, open‐label study. CNS Neurosci Ther 2022; 28:1613-1623. [PMID: 35851754 PMCID: PMC9437241 DOI: 10.1111/cns.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Neuromyelitis optica spectrum disorders (NMOSD), mainly mediated by B cells and AQP4 antibody, has a high rate of recurrence. Telitacicept is a novel drug specifically targeting the upstream signaling for the activation of B cell with its following production of autoimmune antibodies. Thus, it may be a promising approach. Our study preliminarily explored the potential safety and effectiveness of Telitacicept following plasma exchange in the treatment of recurrent NMOSD. Methods This was a single‐center, single‐arm, open‐label study enrolling eight patients with recurrent NMOSD in China. All patients received plasma exchange three times, followed by Telitacicept 240 mg every week for 46 times. The primary endpoint was the time of first recurrence after enrollment. Secondary end points included: changes in Expanded Disability Status Scale score, Optic Spinal Impairment Scale score, Hauser Ambulation Index, number of lesions on MRI, retinal nerve fiber layer thickness measured by optical coherence tomography, latency and amplitude of visual evoked potential, titer of AQP4 antibody, and immune parameters of blood. Safety was also assessed. The study was registered with Chictr.org.cn (ChiCTR1800019427). Results Eight eligible patients were enrolled. Relapse occurred in two patients (25%) and five patients (63%) remained relapse free after 48 weeks of treatment. The time to first recurrence was prolonged and the number of recurrences was reduced (p < 0.001, power of test = 1). One patient withdrew from the study due to low neutrophil count. No serious adverse events occurred. Conclusions In this small, uncontrolled study, Telitacicept following plasma exchange has the potential to be a safe treatment for patients with recurrent NMOSD. It may prolong the recurrence interval and reduces the annual count of recurrences. A multicenter randomized controlled study with a larger sample is thus feasible and needed to further assess its safety and efficacy.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shuting Pan
- Clinical Research Center, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ye Deng
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Meichun Gao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yan Lin
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ze Wang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Huiying Qiu
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yuyan Jin
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jiahui Xue
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Quan Guo
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Liping Ni
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ying Zhang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
13
|
Sevdali E, Block V, Lataretu M, Li H, Smulski CR, Briem JS, Heitz Y, Fischer B, Ramirez NJ, Grimbacher B, Jäck HM, Voll RE, Hölzer M, Schneider P, Eibel H. BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Rep 2022; 39:111019. [PMID: 35767961 DOI: 10.1016/j.celrep.2022.111019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.
Collapse
Affiliation(s)
- Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, University of Jena, Leutragraben 1, 07743 Jena, Germany
| | - Huiying Li
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E-Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Jana-Susann Briem
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Yannic Heitz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Beate Fischer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Neftali-Jose Ramirez
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Bodo Grimbacher
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Department of Medicine, Division of Immunology, University of Erlangen, Glückstraße 6, 91054 Erlangen, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Martin Hölzer
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany.
| |
Collapse
|
14
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) that often progresses to severe disability. Previous studies have highlighted the role of T cells in disease pathophysiology; however, the success of B-cell-targeted therapies has led to an increased interest in how B cells contribute to disease immunopathology. In this review, we summarize evidence of B-cell involvement in MS disease mechanisms, starting with pathology and moving on to review aspects of B cell immunobiology potentially relevant to MS. We describe current theories of critical B cell contributions to the inflammatory CNS milieu in MS, namely (i) production of autoantibodies, (ii) antigen presentation, (iii) production of proinflammatory cytokines (bystander activation), and (iv) EBV involvement. In the second part of the review, we summarize medications that have targeted B cells in patients with MS and their current position in the therapeutic armamentarium based on clinical trials and real-world data. Covered therapeutic strategies include the targeting of surface molecules such as CD20 (rituximab, ocrelizumab, ofatumumab, ublituximab) and CD19 (inebilizumab), and molecules necessary for B-cell activation such as B cell activating factor (BAFF) (belimumab) and Bruton's Tyrosine Kinase (BTK) (evobrutinib). We finally discuss the use of B-cell-targeted therapeutics in pregnancy.
Collapse
|
15
|
Dopamine receptor 1 expressing B cells exert a proinflammatory role in female patients with rheumatoid arthritis. Sci Rep 2022; 12:5985. [PMID: 35396380 PMCID: PMC8993840 DOI: 10.1038/s41598-022-09891-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic rheumatic disease with a clear sex-bias. Recent data indicated a role for dopamine in RA pathogenesis, while dopaminergic pathways can be modulated by estrogens. As defined mechanism of action of dopamine on B cell function in RA are unclear, we aimed to elucidate this, with special focus on sex-differences. Healthy controls (HC, n = 64) and RA patients (n = 61) were recruited. Expression of D1-D5 dopamine receptors (DRs) was investigated by flow cytometry on peripheral blood mononuclear cells (PBMCs). D1-like DRs were stimulated in vitro to assess effects on B cell activation and proliferation. Secretion of cytokines and dopamine content were measured by ELISA. All DRs were expressed on PBMCs of HC and RA patients. Dopamine content in PBMCs, and frequency of D1DR expressing B cells were significantly higher in RA females (p < 0.001). Expression of D1DR on RA B cells correlated positively with disease duration and severity only in women. Combined B cell and D1-like DR stimulation induced higher IL-8 and CCL-3 secretion from PBMCs of female RA patients compared to HC. These results indicate sex-specific differences in dopaminergic pathway in RA, with a proinflammatory feature of the D1DR pathway in women.
Collapse
|
16
|
Smulski CR, Zhang L, Burek M, Teixidó Rubio A, Briem JS, Sica MP, Sevdali E, Vigolo M, Willen L, Odermatt P, Istanbullu D, Herr S, Cavallari M, Hess H, Rizzi M, Eibel H, Schneider P. Ligand-independent oligomerization of TACI is controlled by the transmembrane domain and regulates proliferation of activated B cells. Cell Rep 2022; 38:110583. [PMID: 35354034 DOI: 10.1016/j.celrep.2022.110583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations.
