1
|
Zhang C, Liang D, Liu Z. Primary immunodeficiency as a cause of immune-mediated kidney diseases. Nephrol Dial Transplant 2024; 39:1772-1784. [PMID: 38772735 PMCID: PMC11522874 DOI: 10.1093/ndt/gfae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024] Open
Abstract
Primary immunodeficiency (PID) is no longer defined by infections alone, and autoimmunity is an accompanying manifestation of PID. Recurrent infections may trigger autoimmunity through molecular mimicry, bystander activation or superantigens. The diagnosis of PID is still challenging, but genetic analysis reveals the underlying link between PID and autoimmunity. Mutations in relevant genes affecting central and peripheral immune tolerance, regulatory T-cell function, expansion of autoreactive lymphocytes, antigen clearance, hyperactivation of type I interferon and nuclear factor-κB pathways have all been implicated in triggering autoimmunity in PID. Autoimmunity in PID leads to chronic inflammation, tissue damage and organ failure, and increases the mortality of patients with PID. The kidneys are inextricably linked with the immune system, and kidney diseases can be mediated by both infection and autoimmunity/inflammation in PID patients. The manifestations of kidney involvement in PID patients are very heterogeneous and include lupus nephritis, C3 glomerulopathy, kidney thrombotic microangiopathy, vasculitis and interstitial nephritis. Patients with PID-caused kidney diseases have defined immune function defects and may benefit from pathway-based biologics, stem cell transplantation or gene therapy. Early diagnosis and appropriate treatment of PID are crucial for reducing the mortality rate and improving organ function and quality of life.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
3
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
4
|
Bhattad S, Singh N, Janardhanan J, Kumar H, Ali SMN, Arigela K, Kundaragi N, Vidyashankar P, Kotecha U, Ginigeri C. Profile of juvenile systemic lupus erythematosus patients with a special reference to monogenic lupus and lupus nephritis: a cross-sectional study. Rheumatol Int 2024:10.1007/s00296-024-05696-0. [PMID: 39180524 DOI: 10.1007/s00296-024-05696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
To study the clinical, laboratory profile and outcome of juvenile Systemic Lupus Erythematosus (jSLE) patients at a tertiary care centre in South India. A retrospective review of the medical records of all jSLE patients visiting the Pediatric Immunology and Rheumatology Unit, Aster CMI Hospital, India from February 2017 to December 2023 was performed. The clinical characteristics, treatment and outcomes were recorded and tabulated. Seventy patients diagnosed with jSLE were included in the study. The female-to-male ratio was 4.4:1. Mean age at onset and delay in diagnosis were 120.1 (+/- 56.8) and 11.7 (+/- 22.7) months respectively. The median follow-up period was 13 months (range 4, 29 months). Nine patients presented with early onset SLE (< 5 years). Most common manifestations were constitutional symptoms (n = 56), followed by haematologic (n = 55), and mucocutaneous(n = 50) involvement. Immunological workup showed SLE-specific antibody positivity in 38 patients, hypocomplementemia in 40 patients, and anti-phospholipid antibody positivity in 13 patients. Mortality was observed in five patients with LN while there was no mortality in the non-nephritis group (p 0.004). C1q deficiency was the most common cause of monogenic lupus seen in 5/9 patients; protein kinase C delta (PRKCD) defect and chronic granulomatous disease (CYBB mutation) were seen in one patient each. We describe a large cohort of jSLE from Southern India. Lupus nephritis was noted in 35.7% of our cohort and had a direct correlation with mortality. 10% of patients had monogenic lupus. Serious infections were more frequent in patients with monogenic lupus.
Collapse
Affiliation(s)
- Sagar Bhattad
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bangalore, India.
| | - Neha Singh
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bangalore, India
| | - Jyothi Janardhanan
- Paediatric Immunology and Rheumatology Unit, Aster CMI Hospital, Bangalore, India
| | - Harish Kumar
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - Karthik Arigela
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - P Vidyashankar
- Department of Nephrology, Aster CMI Hospital, Bengaluru, India
| | | | - Chetan Ginigeri
- Pediatric Intensive Care Unit, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| |
Collapse
|
5
|
David C, Arango-Franco CA, Badonyi M, Fouchet J, Rice GI, Didry-Barca B, Maisonneuve L, Seabra L, Kechiche R, Masson C, Cobat A, Abel L, Talouarn E, Béziat V, Deswarte C, Livingstone K, Paul C, Malik G, Ross A, Adam J, Walsh J, Kumar S, Bonnet D, Bodemer C, Bader-Meunier B, Marsh JA, Casanova JL, Crow YJ, Manoury B, Frémond ML, Bohlen J, Lepelley A. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J Exp Med 2024; 221:e20232066. [PMID: 38869500 PMCID: PMC11176256 DOI: 10.1084/jem.20232066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.
Collapse
Affiliation(s)
- Clémence David
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Department of Microbiology and Parasitology, Group of Primary Immunodeficiencies, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Julien Fouchet
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Gillian I. Rice
- Faculty of Biology, Medicine and Health, Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Blaise Didry-Barca
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Lucie Maisonneuve
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Robin Kechiche
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Katie Livingstone
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carle Paul
- Université Toulouse Paul Sabatier, Toulouse, France
| | - Gulshan Malik
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Alison Ross
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Jane Adam
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Jo Walsh
- Department of Paediatric Rheumatology, Royal Hospital for Children, Glasgow, UK
| | - Sathish Kumar
- Department of Pediatrics, Pediatric Rheumatology, Christian Medical College, Vellore, India
| | - Damien Bonnet
- Medical and Surgical Unit of Congenital and Paediatric Cardiology, Reference Centre for Complex Congenital Heart Defects—M3C, University Hospital Necker-Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Hospital Necker-Enfants Malades, AP-HP. Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
- Centre for Inflammatory Rheumatism, AutoImmune Diseases and Systemic Interferonopathies in Children (RAISE), Paris, France
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Yanick J. Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Université Paris Cité, Paris, France
| | - Bénédicte Manoury
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
- Centre for Inflammatory Rheumatism, AutoImmune Diseases and Systemic Interferonopathies in Children (RAISE), Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
6
|
Tusseau M, Belot A. [Rare Autoimmune Diseases Role of Genetics - Example of Systemic Lupus Erythematosus]. Biol Aujourdhui 2024; 218:9-18. [PMID: 39007772 DOI: 10.1051/jbio/2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 07/16/2024]
Abstract
Systemic lupus erythematosus (SLE) presents a complex clinical landscape with diverse manifestations, suggesting a multifactorial etiology. However, the identification of rare monogenic forms of the disease has shed light on specific genetic defects underlying SLE pathogenesis, offering valuable insights into its underlying mechanisms and clinical heterogeneity. By categorizing these monogenic forms based on the implicated signaling pathways, such as apoptotic body clearance, type I interferon signaling, JAK-STAT pathway dysregulation, innate immune receptor dysfunction and lymphocytic abnormalities, a more nuanced understanding of SLE's molecular basis emerges. Particularly in pediatric populations, where monogenic forms are more prevalent, routine genetic testing becomes increasingly important, with a diagnostic yield of approximately 10% depending on the demographic and methodological factors involved. This approach not only enhances diagnostic accuracy but also informs personalized treatment strategies tailored to the specific molecular defects driving the disease phenotype.