Collapse
Affiliation(s)
- Cristian R Smulski
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany; Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina.
| | - Luyao Zhang
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Malte Burek
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Ariadna Teixidó Rubio
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Jana-Susann Briem
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Mauricio P Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina; Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Eirini Sevdali
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Patricia Odermatt
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Duygu Istanbullu
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Stephanie Herr
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | | | - Marta Rizzi
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
17
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
18
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Czaja AJ. Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharmacol Ther 2021; 54:902-922. [PMID: 34506662 DOI: 10.1111/apt.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The B cell activation system, consisting of B cell activating factor and a proliferation-inducing ligand, may have pathogenic effects in autoimmune hepatitis. AIMS To describe the biological actions of the B cell activation system, indicate its possible role in autoimmune diseases, and evaluate its prospects as a therapeutic target in autoimmune hepatitis METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS The B cell activating factor is crucial for the maturation and survival of B cells, and it can co-stimulate T cell activation, proliferation, and survival. It can also modulate the immune response by inducing interleukin 10 production by regulatory B cells. A proliferation-inducing ligand modulates and diversifies the antibody response by inducing class-switch recombination in B cells. It can also increase the proliferation, survival, and antigen activation of T cells. These immune stimulatory actions can be modulated by inducing proliferation of regulatory T cells. The B cell activation system has been implicated in diverse autoimmune diseases, and therapeutic blockade is a management strategy now being evaluated in autoimmune hepatitis. CONCLUSIONS The B cell activation system has profound effects on B and T cell function in autoimmune diseases. Blockade therapy is being actively evaluated in autoimmune hepatitis. Clarification of the critical pathogenic components of the B cell activation system will improve the targeting, efficacy, and safety of blockade therapy in this disease.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
20
|
Baert L, Ahmed MC, Manfroi B, Huard B. The number 13 of the family: a proliferation inducing ligand. Curr Opin Immunol 2021; 71:132-137. [PMID: 34411773 DOI: 10.1016/j.coi.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/29/2023]
Abstract
The TNF superfamily member a proliferation inducing ligand (APRIL, TNFSF13) plays a late role in humoral immunity at the level of antibody-producing plasmocytes. The recent characterization of the first immunodeficient patient with an inactivating mutation in the APRIL gene provided the last piece of functional data lacking in the human system. Based on this function, APRIL has been considered as a valuable target to dampen unwanted antibody production. After reviewing the late data acquired on the physiological function of APRIL in humoral immunity, we will here review the state of the art regarding APRIL targeting in autoimmune diseases.
Collapse
Affiliation(s)
- Laurie Baert
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5309, La Tronche, France
| | - Mashal Claude Ahmed
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5309, La Tronche, France
| | - Benoit Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5309, La Tronche, France
| | - Bertrand Huard
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5309, La Tronche, France.
| |
Collapse
|
21
|
Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, Meuth SG. Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015-2020. BioDrugs 2021; 34:587-610. [PMID: 32785877 PMCID: PMC7519896 DOI: 10.1007/s40259-020-00435-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT). Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale. The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT. Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Marc Pawlitzki
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas Huntemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
22
|
Ding J, Cai Y, Deng Y, Jiang X, Gao M, Lin Y, Zhao N, Wang Z, Yu H, Lv W, Zhang Y, Hao Y, Guan Y. Telitacicept Following Plasma Exchange in the Treatment of Subjects With Recurrent NMOSD: Study Protocol for a Single-Center, Single-Arm, Open-Label Study. Front Neurol 2021; 12:596791. [PMID: 33868140 PMCID: PMC8044936 DOI: 10.3389/fneur.2021.596791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune demyelinating disease that recurrently relapses and leads to severe disability. The available choices for disease prevention are few or intolerable. Previous studies suggested that telitacicept may provide a promising therapeutic strategy for autoimmune diseases involving B cells. Therefore, this study aims to assess the effectiveness and safety of telitacicept for recurrent NMOSD. Methods: We will perform a single-arm, single-center, open-label, specialist study with a total enrollment of eight participants. The treatment regimen includes plasma exchange three times and subcutaneous injection of telitacicept for 46 cycles, with a total period of 48 weeks. The primary endpoint is the time to first recurrence after enrollment. Secondary endpoints are Expanded Disability Status Scale (EDSS) score, Opticospinal Impairment Scale (OSIS) score, Hauser Ambulation Index, number of lesions on MRI, and changes in visual evoked potential (VEP), optical coherence tomography (OCT) and immunologic status. All adverse events after medication will be documented and investigated. Discussion: This study will explore the safety and effectiveness of telitacicept following plasma exchange regarding the time to recurrence in neuromyelitis optica spectrum disorder (NMOSD) for the first time. Clinical Trial Registration:Chictr.org.cn, identifier ChiCTR1800019427
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ye Deng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meichun Gao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Lin
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenwen Lv
- Clinical Research Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Zhang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Isenberg DA, Kao AH, Aydemir A, Merrill JT. Commentary: Systematic Review of Safety and Efficacy of Atacicept in Treating Immune-Mediated Disorders. Front Immunol 2020; 11:592639. [PMID: 33262771 PMCID: PMC7687657 DOI: 10.3389/fimmu.2020.592639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- David A. Isenberg
- Centre for Rheumatology/Division of Medicine, University College London, London, United Kingdom
| | - Amy H. Kao
- Global Clinical Development, EMD Serono Research and Development Institute, Inc., Billerica, MA, United States (an affiliate of Merck KGaA, Darmstadt, Germany
| | - Aida Aydemir
- Global Biostatistics, EMD Serono Research and Development Institute, Inc., Billerica, MA, United States (an affiliate of Merck KGaA, Darmstadt, Germany
| | - Joan T. Merrill
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
24
|
Biologic therapy in Sjögren's syndrome. Clin Rheumatol 2020; 40:2143-2154. [PMID: 33106929 DOI: 10.1007/s10067-020-05429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with complex and diverse clinical manifestations. It is characterized by lymphocyte infiltration of exocrine glands such as the salivary gland and lacrimal gland leading to insufficient secretion of the gland, manifested as dry mouth and dry eyes. In addition, it can involve extraglandular organs and cause systemic damage. The pathogenesis of SS is still unclear. At present, symptomatic treatment is the mainstay and there is a lack of effective therapy. With the development of molecular pathways underlying the pathogenesis of SS, more and more novel biological agents are used to treat SS. We summarized and analyzed the existing evidences on the efficacy of biological treatment of SS and their targets. Analysis of the efficacy of biological therapy and improvement of treatment strategies can help to give full play to its therapeutic advantages.
Collapse
|
25
|
Magliozzi R, Marastoni D, Calabrese M. The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1135-1145. [PMID: 32900236 DOI: 10.1080/14728222.2020.1821647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The complex system of BAFF (B-cell-activating factor of the TNF family) and APRIL (A proliferation-inducing ligand) has been studied in animal models of autoimmune diseases such as those resembling human systemic lupus erythematosus and Sjogren's syndrome and multiple sclerosis (MS). Accumulating evidence suggests that BAFF and APRIL have a physiological role in B cell immunity regulation, however inappropriate production of these factors may represent a key event which disrupts immune tolerance which is associated with systemic autoimmune diseases. AREAS COVERED We provide an update on the latest studies of the BAFF/APRIL system in multiple sclerosis, as well as on related clinical trials. EXPERT OPINION Experimental and clinical evidence suggests that increased BAFF levels may interfere directly and indirectly with B cell immunity; this can lead to breakdown of immune tolerance, the production of autoantibodies and continuous local intracerebral inflammation and brain tissue destruction. A more comprehensive understanding of the cell/molecular mechanism immune reactions specifically regulated by BAFF/APRIL in MS would better elucidate the specific cell phenotype targeted by actual anti-BAFF/APRIL therapies; this may enable the identification of either specific biomarkers of MS subgroups that would benefit of anti-BAFF/APRIL treatments or new targets of MS-specific anti-BAFF/APRIL therapies.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
26
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
27
|
Willen D, Uhl W, Wolna P, Papasouliotis O, Yalkinoglu Ö. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Atacicept in a Randomized Trial in Healthy Caucasian and Japanese Subjects. Eur J Drug Metab Pharmacokinet 2020; 45:27-40. [PMID: 31529406 PMCID: PMC6994531 DOI: 10.1007/s13318-019-00575-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background and Objective Atacicept is an inhibitor of the B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL), and is being studied in relation to immunological disease. Currently, limited data on atacicept are available in non-Caucasian subjects. Pharmacokinetic data from earlier studies of atacicept were derived using an enzyme-linked immunosorbent assay (ELISA), which was subsequently found to have inadequacies. Hence, a new bioanalytical ELISA for total atacicept was developed and validated. We conducted this randomized, double-blind, placebo-controlled phase I study to compare the safety, tolerability, pharmacokinetics, and pharmacodynamics of atacicept in healthy Japanese and Caucasian subjects while generating pharmacokinetic data using the new ELISA. Methods Japanese subjects aged ≥ 18 to ≤ 55 years (n = 24) were randomized (1:1:1:1) to a single subcutaneous dose of atacicept 25, 75, or 150 mg or placebo. Caucasian subjects were then enrolled to match the Japanese subjects’ gender, body weight (± 20%), and height (± 15%). Results Atacicept was well tolerated and there were no clinically significant differences in treatment-emergent adverse events (TEAEs), vital signs, or laboratory parameters between the Japanese and Caucasian subjects. Most (90%) TEAEs were mild; no severe or serious TEAEs or deaths occurred. Weight-adjusted atacicept exposure was comparable between ethnicities and across doses: the Japanese/Caucasian ratio of the area under the serum concentration–time curve from time zero to the last sampling point (AUC0–t) was 107.21% (90% CI 93.42–123.02%) and the Japanese/Caucasian ratio of maximum serum concentration (Cmax) was 95.74% (90% CI 74.26–123.43%; ANCOVA). Median time to reach Cmax (tmax) was 20–60 h across all subjects. Dose–exposure relationships were comparable for the two ethnicities, with dose-normalized AUC0–t decreasing with increasing dose, indicating nonlinear pharmacokinetics for the doses examined. There were no statistically significant differences between ethnicities in the pharmacokinetics–dose relationship. Some transient dose-related decreases in mean serum immunoglobulin (Ig)A and IgM, but not IgG, were observed after atacicept administration. There were small transient increases in peripheral B cell numbers in the first 4 days after dosing that were larger with atacicept than with placebo, with no apparent dose relationship. No anti-atacicept antibodies were detected. Conclusion The safety, pharmacokinetic, and pharmacodynamic profiles of atacicept in healthy Japanese subjects were comparable to those in healthy Caucasian subjects. EudraCT-ID: 2013-002703-34. Electronic supplementary material The online version of this article (10.1007/s13318-019-00575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Willen
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Wolfgang Uhl
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Peter Wolna
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Orestis Papasouliotis
- Merck Institute for Pharmacometrics (An Affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | |
Collapse
|
28
|
Parodis I, Stockfelt M, Sjöwall C. B Cell Therapy in Systemic Lupus Erythematosus: From Rationale to Clinical Practice. Front Med (Lausanne) 2020; 7:316. [PMID: 32754605 PMCID: PMC7381321 DOI: 10.3389/fmed.2020.00316] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
B cell hyperactivity and breach of tolerance constitute hallmarks of systemic lupus erythematosus (SLE). The heterogeneity of disease manifestations and relatively rare prevalence of SLE have posed difficulties in trial design and contributed to a slow pace for drug development. The anti-BAFF monoclonal antibody belimumab is still the sole targeted therapy licensed for SLE, lending credence to the widely accepted notion that B cells play central roles in lupus pathogenesis. However, more therapeutic agents directed toward B cells or B cell-related pathways are used off-label or have been trialed in SLE. The anti-CD20 monoclonal antibody rituximab has been used to treat refractory SLE during the last two decades, and the anti-type I IFN receptor anifrolumab is currently awaiting approval after one phase III clinical trial which met its primary endpoint and one phase III trial which met key secondary endpoints. While the latter does not directly affect the maturation and antibody production activity of B cells, it is expected to affect the contribution of B cells in proinflammatory cytokine excretion. The proteasome inhibitor bortezomib, primarily directed toward the plasma cells, has been used in few severe cases as an escape regimen. Collectively, current clinical experience and primary results of ongoing clinical trials prophesy that B cell therapies of selective targets will have an established place in the future personalized therapeutic management of lupus patients.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Marit Stockfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160:325-335. [PMID: 32249925 DOI: 10.1111/imm.13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Kaegi C, Steiner UC, Wuest B, Crowley C, Boyman O. Systematic Review of Safety and Efficacy of Atacicept in Treating Immune-Mediated Disorders. Front Immunol 2020; 11:433. [PMID: 32265917 PMCID: PMC7105675 DOI: 10.3389/fimmu.2020.00433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Biological agents (also termed biologics or biologicals) play a growingly central role in the treatment of immunological diseases. However, the numerous studies published on biologics complicate the decision on the most appropriate biologic for a given disease. We aim to address this problem by publishing a series of systematic reviews evaluating the safety and efficacy of B cell-targeting biologics for the treatment of immune-mediated diseases. This article assesses the safety and efficacy of atacicept, a recombinant fusion protein consisting of the binding portion of transmembrane activator and CAML interactor (TACI; also known as tumor necrosis factor receptor superfamily member 13B), which is able to bind the cytokines B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL). Objective: To evaluate atacicept's safety and efficacy for the treatment of immune-mediated disorders compared to placebo, conventional treatment or other biologics. Methods: The PRISMA checklist guided the reporting of the data. We searched the PubMed database between 4 October 2016 and 26 July 2018 concentrating on immune-mediated disorders. Results: The literature search identified 118 articles. After screening titles and abstracts against the inclusion and exclusion criteria and assessing full texts, ten articles were finally included in a narrative synthesis. Conclusions: Atacicept failed to show an effect in multiple sclerosis, optic neuritis, rheumatoid arthritis, and systemic lupus erythematosus. In patients with systemic lupus erythematosus, atacicept led to increased infection rates, but this adverse effect was not seen in the other treated diseases.