Collapse
Affiliation(s)
- Maud Tusseau
- Laboratoire de génétique des cancers et maladies multifactorielles, Service de génétique médicale, Hospices Civils de Lyon, Bron, France - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France - Centre de référence des maladies rhumatologiques inflammatoires, des maladies auto-immunes et interféronopathies systémiques de l'enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France - Service de néphrologie, rhumatologie, dermatologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
7
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
8
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
9
|
Mertz P, Costedoat-Chalumeau N, Ferrada MA, Moulis G, Mekinian A, Grayson PC, Arnaud L. Relapsing polychondritis: clinical updates and new differential diagnoses. Nat Rev Rheumatol 2024; 20:347-360. [PMID: 38698240 DOI: 10.1038/s41584-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Relapsing polychondritis is a rare inflammatory disease characterized by recurrent inflammation of cartilaginous structures, mainly of the ears, nose and respiratory tract, with a broad spectrum of accompanying systemic features. Despite its rarity, prompt recognition and accurate diagnosis of relapsing polychondritis is crucial for appropriate management and optimal outcomes. Our understanding of relapsing polychondritis has changed markedly in the past couple of years with the identification of three distinct patient clusters that have different clinical manifestations and prognostic outcomes. With the progress of pangenomic sequencing and the discovery of new somatic and monogenic autoinflammatory diseases, new differential diagnoses have emerged, notably the vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, autoinflammatory diseases and immune checkpoint inhibitor-related adverse events. In this Review, we present a detailed update of the newly identified clusters and highlight red flags that should raise suspicion of these alternative diagnoses. The identification of these different clusters and mimickers has a direct impact on the management, follow-up and prognosis of patients with relapsing polychondritis and autoinflammatory syndromes.
Collapse
Affiliation(s)
- Philippe Mertz
- Department of Rheumatology, National Reference Center for Rare Autoimmune Diseases (RESO), INSERM UMR-S 1109, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nathalie Costedoat-Chalumeau
- National Referral Centre for Rare Autoimmune and Systemic Diseases, Department of Internal Medicine, Hôpital Cochin, AP-HP Centre, Université Paris Cité, Paris, France
| | - Marcela A Ferrada
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guillaume Moulis
- Department of Internal Medicine, Toulouse University Hospital, Toulouse, France
| | - Arsène Mekinian
- Service de Médecine Interne, DHUi2B, Hôpital Saint-Antoine, Paris, France
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laurent Arnaud
- Department of Rheumatology, National Reference Center for Rare Autoimmune Diseases (RESO), INSERM UMR-S 1109, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Papa R, Schena F, Corcione A, Bocca P, Drago E, Malattia C, Grossi A, Ceccherini I, Gattorno M. Seropositive polyarthritis and diffuse lymphadenopathy associated with PRKCD mutation. Rheumatology (Oxford) 2024; 63:e179-e180. [PMID: 38065692 PMCID: PMC11147532 DOI: 10.1093/rheumatology/kead639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 06/05/2024] Open
Affiliation(s)
- Riccardo Papa
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Schena
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Anna Corcione
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Bocca
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Drago
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Clara Malattia
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
11
|
Qin Y, Ma J, Vinuesa CG. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr Opin Rheumatol 2024; 36:191-200. [PMID: 38420886 PMCID: PMC7616038 DOI: 10.1097/bor.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the genes and molecular pathways involved in monogenic lupus, the implications for genome diagnosis, and the potential therapies targeting these molecular mechanisms. RECENT FINDINGS To date, more than 30 genes have been identified as contributors to monogenic lupus. These genes are primarily related to complement deficiency, activation of the type I interferon (IFN) pathway, disruption of B-cell and T-cell tolerance and metabolic pathways, which reveal the multifaceted nature of systemic lupus erythematosus (SLE) pathogenesis. SUMMARY In-depth study of the causes of monogenic lupus can provide valuable insights into of pathogenic mechanisms of SLE, facilitate the identification of effective biomarkers, and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Qin
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianyang Ma
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Carola G. Vinuesa
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Tusseau M, Khaldi-Plassart S, Cognard J, Viel S, Khoryati L, Benezech S, Mathieu AL, Rieux-Laucat F, Bader-Meunier B, Belot A. Mendelian Causes of Autoimmunity: the Lupus Phenotype. J Clin Immunol 2024; 44:99. [PMID: 38619739 DOI: 10.1007/s10875-024-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Samira Khaldi-Plassart
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Liliane Khoryati
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Sarah Benezech
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Fréderic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Department for Immunology, Hematology and Pediatric Rheumatology, Necker Hospital, APHP, Institut IMAGINE, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France.
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
13
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
14
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Jefferson L, Ramanan AV, Jolles S, Bernatoniene J, Mathieu AL, Belot A, Roderick MR. Phenotypic Variability in PRKCD: a Review of the Literature. J Clin Immunol 2023; 43:1692-1705. [PMID: 37794137 DOI: 10.1007/s10875-023-01579-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE Protein kinase C δ (PKCδ) deficiency is a rare genetic disorder identified as a monogenic cause of systemic lupus erythematosus in 2013. Since the first cases were described, the phenotype has expanded to include children presenting with autoimmune lymphoproliferative syndrome-related syndromes and infection susceptibility similar to chronic granulomatous disease or combined immunodeficiency. We review the current published data regarding the pathophysiology, clinical presentation, investigation and management of PKCδ deficiency. METHODS Literature review was performed using MEDLINE. RESULTS Twenty cases have been described in the literature with significant heterogeneity. CONCLUSION The variation in clinical presentation delineates the broad and critical role of PKCδ in immune tolerance and effector functions against pathogens.