Collapse
Affiliation(s)
- Celine Kaegi
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Urs C Steiner
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Wuest
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Catherine Crowley
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Baker D, Pryce G, James LK, Schmierer K, Giovannoni G. Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. Eur J Neurol 2019; 27:221-228. [DOI: 10.1111/ene.14105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- D. Baker
- Blizard Institute Queen Mary University of London LondonUK
| | - G. Pryce
- Blizard Institute Queen Mary University of London LondonUK
| | - L. K. James
- Blizard Institute Queen Mary University of London LondonUK
| | - K. Schmierer
- Blizard Institute Queen Mary University of London LondonUK
- Clinical Board: Medicine [Neuroscience] Barts Health NHS Trust London UK
| | - G. Giovannoni
- Blizard Institute Queen Mary University of London LondonUK
- Clinical Board: Medicine [Neuroscience] Barts Health NHS Trust London UK
| |
Collapse
|
32
|
Gordon C, Bassi R, Chang P, Kao A, Jayne D, Wofsy D, Fleuranceau-Morel P. Integrated safety profile of atacicept: an analysis of pooled data from the atacicept clinical trial programme. Rheumatol Adv Pract 2019; 3:rkz021. [PMID: 31528843 PMCID: PMC6735746 DOI: 10.1093/rap/rkz021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
Objective To characterize the overall safety profile of atacicept, we conducted an integrated analysis of pooled safety data from all 17 clinical studies to date. Methods Three data sets were used to investigate safety endpoints: a double-blind placebo-controlled set (n = 1568), an SLE set (n = 761) and a full analysis set (n = 1845; including all 17 studies). Results Of 1568 patients in the double-blind placebo-controlled-set, 30.8% received placebo, and 8.2, 24.5 and 36.5% received atacicept 25, 75 and 150 mg, respectively. Treatment-emergent adverse event (TEAE) rates (adjusted by treatment-exposure) were generally higher with atacicept vs placebo, but no consistent association was found between atacicept dose and specific TEAEs or mortality. Serious infection and serious TEAE rates were similar for atacicept and placebo. The TEAE-related discontinuation rates were higher with atacicept vs placebo (16.1 vs 10.9/100 patient-years). In the full analysis set, 11 deaths occurred during treatment. Across indications, exposure-adjusted mortality rates/100 patient-years (95% CI) were 3.60 (0.90, 14.38), 0.34 (0.05, 2.43) and 1.18 (0.49, 2.82) with atacicept 25, 75 and 150 mg, respectively, and 0.44 (0.06, 3.12) with placebo. In SLE patients, exposure-adjusted mortality rates were 1.45 (0.54, 3.87) with atacicept 150 mg and 0.78 (0.29, 2.07) across all atacicept-treated patients. No deaths occurred with atacicept 75 mg or placebo. In the SLE and double-blind placebo-controlled sets, pharmacodynamic effects of atacicept were not associated with increased infection rates. Conclusion The results of this integrated safety analysis support further development and evaluation of atacicept in selected patients for whom potential benefits might outweigh risks.
Collapse
Affiliation(s)
- Caroline Gordon
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Roberto Bassi
- EMD Serono Research & Development Institute, Inc. (A Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Peter Chang
- EMD Serono Research & Development Institute, Inc. (A Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Amy Kao
- EMD Serono Research & Development Institute, Inc. (A Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David Wofsy
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, CA, USA
| | - Patricia Fleuranceau-Morel
- EMD Serono Research & Development Institute, Inc. (A Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| |
Collapse
|
33
|
Zhou B, Zhang H, Su X, Luo Y, Li X, Yu C, Xie Q, Xia X, He G, Yang L. Therapeutic effects of a novel BAFF blocker on arthritis. Signal Transduct Target Ther 2019; 4:19. [PMID: 31231554 PMCID: PMC6565627 DOI: 10.1038/s41392-019-0051-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
B-cell targeted therapy is effective for autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis (RA), although there are setbacks in RA clinical trials. In this study, we designed a novel B-cell activating factor (BAFF) antagonist: BAFF-Trap, a recombinant glycoprotein with BAFF-binding domains of two BAFF receptors (TACI and Br3) linked to Fc domain of human IgG1. Unlike TACI-Fc, BAFF-Trap bound BAFF but not APRIL (a proliferation-inducing ligand), and significantly suppressed the development of collagen-induced arthritis and adjuvant-induced arthritis. Furthermore, BAFF-Trap inhibited proinflammatory cytokine expression, ameliorated joint damage and suppressed B- and T-cell activation. BAFF-Trap reduced dendritic cells in joints, and increased regulatory T cell, regulatory B-cell, and M2 macrophage. The function of BAFF-Trap was related to inhibition of canonical and noncanonical NF-κB activation. Thus, BAFF-Trap may be a valuable agent for the effective treatment of RA.
Collapse
Affiliation(s)
- Bailing Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan China
- Henan Engineering Laboratory of Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan China
| | - Xiaoqing Su
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Yi Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Xiaopeng Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Chaoheng Yu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Qibing Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Xuyang Xia
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Gu He
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| | - Li Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan China
| |
Collapse
|
34
|
Wildschütz L, Ackermann D, Witten A, Kasper M, Busch M, Glander S, Melkonyan H, Walscheid K, Tappeiner C, Thanos S, Barysenka A, Koch J, Heinz C, Laffer B, Bauer D, Stoll M, König S, Heiligenhaus A. Transcriptomic and proteomic analysis of iris tissue and aqueous humor in juvenile idiopathic arthritis-associated uveitis. J Autoimmun 2019; 100:75-83. [PMID: 30885419 DOI: 10.1016/j.jaut.2019.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Gene and protein expression profiles of iris biopsies, aqueous humor (AqH), and sera in patients with juvenile idiopathic arthritis-associated uveitis (JIAU) in comparison to control patients with primary open-angle glaucoma (POAG) and HLA-B27-positive acute anterior uveitis (AAU) were investigated. Via RNA Sequencing (RNA-Seq) and mass spectrometry-based protein expression analyses 136 genes and 56 proteins could be identified as being significantly differentially expressed (DE) between the JIAU and POAG group. Gene expression of different immunoglobulin (Ig) components as well as of the B cell-associated factors ID3, ID1, and EBF1 was significantly upregulated in the JIAU group as compared to POAG patients. qRT-PCR analysis showed a significantly higher gene expression of the B cell-related genes CD19, CD20, CD27, CD138, and MZB1 in the JIAU group. At the protein level, a significantly higher expression of Ig components in JIAU than in POAG was confirmed. The B cell-associated protein MZB1 showed a higher expression in JIAU patients than in POAG which was confirmed by western blot analysis. Using bead-based immunoassay analysis we were able to detect a significantly higher concentration of the B cell-activating and survival factors BAFF, APRIL, and IL-6 in the AqH of JIAU and AAU patients than in POAG patients. The intraocularly upregulated B cell-specific genes and proteins in iris tissue suggest that B cells participate in the immunopathology of JIAU. The intracameral environment in JIAU may facilitate local effector and survival functions of B cells, leading to disease course typical for anterior uveitis.
Collapse
Affiliation(s)
- Lena Wildschütz
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.
| | - Doreen Ackermann
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, University of Münster, Germany
| | - Anika Witten
- Core Facility Genomics, University of Münster, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | | | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology at University of Münster, Germany
| | - Karoline Walscheid
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Christoph Tappeiner
- Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| | - Solon Thanos
- Institute of Experimental Ophthalmology at University of Münster, Germany
| | | | - Jörg Koch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Carsten Heinz
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany; Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany; Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Monika Stoll
- Core Facility Genomics, University of Münster, Germany
| | - Simone König
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, University of Münster, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany; Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Patel SY, Carbone J, Jolles S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front Immunol 2019; 10:33. [PMID: 30800120 PMCID: PMC6376447 DOI: 10.3389/fimmu.2019.00033] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antibody deficiency or hypogammaglobulinemia can have primary or secondary etiologies. Primary antibody deficiency (PAD) is the result of intrinsic genetic defects, whereas secondary antibody deficiency may arise as a consequence of underlying conditions or medication use. On a global level, malnutrition, HIV, and malaria are major causes of secondary immunodeficiency. In this review we consider secondary antibody deficiency, for which common causes include hematological malignancies, such as chronic lymphocytic leukemia or multiple myeloma, and their treatment, protein-losing states, and side effects of a number of immunosuppressive agents and procedures involved in solid organ transplantation. Secondary antibody deficiency is not only much more common than PAD, but is also being increasingly recognized with the wider and more prolonged use of a growing list of agents targeting B cells. SAD may thus present to a broad range of specialties and is associated with an increased risk of infection. Early diagnosis and intervention is key to avoiding morbidity and mortality. Optimizing treatment requires careful clinical and laboratory assessment and may involve close monitoring of risk parameters, vaccination, antibiotic strategies, and in some patients, immunoglobulin replacement therapy (IgRT). This review discusses the rapidly evolving list of underlying causes of secondary antibody deficiency, specifically focusing on therapies targeting B cells, alongside recent advances in screening, biomarkers of risk for the development of secondary antibody deficiency, diagnosis, monitoring, and management.
Collapse
Affiliation(s)
- Smita Y. Patel
- Clinical Immunology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Javier Carbone
- Clinical Immunology Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
36
|
Rheumatoid arthritis treated with 6-months of first-line biologic or biosimilar therapy: an updated systematic review and network meta-analysis. Int J Technol Assess Health Care 2019; 35:36-44. [PMID: 30722803 DOI: 10.1017/s0266462318003628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of this study was to estimate the effectiveness of first-line biologic disease modifying drugs(boDMARDs), and their approved biosimilars (bsDMARDs), compared with conventional (csDMARD) treatment, in terms of ACR (American College of Rheumatology) and EULAR (European League against Rheumatism) responses. METHODS Systematic literature search, on eight databases to January 2017, sought ACR and EULAR data from randomized controlled trials (RCTs) of boDMARDs / bsDMARDs (in combination with csDMARDs, or monotherapy). Two adult populations: methotrexate (MTX)-naïve patients with severe active RA; and csDMARD-experienced patients with moderate-to-severe active RA. Network meta-analyses (NMA) were conducted using a Bayesian Markov chain Monte Carlo simulation using a random effects model with a probit link function for ordered categorical. RESULTS Forty-six RCTs met the eligibility criteria. In the MTX-naïve severe active RA population, no biosimilar trials meeting the inclusion criteria were identified. MTX plus methylprednisolone (MP) was most likely to achieve the best ACR response. There was insufficient evidence that combination boDMARDs was superior to intensive (two or more) csDMARDs. In the csDMARD-experienced, moderate-to-severe RA population, the greatest effects for ACR responses were associated with tocilizumab (TCZ) monotherapy, and combination therapy (plus MTX) with bsDMARD etanercept (ETN) SB4, boDMARD ETN and TCZ. These treatments also had the greatest effects on EULAR responses. No clear differences were found between the boDMARDs and their bsDMARDs. CONCLUSIONS In MTX-naïve patients, there was insufficient evidence that combination boDMARDs was superior to two or more csDMARDs. In csDMARD-experienced patients, boDMARDs and bsDMARDs were comparable and all combination boDMARDs / bsDMARDs were superior to single csDMARD.