Collapse
Affiliation(s)
- Lucy Jefferson
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK.
| | - Athimalaipet Vaidyanathan Ramanan
- Translational Health Sciences, University of Bristol, Bristol, UK
- Paediatric Rheumatology Service, Bristol Royal Hospital for Children, Bristol, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in children (RAISE), Hospices Civils de Lyon, 69677, Lyon, France.
| | - Marion Ruth Roderick
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK.
- Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
17
|
Pan L, Liu J, Liu C, Guo L, Punaro M, Yang S. Childhood-onset systemic lupus erythematosus: characteristics and the prospect of glucocorticoid pulse therapy. Front Immunol 2023; 14:1128754. [PMID: 37638017 PMCID: PMC10448525 DOI: 10.3389/fimmu.2023.1128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease that results in significant damage and often needs more aggressive treatment. Compared to adult-onset SLE, cSLE has a stronger genetic background and more prevalent elevated type I Interferon expression. The management of cSLE is more challenging because the disease itself and treatment can affect physical, psychological and emotional growth and development. High dose oral glucocorticoid (GC) has become the rule for treating moderate to severe cSLE activity. However, GC-related side effects and potential toxicities are problems that cannot be ignored. Recent studies have suggested that GC pulse therapy can achieve disease remission rapidly and reduce GC-related side effects with a reduction in oral prednisone doses. This article reviews characteristics, including pathogenesis and manifestations of cSLE, and summarized the existing evidence on GC therapy, especially on GC pulse therapy in cSLE, followed by our proposal for GC therapy according to the clinical effects and pathogenesis.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Marilynn Punaro
- Pediatric Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Rheumatology, Texas Scottish Rite Hospital for Children, Houston, TX, United States
- Pediatric Rheumatology, Children’s Medical Center of Dallas, Dallas, TX, United States
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
18
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
19
|
Sestan M, Kifer N, Arsov T, Cook M, Ellyard J, Vinuesa CG, Jelusic M. The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Curr Issues Mol Biol 2023; 45:5981-6002. [PMID: 37504294 PMCID: PMC10378459 DOI: 10.3390/cimb45070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The pathogenesis of childhood-onset systemic lupus erythematosus (cSLE) is complex and not fully understood. It involves three key factors: genetic risk factors, epigenetic mechanisms, and environmental triggers. Genetic factors play a significant role in the development of the disease, particularly in younger individuals. While cSLE has traditionally been considered a polygenic disease, it is now recognized that in rare cases, a single gene mutation can lead to the disease. Although these cases are uncommon, they provide valuable insights into the disease mechanism, enhance our understanding of pathogenesis and immune tolerance, and facilitate the development of targeted treatment strategies. This review aims to provide a comprehensive overview of both monogenic and polygenic SLE, emphasizing the implications of specific genes in disease pathogenesis. By conducting a thorough analysis of the genetic factors involved in SLE, we can improve our understanding of the underlying mechanisms of the disease. Furthermore, this knowledge may contribute to the identification of effective biomarkers and the selection of appropriate therapies for individuals with SLE.
Collapse
Affiliation(s)
- Mario Sestan
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nastasia Kifer
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Todor Arsov
- Faculty of Medical Sciences, University Goce Delchev, 2000 Shtip, North Macedonia
- The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew Cook
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Julia Ellyard
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | | | - Marija Jelusic
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Yang Y, Li M, Zhu Y, Liu K, Liu M, Liu Y, Zhu G, Luo H, Zuo X, Zhang H, Guo M. EZH2 inhibition dampens autoantibody production in lupus by restoring B cell immune tolerance. Int Immunopharmacol 2023; 119:110155. [PMID: 37044035 DOI: 10.1016/j.intimp.2023.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE The aim of this study was to elucidate the role of enhancer of zeste homolog 2 (EZH2) in the breakdown of B cell immune tolerance and production of autoantibodies in systemic lupus erythematosus (SLE), and to explore the therapeutic effects of EZH2 inhibition on lupus. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from new-onset SLE patients for flow cytometric analysis. Pristane-induced lupus mice were constructed, and the EZH2 inhibitor was administrated by intraperitoneal injection to treat lupus mice. Blood and urine were collected from lupus mice to detect autoantibodies and proteinuria, and renal pathology scores were assessed. Mouse spleen B cells were sorted with magnetic beads and subjected to flow cytometric apoptosis detection, real time quantitative PCR (RT-qPCR), and western blotting (WB). RESULTS EZH2 expression was elevated in diverse B-cell subsets in both SLE patients and pristane-induced lupus mice. The EZH2 inhibitor attenuated lupus-like symptoms and dampened autoantibody production in pristane-induced lupus mice. Inhibition of EZH2 also reduced autoantibody secretion by plasma cells from lupus patients. Mechanistically, EZH2 mediated the impaired apoptosis of autoreactive B cells and the differentiation of autoantibody producing plasma cells by inhibiting multiple cyclin-dependent kinase inhibitor (CKI) genes. CONCLUSION EZH2 mediated the breakdown of B-cell peripheral immune tolerance by inhibiting CKI genes and participated in the generation of autoantibodies in SLE. EZH2 inhibition could serve as a promising drug intervention for the treatment of SLE.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ganqian Zhu
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China.
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
21
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
22
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
23
|
Ramanathan S, Brilot F, Irani SR, Dale RC. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol 2023; 19:172-190. [PMID: 36788293 DOI: 10.1038/s41582-023-00776-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
The field of autoimmune neurology is rapidly evolving, and recent discoveries have advanced our understanding of disease aetiologies. In this article, we review the key pathogenic mechanisms underlying the development of CNS autoimmunity. First, we review non-modifiable risk factors, such as age, sex and ethnicity, as well as genetic factors such as monogenic variants, common variants in vulnerability genes and emerging HLA associations. Second, we highlight how interactions between environmental factors and epigenetics can modify disease onset and severity. Third, we review possible disease mechanisms underlying triggers that are associated with the loss of immune tolerance with consequent recognition of self-antigens; these triggers include infections, tumours and immune-checkpoint inhibitor therapies. Fourth, we outline how advances in our understanding of the anatomy of lymphatic drainage and neuroimmune interfaces are challenging long-held notions of CNS immune privilege, with direct relevance to CNS autoimmunity, and how disruption of B cell and T cell tolerance and the passage of immune cells between the peripheral and intrathecal compartments have key roles in initiating disease activity. Last, we consider novel therapeutic approaches based on our knowledge of the immunopathogenesis of autoimmune CNS disorders.
Collapse
Affiliation(s)
- Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Science, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Russell C Dale
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- TY Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Charras A, Haldenby S, Smith EMD, Egbivwie N, Olohan L, Kenny JG, Schwarz K, Roberts C, Al-Abadi E, Armon K, Bailey K, Ciurtin C, Gardner-Medwin J, Haslam K, Hawley DP, Leahy A, Leone V, McErlane F, Modgil G, Pilkington C, Ramanan AV, Rangaraj S, Riley P, Sridhar A, Beresford MW, Hedrich CM. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology (Oxford) 2023; 62:SI210-SI225. [PMID: 35532072 PMCID: PMC9949710 DOI: 10.1093/rheumatology/keac275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Juvenile-onset systemic lupus erythematosus (jSLE) affects 15-20% of lupus patients. Clinical heterogeneity between racial groups, age groups and individual patients suggests variable pathophysiology. This study aimed to identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with 'genetic' SLE vs remaining SLE patients. METHODS Based on a sequencing panel designed in 2018, target enrichment and next-generation sequencing were performed in 348 patients to identify damaging gene variants. Findings were integrated with demographic, clinical and treatment related datasets. RESULTS Damaging gene variants were identified in ∼3.5% of jSLE patients. When compared with the remaining cohort, 'genetic' SLE affected younger children and more Black African/Caribbean patients. 'Genetic' SLE patients exhibited less organ involvement and damage, and neuropsychiatric involvement developed over time. Less aggressive first line treatment was chosen in 'genetic' SLE patients, but more second and third line agents were used. 'Genetic' SLE associated with anti-dsDNA antibody positivity at diagnosis and reduced ANA, anti-LA and anti-Sm antibody positivity at last visit. CONCLUSION Approximately 3.5% of jSLE patients present damaging gene variants associated with younger age at onset, and distinct clinical features. As less commonly observed after treatment induction, in 'genetic' SLE, autoantibody positivity may be the result of tissue damage and explain reduced immune complex-mediated renal and haematological involvement. Routine sequencing could allow for patient stratification, risk assessment and target-directed treatment, thereby increasing efficacy and reducing toxicity.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
| | - Sam Haldenby
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - Eve M D Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Naomi Egbivwie
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Lisa Olohan
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - John G Kenny
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Klaus Schwarz
- Institut for Transfusion Medicine, University Ulm, Ulm
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg—Hessen, Ulm, Germany
| | - Carla Roberts
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
| | - Eslam Al-Abadi
- Department of Rheumatology, Birmingham Children’s Hospital, Birmingham
| | - Kate Armon
- Department of Paediatric Rheumatology, Cambridge University Hospitals, Cambridge
| | - Kathryn Bailey
- Department of Paediatric Rheumatology, Oxford University Hospitals NHS Foundation Trust, Oxford
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology, University College London, London
| | | | - Kirsty Haslam
- Department of Paediatrics, Bradford Royal Infirmary, Bradford
| | - Daniel P Hawley
- Department of Paediatric Rheumatology, Sheffield Children’s Hospital, Sheffield
| | - Alice Leahy
- Department of Paediatric Rheumatology, Southampton General Hospital, Southampton
| | - Valentina Leone
- Department of Paediatric Rheumatology, Leeds Children Hospital, Leeds
| | - Flora McErlane
- Paediatric Rheumatology, Great North Children’s Hospital, Royal Victoria Infirmary, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne
| | - Gita Modgil
- Department of Paediatrics, Musgrove Park Hospital, Taunton
| | | | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust & Bristol Medical School, University of Bristol, Bristol
| | - Satyapal Rangaraj
- Department of Paediatric Rheumatology, Nottingham University Hospitals, Nottingham
| | - Phil Riley
- Department of Paediatric Rheumatology, Royal Manchester Children’s Hospital, Manchester
| | - Arani Sridhar
- Department of Paediatrics, Leicester Royal Infirmary, Leicester, UK
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| |
Collapse
|
25
|
Peng J, Wang Y, Han X, Zhang C, Chen X, Jin Y, Yang Z, An Y, Zhang J, Liu Z, Chen Y, Gao E, Zhang Y, Xu F, Zheng C, Zhou Q, Liu Z. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J Am Soc Nephrol 2023; 34:258-272. [PMID: 36261300 PMCID: PMC10103098 DOI: 10.1681/asn.2022040477] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Zhaohui Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
27
|
Neehus AL, Tuano K, Le Voyer T, Nandiwada SL, Murthy K, Puel A, Casanova JL, Chinen J, Bustamante J. Chronic Granulomatous Disease-Like Presentation of a Child with Autosomal Recessive PKCδ Deficiency. J Clin Immunol 2022; 42:1244-1253. [PMID: 35585372 PMCID: PMC9537221 DOI: 10.1007/s10875-022-01268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autosomal recessive (AR) PKCδ deficiency is a rare inborn error of immunity (IEI) characterized by autoimmunity and susceptibility to bacterial, fungal, and viral infections. PKCδ is involved in the intracellular production of reactive oxidative species (ROS). MATERIAL AND METHODS We studied a 5-year old girl presenting with a history of Burkholderia cepacia infection. She had no history of autoimmunity, lymphocyte counts were normal, and no auto-antibodies were detected in her plasma. We performed a targeted panel analysis of 407 immunity-related genes and immunological investigations of the underlying genetic condition in this patient. RESULTS Consistent with a history suggestive of chronic granulomatous disease (CGD), oxidative burst impairment was observed in the patient's circulating phagocytes in a dihydrorhodamine 123 (DHR) assay. However, targeted genetic panel analysis identified no candidate variants of known CGD-causing genes. Two heterozygous candidate variants were detected in PRKCD: c.285C > A (p.C95*) and c.376G > T (p.D126Y). The missense variant was also predicted to cause abnormal splicing, as it is located at the splice donor site of exon 5. TOPO-TA cloning confirmed that exon 5 was completely skipped, resulting in a truncated protein. No PKCδ protein was detected in the patient's neutrophils and monocyte-derived macrophages. The monocyte-derived macrophages of the patient produced abnormally low levels of ROS, as shown in an Amplex Red assay. CONCLUSION PKCδ deficiency should be considered in young patients with CGD-like clinical manifestations and abnormal DHR assay results, even in the absence of clinical and biological manifestations of autoimmunity.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Karen Tuano
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Sarada L Nandiwada
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Kruthi Murthy
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Javier Chinen
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France. .,Paris Cité University, Imagine Institute, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. .,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.