Collapse
|
37
|
Merrill JT, Wallace DJ, Wax S, Kao A, Fraser PA, Chang P, Isenberg D. Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus: Results of a Twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, Phase IIb Study. Arthritis Rheumatol 2019; 70:266-276. [PMID: 29073347 PMCID: PMC6099253 DOI: 10.1002/art.40360] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023]
Abstract
Objective To evaluate the efficacy and safety of atacicept, an antagonist of B lymphocyte stimulator/APRIL–mediated B cell activation, in patients with systemic lupus erythematosus (SLE). Methods ADDRESS II is a 24‐week, multicenter, randomized, double‐blind, placebo‐controlled, parallel‐arm, phase IIb study evaluating the safety and efficacy of atacicept in patients with SLE (ClinicalTrials.gov identifier NCT01972568). Patients with active, autoantibody‐positive SLE receiving standard therapy were randomized (1:1:1) to receive atacicept (75 mg or 150 mg) or placebo for 24 weeks. The primary end point was the SLE responder index 4 (SRI‐4) at week 24. Results The intent‐to‐treat (ITT) population included 306 patients. There was a trend toward an improved SRI‐4 response rate with atacicept 75 mg (57.8%; adjusted odds ratio [OR] 1.78, P = 0.045) and 150 mg (53.8%; adjusted OR 1.56, P = 0.121) at week 24 as compared with placebo (44.0%) (primary analysis; using the screening visit as baseline). In a prespecified sensitivity analysis using study day 1 as baseline, a significantly larger proportion of patients receiving atacicept 75 mg and 150 mg achieved an SRI‐4 response at week 24 compared with placebo. In predefined subpopulations with high levels of disease activity (HDA) at baseline, serologically active disease, or both, statistically significant improvements in the SRI‐4 and SRI‐6 response rates were seen with atacicept versus placebo. A severe risk of disease flare was reduced with atacicept therapy in both the ITT and the HDA populations. The risks of serious adverse events and serious or severe infection were not increased with atacicept as compared with placebo. Conclusion Atacicept treatment showed evidence of efficacy in SLE, particularly in HDA and serologically active patients. Reductions in disease activity and severe flare were observed with atacicept treatment, with an acceptable safety profile.
Collapse
Affiliation(s)
- Joan T Merrill
- University of Oklahoma Health Sciences Center, Oklahoma City
| | - Daniel J Wallace
- Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Stephen Wax
- Serono Research and Development Institute, Billerica, Massachusetts
| | - Amy Kao
- Serono Research and Development Institute, Billerica, Massachusetts
| | | | - Peter Chang
- Serono Research and Development Institute, Billerica, Massachusetts
| | | | | |
Collapse
|
38
|
Ma K, Li L, Liu C, Zhou L, Zhou X. Efficacy and safety of various anti-rheumatic treatments for patients with rheumatoid arthritis: a network meta-analysis. Arch Med Sci 2019; 15:33-54. [PMID: 30697252 PMCID: PMC6348345 DOI: 10.5114/aoms.2018.73714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/22/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Biologics and traditional disease-modifying anti-rheumatic drugs (DMARDs) are generally used in treating patients with rheumatoid arthritis (RA). Previous studies have presented abundant data and information about the efficacy of such treatments, but the results were incomplete and inconclusive. This network meta-analysis was conducted to compare and assess the efficacy and safety of 15 therapies employing biologics and DMARDs for RA patients. MATERIAL AND METHODS Six outcomes (American College of Rheumatology 20% response rate (ACR20), ACR50, ACR70, remission, adverse events (AEs) and serious adverse events (SAEs)) were used to evaluate the efficacy and safety of different treatments. The node-splitting method was used to assess the inconsistency, and the rank probabilities of the therapies were estimated by surface under the cumulative ranking curve. Besides, Jadad scale was used to evaluate the methodological quality of eligible studies. RESULTS A total of 67 randomized controlled trials with 20,898 patients met the inclusion criteria. Most of the therapies presented better performance than conventional DMARDs (cDMARDs) and placebo in ACR20, ACR50 and ACR70. Conversely, the safety of cDMARDs and placebo seemed to be superior in AEs and SAEs. Also, tocilizumab (TCZ) and TCZ + methotrexate (MTX) showed better remission in pain compared to other treatments. Overall, certolizumab pegol (CZP) + MTX and TCZ + MTX had higher probability than the other treatments in efficacy outcomes. CONCLUSIONS We recommend CZP + MTX as the optimal drug therapy because it has the highest ranking in efficacy outcomes and relatively low risk of adverse events. TCZ + MTX is recommended as an alternative. Abatacept (ABT) and cDMARDs are not recommended due to their low efficacy.
Collapse
Affiliation(s)
- Kexun Ma
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Li
- Department of Rheumatology, Taizhou Hospital of TCM, Taizhou, Jiangsu, China
| | - Chunhui Liu
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingling Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueping Zhou
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
The role of APRIL - A proliferation inducing ligand - In autoimmune diseases and expectations from its targeting. J Autoimmun 2018; 95:179-190. [DOI: 10.1016/j.jaut.2018.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
40
|
Pickles T, Christensen R, Tam LS, Simon LS, Choy EH. Early phase and adaptive design clinical trials in rheumatoid arthritis: a systematic review of early phase trials. Rheumatol Adv Pract 2018; 2:rky045. [PMID: 31431982 PMCID: PMC6649924 DOI: 10.1093/rap/rky045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Objective Adaptive designs can enable highly sophisticated and efficient early phase trials, but the clinical inference from these trials is surrounded by complexity, and currently there is a paucity but steadily increasing amount of use of these designs in all fields of medicine. We aim to review early phase trials in RA to discover those that have used adaptive designs and benchmark trial characteristics. Methods From an OVID search for journal articles reporting the results of early phase trials in rheumatology, 35 studies were found, with 9 subsequently excluded; 11 were added from manual searches and 19 from searching the references. Study characteristics were extracted from the 56 papers (describing 62 trials), including the number of arms, number of patients, the primary outcome and when it was measured. Result One early phase trial using an adaptive design was found. The benchmark early phase trial in RA is a phase II double-blinded randomized trial, with four arms (one control and three intervention), each with 34 patients, and ACR20 measured at 16 weeks as the primary outcome. Conclusion The one adaptive design reviewed here, and a simulation study found in the search, both indicate that adaptive designs can be applied to early phase trials in RA. We have described the benchmark, which the efficiency of early phase trials using an adaptive design needs to exceed. These efficient designs could drive down numbers required, time for data collection and thus cost. Changes have been suggested, but more needs to be done.