| |
Collapse
|
28
|
Sipka S, Bíró T, Czifra G, Griger Z, Gergely P, Brugós B, Tarr T. The role of protein kinase C isoenzymes in the pathogenesis of human autoimmune diseases. Clin Immunol 2022; 241:109071. [PMID: 35781096 DOI: 10.1016/j.clim.2022.109071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The physiological role of protein kinase C (PKC) enzymes in the immune system is presented briefly. From earlier publications of others data were collected how the defects of one/two isoenzymes of PKC system suggested their involvement in the pathogenesis of human autoimmune diseases. Our observations on the defects of seven PKC isoenzymes in the peripheral blood mononuclear cells (PBMC) demonstrate that these molecular impairments are not prerequisits of the pathogenesis of systemic lupus erythematosus (SLE), mixed connective tissue disease and Sjögren's syndrome. However, these defects can modulate the disease activity and symptoms especially in SLE by several pathways. The role of PKC system in other forms of autoimmune diseases is also very small. It was of note that we detected decreased expression of PKC isoenzymes in PBMC of a European white family with an X-linked genetic background showing seasonal undulations in the lupus patient and also in her healthy mother.
Collapse
Affiliation(s)
- Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Gabriella Czifra
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - Boglárka Brugós
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
29
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
30
|
Tusseau M, Lovšin E, Samaille C, Pescarmona R, Mathieu AL, Maggio MC, Selmanović V, Debeljak M, Dachy A, Novljan G, Janin A, Januel L, Gibier JB, Chopin E, Rouvet I, Goncalves D, Fabien N, Rice GI, Lesca G, Labalme A, Romagnani P, Walzer T, Viel S, Perret M, Crow YJ, Avčin T, Cimaz R, Belot A. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J Clin Immunol 2022; 42:1310-1320. [PMID: 35670985 DOI: 10.1007/s10875-022-01287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Deoxyribonuclease 1 like 3 (DNASE1L3) is a secreted enzyme that has been shown to digest the extracellular chromatin derived from apoptotic bodies, and DNASE1L3 pathogenic variants have been associated with a lupus phenotype. It is unclear whether interferon signaling is sustained in DNASE1L3 deficiency in humans. OBJECTIVES To explore interferon signaling in DNASE1L3 deficient patients. To depict the characteristic features of DNASE1L3 deficiencies in human. METHODS We identified, characterized, and analyzed five new patients carrying biallelic DNASE1L3 variations. Whole or targeted exome and/or Sanger sequencing was performed to detect pathogenic variations in five juvenile systemic erythematosus lupus (jSLE) patients. We measured interferon-stimulated gene (ISG) expression in all patients. We performed a systematic review of all published cases available from its first description in 2011 to March 24th 2022. RESULTS We identified five new patients carrying biallelic DNASE1L3 pathogenic variations, including three previously unreported mutations. Contrary to canonical type I interferonopathies, we noticed a transient increase of ISGs in blood, which returned to normal with disease remission. Disease in one patient was characterized by lupus nephritis and skin lesions, while four others exhibited hypocomplementemic urticarial vasculitis syndrome. The fourth patient presented also with early-onset inflammatory bowel disease. Reviewing previous reports, we identified 35 additional patients with DNASE1L3 deficiency which was associated with a significant risk of lupus nephritis and a poor outcome together with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). Lung lesions were reported in 6/35 patients. CONCLUSIONS DNASE1L3 deficiencies are associated with a broad phenotype including frequently lupus nephritis and hypocomplementemic urticarial vasculitis with positive ANCA and rarely, alveolar hemorrhages and inflammatory bowel disease. This report shows that interferon production is transient contrary to anomalies of intracellular DNA sensing and signaling observed in Aicardi-Goutières syndrome or STING-associated vasculitis in infancy (SAVI).
Collapse
Affiliation(s)
- Maud Tusseau
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Ema Lovšin
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Charlotte Samaille
- Nephrologie Pediatrique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Rémi Pescarmona
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Anne-Laure Mathieu
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Maria-Cristina Maggio
- University Department PROMISE "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Velma Selmanović
- Children's Hospital, University Clinical Center , Sarajevo, Bosnia and Herzegovina
| | - Marusa Debeljak
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Angelique Dachy
- Nephrologie Pediatrique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Gregor Novljan
- Pediatric Nephrology Department, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alexandre Janin
- Cardiogenetics Laboratory, Biochemistry and Molecular Biology Department, Lyon University Hospital, Lyon, France
- NeuroMyoGene Institute, Lyon 1 University, CNRS UMR 5510, INSERM U1217, Lyon, France
| | - Louis Januel
- NeuroMyoGene Institute, Lyon 1 University, CNRS UMR 5510, INSERM U1217, Lyon, France
| | - Jean-Baptiste Gibier
- University Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Emilie Chopin
- Centre de Biotechnologie Cellulaire Et Biothèque, Hospices Civils de Lyon, Bron, France
| | - Isabelle Rouvet
- Centre de Biotechnologie Cellulaire Et Biothèque, Hospices Civils de Lyon, Bron, France
| | - David Goncalves
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Nicole Fabien
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gaétan Lesca
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Audrey Labalme
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Paola Romagnani
- Nephrology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Florence, Italy
| | - Thierry Walzer
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sebastien Viel
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Magali Perret
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tadej Avčin
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rolando Cimaz
- ASST G. Pini, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Alexandre Belot
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Bd Pinel, 68677, Bron Cedex, France.
| |
Collapse
|
31
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
33
|
Tusseau M, Belot A. "P2RY8-son" break of tolerance promotes SLE. J Exp Med 2022; 219:e20211972. [PMID: 34901992 PMCID: PMC8672645 DOI: 10.1084/jem.20211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this issue of JEM, He et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211004) associate novel P2RY8 genetic variants to lupus, expanding the field of monogenic autoimmunity. The authors demonstrate that P2RY8 prevents the expansion of DNA-reactive B cells by restraining B cell mobility and activation within the germinal center.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- National Reference Centre for Rheumatic and AutoImmune and Systemic Diseases in Children (RAISE), Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
34
|
Neehus AL, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, Karakoc-Aydiner E, Baris S, Yildiran A, Altundag E, Roynard M, Haake K, Migaud M, Dorgham K, Gorochov G, Abel L, Lachmann N, Dogu F, Haskologlu S, İnce E, El-Benna J, Uzel G, Kiykim A, Boztug K, Roderick MR, Shahrooei M, Brogan PA, Abolhassani H, Hancioglu G, Parvaneh N, Belot A, Ikinciogullari A, Casanova JL, Puel A, Bustamante J. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med 2021; 218:e20210501. [PMID: 34264265 PMCID: PMC8288504 DOI: 10.1084/jem.20210501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Ahmet Özen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Alisan Yildiran
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Engin Altundag
- Department of Medical Genetics, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Karim Dorgham
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Guy Gorochov
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Erdal İnce
- Department of Pediatric Infectious Disease, Ankara University School of Medicine, Ankara, Turkey
| | - Jamel El-Benna
- University of Paris, Institut National de la Santé et de la Recherche Médical U1149, Centre National de la Recherche Scientifique-ERL8252, Paris, France
- Center for Research on Inflammation, Laboratory of Excellence Inflamex, Faculty of Medicine, Xavier Bichat, Paris, France
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University Pediatric Training and Research Hospital, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Marion R. Roderick
- Pediatric Immunology and Infectious Disease, Bristol Royal Hospital for Children, Bristol, UK
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul A. Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, University College London Institute of Child Health, London, UK
| | - Hassan Abolhassani
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Gonca Hancioglu
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Nima Parvaneh
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Reference Center for Rare Rheumatic and Autoimmune Diseases in Children, Pediatric Rheumatology, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, UMS3444/US8 Lyon University, Lyon, France
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| |
Collapse
|
35
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
36
|
Robinson S, Thomas R. Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus. Front Immunol 2021; 12:654701. [PMID: 34335564 PMCID: PMC8322693 DOI: 10.3389/fimmu.2021.654701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease characterized by multiple autoantibodies and clinical manifestations, with the potential to affect nearly every organ. SLE treatments, including corticosteroids and immunosuppressive drugs, have greatly increased survival rates, but there is no curative therapy and SLE management is limited by drug complications and toxicities. There is an obvious clinical need for safe, effective SLE treatments. A promising treatment avenue is to restore immunological tolerance to reduce inflammatory clinical manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated with dramatic but transient improvement in SLE disease markers and clinical manifestations. However, the Treg cells that expanded were short-lived and unstable. Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived immunological tolerance could be deployed in the context of SLE. In this review, we discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce prolonged immunological tolerance in SLE.
Collapse
Affiliation(s)
- Sean Robinson
- School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
37
|
PKCδ deficiency inhibits fetal development and is associated with heart elastic fiber hyperplasia and lung inflammation in adult PKCδ knockout mice. PLoS One 2021; 16:e0253912. [PMID: 34197550 PMCID: PMC8248728 DOI: 10.1371/journal.pone.0253912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C-delta (PKCδ) has a caspase-3 recognition sequence in its structure, suggesting its involvement in apoptosis. In addition, PKCδ was recently reported to function as an anti-cancer factor. The generation of a PKCδ knockout mouse model indicated that PKCδ plays a role in B cell homeostasis. However, the Pkcrd gene, which is regulated through complex transcription, produces multiple proteins via alternative splicing. Since gene mutations can result in the loss of function of molecular species required for each tissue, in the present study, conditional PKCδ knockout mice lacking PKCδI, II, IV, V, VI, and VII were generated to enable tissue-specific deletion of PKCδ using a suitable Cre mouse. We generated PKCδ-null mice that lacked whole-body expression of PKCδ. PKCδ+/- parental mice gave birth to only 3.4% PKCδ-/- offsprings that deviated significantly from the expected Mendelian ratio (χ2(2) = 101.7, P < 0.001). Examination of mice on embryonic day 11.5 (E11.5) showed the proportion of PKCδ-/- mice implanted in the uterus in accordance with Mendelian rules; however, approximately 70% of the fetuses did not survive at E11.5. PKCδ-/- mice that survived until adulthood showed enlarged spleens, with some having cardiac and pulmonary abnormalities. Our findings suggest that the lack of PKCδ may have harmful effects on fetal development, and heart and lung functions after birth. Furthermore, our study provides a reference for future studies on PKCδ deficient mice that would elucidate the effects of the multiple protein variants in mice and decipher the roles of PKCδ in various diseases.
Collapse
|
38
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
39
|
Westermann-Clark E, Meehan CA, Meyer AK, Dasso JF, Amre D, Ellison M, Patel B, Betensky M, Hauk CI, Mayer J, Metts J, Leiding JW, Sriaroon P, Kumar A, Ayala I, Walter JE. Primary Immunodeficiency in Children With Autoimmune Cytopenias: Retrospective 154-Patient Cohort. Front Immunol 2021; 12:649182. [PMID: 33968040 PMCID: PMC8100326 DOI: 10.3389/fimmu.2021.649182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Primary immunodeficiency is common among patients with autoimmune cytopenia. Objective The purpose of this study is to retrospectively identify key clinical features and biomarkers of primary immunodeficiency (PID) in pediatric patients with autoimmune cytopenias (AIC) so as to facilitate early diagnosis and targeted therapy. Methods Electronic medical records at a pediatric tertiary care center were reviewed. We selected 154 patients with both AIC and PID (n=17), or AIC alone (n=137) for inclusion in two cohorts. Immunoglobulin levels, vaccine titers, lymphocyte subsets (T, B and NK cells), autoantibodies, clinical characteristics, and response to treatment were recorded. Results Clinical features associated with AIC-PID included splenomegaly, short stature, and recurrent or chronic infections. PID patients were more likely to have autoimmune hemolytic anemia (AIHA) or Evans syndrome than AIC-only patients. The AIC-PID group was also distinguished by low T cells (CD3 and CD8), low immunoglobulins (IgG and IgA), and higher prevalence of autoantibodies to red blood cells, platelets or neutrophils. AIC diagnosis preceded PID diagnosis by 3 years on average, except among those with partial DiGeorge syndrome. AIC-PID patients were more likely to fail first-line treatment. Conclusions AIC patients, especially those with Evans syndrome or AIHA, should be evaluated for PID. Lymphocyte subsets and immune globulins serve as a rapid screen for underlying PID. Early detection of patients with comorbid PID and AIC may improve treatment outcomes. Prospective studies are needed to confirm the diagnostic clues identified and to guide targeted therapy.