Collapse
Affiliation(s)
- Tim Pickles
- Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University.,Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | - Ernest H Choy
- Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University
| |
Collapse
|
41
|
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Suárez A. Profiling of B-Cell Factors and Their Decoy Receptors in Rheumatoid Arthritis: Association With Clinical Features and Treatment Outcomes. Front Immunol 2018; 9:2351. [PMID: 30369929 PMCID: PMC6194314 DOI: 10.3389/fimmu.2018.02351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction: B-cell activation is pivotal in rheumatoid arthritis (RA) pathogenesis and represents a relevant therapeutic target. The main aim of this study was to characterize the profiles of B-cell factors and their decoy receptors in RA and evaluate their clinical relevance. Methods: sBLyS, sAPRIL, sBCMA, sTACI, sBLyS-R, and several cytokines' serum levels were measured by immunoassays in 104 RA patients and 33 healthy controls (HC). An additional group of 42 systemic lupus erythematosus (SLE) patients were enrolled as disease controls. Whole blood IFI44, IFI44L, IFI6, and MX1 gene expression was measured and averaged into an IFN-score. BLyS membrane expression (mBLyS) was assessed on blood cell subsets by flow cytometry. Results: increased sAPRIL and sBCMA levels were found in RA, whereas BLyS was elevated in very early RA (VERA). No differences were observed for sTACI and sBLyS-R. An increased sBLyS/sBLyS-R ratio was associated with poor clinical outcome at 6 and 12 months in VERA, whereas a positive association with disease activity was observed in established disease. Increased mBLyS expression was found on monocytes, mDCs, neutrophils and B-cells in RA, to a similar extent that in SLE patients. Cluster analysis identified a specific B-cell factors profile overrepresented in RA and associated with autoantibodies, elevated proinflammatory cytokines (IFNα, MIP1α, TNFα, IL-37, and GM-CSF) and increased type-I IFN signature. Increasing sBCMA and sBLyS serum levels upon treatment and mBLyS expression at baseline on monocytes and mDCs, but not B-cells, were associated with poor clinical outcome upon TNFα-blockade. Conclusions: profound and complex alterations of soluble and membrane-bound B-cell factors are observed in RA associated with clinical outcomes, thus supporting its applicability to guide patient stratification along disease course.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Mercedes Alperi-López
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Francisco J Ballina-García
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
42
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018; 19:696-707. [PMID: 29925992 DOI: 10.1038/s41590-018-0135-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
45
|
Stevenson M, Archer R, Tosh J, Simpson E, Everson-Hock E, Stevens J, Hernandez-Alava M, Paisley S, Dickinson K, Scott D, Young A, Wailoo A. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation. Health Technol Assess 2018; 20:1-610. [PMID: 27140438 DOI: 10.3310/hta20350] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increasing disability, reduced quality of life and substantial costs (as a result of both intervention acquisition and hospitalisation). The objective was to assess the clinical effectiveness and cost-effectiveness of seven biologic disease-modifying antirheumatic drugs (bDMARDs) compared with each other and conventional disease-modifying antirheumatic drugs (cDMARDs). The decision problem was divided into those patients who were cDMARD naive and those who were cDMARD experienced; whether a patient had severe or moderate to severe disease; and whether or not an individual could tolerate methotrexate (MTX). DATA SOURCES The following databases were searched: MEDLINE from 1948 to July 2013; EMBASE from 1980 to July 2013; Cochrane Database of Systematic Reviews from 1996 to May 2013; Cochrane Central Register of Controlled Trials from 1898 to May 2013; Health Technology Assessment Database from 1995 to May 2013; Database of Abstracts of Reviews of Effects from 1995 to May 2013; Cumulative Index to Nursing and Allied Health Literature from 1982 to April 2013; and TOXLINE from 1840 to July 2013. Studies were eligible for inclusion if they evaluated the impact of a bDMARD used within licensed indications on an outcome of interest compared against an appropriate comparator in one of the stated population subgroups within a randomised controlled trial (RCT). Outcomes of interest included American College of Rheumatology (ACR) scores and European League Against Rheumatism (EULAR) response. Interrogation of Early Rheumatoid Arthritis Study (ERAS) data was undertaken to assess the Health Assessment Questionnaire (HAQ) progression while on cDMARDs. METHODS Network meta-analyses (NMAs) were undertaken for patients who were cDMARD naive and for those who were cDMARD experienced. These were undertaken separately for EULAR and ACR data. Sensitivity analyses were undertaken to explore the impact of including RCTs with a small proportion of bDMARD experienced patients and where MTX exposure was deemed insufficient. A mathematical model was constructed to simulate the experiences of hypothetical patients. The model was based on EULAR response as this is commonly used in clinical practice in England. Observational databases, published literature and NMA results were used to populate the model. The outcome measure was cost per quality-adjusted life-year (QALY) gained. RESULTS Sixty RCTs met the review inclusion criteria for clinical effectiveness, 38 of these trials provided ACR and/or EULAR response data for the NMA. Fourteen additional trials contributed data to sensitivity analyses. There was uncertainty in the relative effectiveness of the interventions. It was not clear whether or not formal ranking of interventions would result in clinically meaningful differences. Results from the analysis of ERAS data indicated that historical assumptions regarding HAQ progression had been pessimistic. The typical incremental cost per QALY of bDMARDs compared with cDMARDs alone for those with severe RA is > £40,000. This increases for those who cannot tolerate MTX (£50,000) and is > £60,000 per QALY when bDMARDs were used prior to cDMARDs. Values for individuals with moderate to severe RA were higher than those with severe RA. Results produced using EULAR and ACR data were similar. The key parameter that affected the results is the assumed HAQ progression while on cDMARDs. When historic assumptions were used typical incremental cost per QALY values fell to £38,000 for those with severe disease who could tolerate MTX. CONCLUSIONS bDMARDs appear to have cost per QALY values greater than the thresholds stated by the National Institute for Health and Care Excellence for interventions to be cost-effective. Future research priorities include: the evaluation of the long-term HAQ trajectory while on cDMARDs; the relationship between HAQ direct medical costs; and whether or not bDMARDs could be stopped once a patient has achieved a stated target (e.g. remission). STUDY REGISTRATION This study is registered as PROSPERO CRD42012003386. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Rachel Archer
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jon Tosh
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Emma Simpson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Emma Everson-Hock
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - John Stevens
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Suzy Paisley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Kath Dickinson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - David Scott
- Department of Rheumatology, King's College Hospital NHS Foundation Trust, London, UK
| | - Adam Young
- Department of Rheumatology, West Hertfordshire Hospitals NHS Trust, Hertfordshire, UK
| | - Allan Wailoo
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
Scherer HU, Huizinga TWJ, Krönke G, Schett G, Toes REM. The B cell response to citrullinated antigens in the development of rheumatoid arthritis. Nat Rev Rheumatol 2018; 14:157-169. [DOI: 10.1038/nrrheum.2018.10] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Fillatreau S. B cells and their cytokine activities implications in human diseases. Clin Immunol 2018; 186:26-31. [PMID: 28736271 PMCID: PMC5844600 DOI: 10.1016/j.clim.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
B cells are the only cell type that can give rise to antibody-producing cells, and the only cell type whose selective depletion can, today, lead to an improvement of a wide range of immune-mediated inflammatory diseases, including disorders not primarily driven by autoantibodies. Here, I discuss this paradoxical observation, and propose that the capacity of B cells to act as cytokine-producing cells explains how they can control monocyte activity and subsequently disease pathogenesis. Together with current data on the effect of anti-CD20 B cell-depleting reagents in the clinic, this novel knowledge on B cell heterogeneity opens the way for novel safer and more efficient strategies to target B cells. The forthcoming identification of disease-relevant B cell subsets is awaited to permit their monitoring and specific targeting in a personalized medicine approach.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Institute, Berlin, Germany.