Collapse
Affiliation(s)
- Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Cristina Adelia Meehan
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anna K Meyer
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Graduate Medical Education, University of Colorado, Denver, CO, United States
| | - Joseph F Dasso
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Biology, University of Tampa, Tampa, FL, United States
| | - Devendra Amre
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maryssa Ellison
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bhumika Patel
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Marisol Betensky
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States.,Division of Hematology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Charles Isaac Hauk
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jennifer Mayer
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Panida Sriaroon
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morssani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Irmel Ayala
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States.,Division of Hematology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Juvenile-onset systemic lupus erythematosus ((j)SLE) is an autoimmune/inflammatory disease that results in significant damage and disability. When compared to patients with disease onset in adulthood, jSLE patients exhibit increased disease activity, damage and require more aggressive treatments. This manuscript summarises age-specific pathogenic mechanisms and underscores the need for age group-specific research, classification and treatment. RECENT FINDINGS Genetic factors play a significant role in the pathophysiology of jSLE, as > 7% of patients develop disease as a result of single gene mutations. Remaining patients carry genetic variants that are necessary for disease development, but require additional factors. Increased 'genetic impact' likely contributes to earlier disease onset and more severe phenotypes. Epigenetic events have only recently started to be addressed in jSLE, and add to the list of pathogenic mechanisms that may serve as biomarkers and/or treatment targets. To allow meaningful and patient-oriented paediatric research, age-specific classification criteria and treatment targets require to be defined as currently available tools established for adult-onset SLE have limitations in the paediatric cohort. Significant progress has been made in understanding the pathophysiology of jSLE. Meaningful laboratory and clinical research can only be performed using age group-specific tools, classification criteria and treatment targets.
Collapse
Affiliation(s)
- A Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - E Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
- Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescot Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
41
|
Van AAN, Kunkel MT, Baffi TR, Lordén G, Antal CE, Banerjee S, Newton AC. Protein kinase C fusion proteins are paradoxically loss of function in cancer. J Biol Chem 2021; 296:100445. [PMID: 33617877 PMCID: PMC8008189 DOI: 10.1016/j.jbc.2021.100445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
Within the AGC kinase superfamily, gene fusions resulting from chromosomal rearrangements have been most frequently described for protein kinase C (PKC), with gene fragments encoding either the C-terminal catalytic domain or the N-terminal regulatory moiety fused to other genes. Kinase fusions that eliminate regulatory domains are typically gain of function and often oncogenic. However, several quality control pathways prevent accumulation of aberrant PKC, suggesting that PKC fusions may paradoxically be loss of function. To explore this topic, we used biochemical, cellular, and genome editing approaches to investigate the function of fusions that retain the portion of the gene encoding either the catalytic domain or regulatory domain of PKC. Overexpression studies revealed that PKC catalytic domain fusions were constitutively active but vulnerable to degradation. Genome editing of endogenous genes to generate a cancer-associated PKC fusion resulted in cells with detectable levels of fusion transcript but no detectable protein. Hence, PKC catalytic domain fusions are paradoxically loss of function as a result of their instability, preventing appreciable accumulation of protein in cells. Overexpression of a PKC regulatory domain fusion suppressed both basal and agonist-induced endogenous PKC activity, acting in a dominant-negative manner by competing for diacylglycerol. For both catalytic and regulatory domain fusions, the PKC component of the fusion proteins mediated the effects of the full-length fusions on the parameters examined, suggesting that the partner protein is dispensable in these contexts. Taken together, our findings reveal that PKC gene fusions are distinct from oncogenic fusions and present a mechanism by which loss of PKC function occurs in cancer.
Collapse
Affiliation(s)
- An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Maya T Kunkel
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Sourav Banerjee
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA.
| |
Collapse
|
42
|
Speidel JT, Affandi T, Jones DNM, Ferrara SE, Reyland ME. Functional proteomic analysis reveals roles for PKCδ in regulation of cell survival and cell death: Implications for cancer pathogenesis and therapy. Adv Biol Regul 2020; 78:100757. [PMID: 33045516 PMCID: PMC8294469 DOI: 10.1016/j.jbior.2020.100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Protein Kinase C-δ (PKCδ), regulates a broad group of biological functions and disease processes, including well-defined roles in immune function, cell survival and apoptosis. PKCδ primarily regulates apoptosis in normal tissues and non-transformed cells, and genetic disruption of the PRKCD gene in mice is protective in many diseases and tissue damage models. However pro-survival/pro-proliferative functions have also been described in some transformed cells and in mouse models of cancer. Recent evidence suggests that the contribution of PKCδ to specific cancers may depend in part on the oncogenic context of the tumor, consistent with its paradoxical role in cell survival and cell death. Here we will discuss what is currently known about biological functions of PKCδ and potential paradigms for PKCδ function in cancer. To further understand mechanisms of regulation by PKCδ, and to gain insight into the plasticity of PKCδ signaling, we have used functional proteomics to identify pathways that are dependent on PKCδ. Understanding how these distinct functions of PKCδ are regulated will be critical for the logical design of therapeutics to target this pathway.
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | | | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, USA.