| |
Collapse
|
48
|
Samy E, Wax S, Huard B, Hess H, Schneider P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol 2017; 36:3-19. [PMID: 28215100 DOI: 10.1080/08830185.2016.1276903] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The B cell-stimulating molecules, BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand), are critical factors in the maintenance of the B cell pool and humoral immunity. In addition, BAFF and APRIL are involved in the pathogenesis of a number of human autoimmune diseases, with elevated levels of these cytokines detected in the sera of patients with systemic lupus erythematosus (SLE), IgA nephropathy, Sjögren's syndrome, and rheumatoid arthritis. As such, both molecules are rational targets for new therapies in B cell-driven autoimmune diseases, and several inhibitors of BAFF or BAFF and APRIL together have been investigated in clinical trials. These include the BAFF/APRIL dual inhibitor, atacicept, and the BAFF inhibitor, belimumab, which is approved as an add-on therapy for patients with active SLE. Post hoc analyses of these trials indicate that baseline serum levels of BAFF and BAFF/APRIL correlate with treatment response to belimumab and atacicept, respectively, suggesting a role for the two molecules as predictive biomarkers. It will, however, be important to refine future testing to identify active forms of BAFF and APRIL in the circulation, as well as to distinguish between homotrimer and heteromer configurations. In this review, we discuss the rationale for dual BAFF/APRIL inhibition versus single BAFF inhibition in autoimmune disease, by focusing on the similarities and differences between the physiological and pathogenic roles of the two molecules. A summary of the preclinical and clinical data currently available is also presented.
Collapse
Affiliation(s)
- Eileen Samy
- a EMD Serono Research & Development Institute, Inc. , Billerica , Massachusetts , USA
| | - Stephen Wax
- a EMD Serono Research & Development Institute, Inc. , Billerica , Massachusetts , USA
| | - Bertrand Huard
- b Institute for Advanced Biosciences , University Grenoble Alpes , INSERM U1209, Grenoble , France
| | | | - Pascal Schneider
- d Department of Biochemistry , University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
49
|
Land J, Lintermans LL, Stegeman CA, Muñoz-Elías EJ, Tarcha EJ, Iadonato SP, Heeringa P, Rutgers A, Abdulahad WH. Kv1.3 Channel Blockade Modulates the Effector Function of B Cells in Granulomatosis with Polyangiitis. Front Immunol 2017; 8:1205. [PMID: 29018452 PMCID: PMC5622953 DOI: 10.3389/fimmu.2017.01205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
B cells are central to the pathogenesis of granulomatosis with polyangiitis (GPA), exhibiting both (auto)antibody-dependent and -independent properties. Class-switched memory B cells in particular are a major source of pathogenic autoantibodies. These cells are characterized by high expression levels of Kv1.3 potassium channels, which may offer therapeutic potential for Kv1.3 blockade. In this study, we investigated the effect of the highly potent Kv1.3 blocker ShK-186 on B cell properties in GPA in vitro. Circulating B cell subsets were determined from 33 GPA patients and 17 healthy controls (HCs). Peripheral blood mononuclear cells (PBMCs) from GPA patients, and HCs were stimulated in vitro in the presence and absence of ShK-186. The production of total and antineutrophil cytoplasmic antibodies targeting proteinase 3 (PR3-ANCA) IgG was analyzed by enzyme-linked immunosorbent assay and Phadia EliA, respectively. In addition, effects of ShK-186 on B cell proliferation and cytokine production were determined by flow cytometry. The frequency of circulating switched and unswitched memory B cells was decreased in GPA patients as compared to HC. ShK-186 suppressed the production of both total and PR3-ANCA IgG in stimulated PBMCs. A strong decrease in production of tumor necrosis factor alpha (TNFα), interleukin (IL)-2, and interferon gamma was observed upon ShK-186 treatment, while effects on IL-10 production were less pronounced. As such, ShK-186 modulated the TNFα/IL-10 ratio among B cells, resulting in a relative increase in the regulatory B cell pool. ShK-186 modulates the effector functions of B cells in vitro by decreasing autoantibody and pro-inflammatory cytokine production. Kv1.3 channel blockade may hold promise as a novel therapeutic strategy in GPA and other B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Judith Land
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017; 389:2328-2337. [PMID: 28612747 DOI: 10.1016/s0140-6736(17)31472-1] [Citation(s) in RCA: 862] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune disease that causes progressive articular damage, functional loss, and comorbidity. The development of effective biologics and small-molecule kinase inhibitors in the past two decades has substantially improved clinical outcomes. Just as understanding of pathogenesis has led in large part to the development of drugs, so have mode-of-action studies of these specific immune-targeted agents revealed which immune pathways drive articular inflammation and related comorbidities. Cytokine inhibitors have definitively proven a critical role for tumour necrosis factor α and interleukin 6 in disease pathogenesis and possibly also for granulocyte-macrophage colony-stimulating factor. More recently, clinical trials with Janus kinase (JAK) inhibitors have shown that cytokine receptors that signal through the JAK/STAT signalling pathway are important for disease, informing the pathogenetic function of additional cytokines (such as the interferons). Finally, successful use of costimulatory blockade and B-cell depletion in the clinic has revealed that the adaptive immune response and the downstream events initiated by these cells participate directly in synovial inflammation. Taken together, it becomes apparent that understanding the effects of specific immune interventions can elucidate definitive molecular or cellular nodes that are essential to maintain complex inflammatory networks that subserve diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|