| |
Collapse
|
43
|
Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, Abolhassani H, Aghamohammadi A. Protein Kinase C-Delta Defect in Autoimmune Lymphoproliferative Syndrome-Like Disease: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2020; 51:331-342. [PMID: 33047643 DOI: 10.1080/08820139.2020.1829638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein kinase C is a family of serine/threonine kinases that play a key role in the adaptive immune cell signaling, as well as regulation of growth, apoptosis, and differentiation of a variety of cell types. Patients homozygous for a null mutation of the Protein Kinase C Delta (PRKCD) gene, present clinical feature of immune dysregulation with susceptibility to Epstein-Barr virus infection. However, a minority of patients present the autoimmune lymphoproliferative syndrome (ALPS). METHODS The data were collected by direct interview and examining the patient's clinical record. Whole-exome sequencing was performed to detect the underlying genetic mutation in the patient. We also conducted electronic searches for ALPS-like reported patients in PubMed, Web of Science, and Scopus databases. RESULTS In this study, we reported a 13-year-old boy who presented with autoimmunity, lymphoproliferation, recurrent pneumonia, cardiomyopathy, and dermatological manifestations. An elevation of double-negative T cells, CD8+ T cells, serum IgG level, as well as a reduction in NK cells, was observed in the patient. A homozygous frameshift mutation (c.1293_1294insA) in exon 13 of the PRKCD gene was confirmed. The literature search showed 39 ALPS-like patients with monogenic defects which only six (15.3%) of them were due to PRKCD genes. CONCLUSION PRKCD should be considered in the context of ALPS clinical manifestations with prominent dermatological involvements.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Li S, Liu Q, Wu D, He T, Yuan J, Qiu H, Tickner J, Zheng SG, Li X, Xu J, Rong L. PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis 2020; 11:762. [PMID: 32938907 PMCID: PMC7494897 DOI: 10.1038/s41419-020-02947-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
PKC-δ is an important molecule for B-cell proliferation and tolerance. B cells have long been recognized to play a part in osteoimmunology and pathological bone loss. However, the role of B cells with PKC-δ deficiency in bone homeostasis and the underlying mechanisms are unknown. We generated mice with PKC-δ deletion selectively in B cells by crossing PKC-δ-loxP mice with CD19-Cre mice. We studied their bone phenotype using micro-CT and histology. Next, immune organs were obtained and analyzed. Western blotting was used to determine the RANKL/OPG ratio in vitro in B-cell cultures, ELISA assay and immunohistochemistry were used to analyze in vivo RANKL/OPG balance in serum and bone sections respectively. Finally, we utilized osteoclastogenesis to study osteoclast function via hydroxyapatite resorption assay, and isolated primary calvaria osteoblasts to investigate osteoblast proliferation and differentiation. We also investigated osteoclast and osteoblast biology in co-culture with B-cell supernatants. We found that mice with PKC-δ deficiency in B cells displayed an osteopenia phenotype in the trabecular and cortical compartment of long bones. In addition, PKC-δ deletion resulted in changes of trabecular bone structure in association with activation of osteoclast bone resorption and decrease in osteoblast parameters. As expected, inactivation of PKC-δ in B cells resulted in changes in spleen B-cell number, function, and distribution. Consistently, the RANKL/OPG ratio was elevated remarkably in B-cell culture, in the serum and in bone specimens after loss of PKC-δ in B cells. Finally, in vitro analysis revealed that PKC-δ ablation suppressed osteoclast differentiation and function but co-culture with B-cell supernatant reversed the suppression effect, as well as impaired osteoblast proliferation and function, indicative of osteoclast–osteoblast uncoupling. In conclusion, PKC-δ plays an important role in the interplay between B cells in the immune system and bone cells in the pathogenesis of bone lytic diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Southern Medical University, Guangzhou Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
45
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
46
|
Li S, He T, Wu D, Zhang L, Chen R, Liu B, Yuan J, Tickner J, Qin A, Xu J, Rong L. Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Front Cell Dev Biol 2020; 8:450. [PMID: 32582715 PMCID: PMC7295979 DOI: 10.3389/fcell.2020.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase C delta (PKC-δ) functions as an important regulator in bone metabolism. However, the precise involvement of PKC-δ in the regulation of osteoclasts remains elusive. We generated an osteoclast specific PKC-δ knockout mouse strain to investigate the function of PKC-δ in osteoclast biology. Bone phenotype was investigated using microcomputed tomography. Osteoclast and osteoblast parameters were assessed using bone histomorphometry, and analysis of osteoclast formation and function with osteoclastogensis and hydroxyapatite resorption assays. The molecular mechanisms by which PKC-δ regulated osteoclast function were dissected by Western Blotting, TUNEL assay, transfection and transcriptome sequencing. We found that ablation of PKC-δ in osteoclasts resulted in an increase in trabecular and cortical bone volume in male mice, however, the bone mass phenotype was not observed in female mice. This was accompanied by decreased osteoclast number and surface, and Cathepsin-K protein levels in vivo, as well as decreased osteoclast formation and resorption in vitro in a male-specific manner. PKC-δ regulated androgen receptor transcription by binding to its promoter, moreover, PKC-δ conditional knockout did not increase osteoclast apoptosis but increased MAPK signaling and enhanced androgen receptor transcription and expression, finally leding to significant alterations in gene expression and signaling changes related to extracellular matrix proteins specifically in male mice. In conclusion, PKC-δ plays an important role in osteoclast formation and function in a male-specific manner. Our work reveals a previously unknown target for treatment of gender-related bone diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
47
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
48
|
Belot A, Rice GI, Omarjee SO, Rouchon Q, Smith EMD, Moreews M, Tusseau M, Frachette C, Bournhonesque R, Thielens N, Gaboriaud C, Rouvet I, Chopin E, Hoshino A, Latour S, Ranchin B, Cimaz R, Romagnani P, Malcus C, Fabien N, Sarda MN, Kassai B, Lega JC, Decramer S, Abou-Jaoude P, Bruce IN, Simonet T, Bardel C, Rollat-Farnier PA, Viel S, Reumaux H, O'Sullivan J, Walzer T, Mathieu AL, Marenne G, Ludwig T, Genin E, Ellingford J, Bader-Meunier B, Briggs TA, Beresford MW, Crow YJ. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. THE LANCET. RHEUMATOLOGY 2020; 2:e99-e109. [PMID: 38263665 DOI: 10.1016/s2665-9913(19)30142-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a rare immunological disorder and genetic factors are considered important in its causation. Monogenic lupus has been associated with around 30 genotypes in humans and 60 in mice, while genome-wide association studies have identified more than 90 risk loci. We aimed to analyse the contribution of rare and predicted pathogenic gene variants in a population of unselected cases of childhood-onset SLE. METHODS For this genetic panel analysis we designed a next-generation sequencing panel comprising 147 genes, including all known lupus-causing genes in humans, and potentially lupus-causing genes identified through GWAS and animal models. We screened 117 probands fulfilling American College of Rheumatology (ACR) criteria for SLE, ascertained through British and French cohorts of childhood-onset SLE, and compared these data with those of 791 ethnically matched controls from the 1000 Genomes Project and 574 controls from the FREX Consortium. FINDINGS After filtering, mendelian genotypes were confirmed in eight probands, involving variants in C1QA, C1QC, C2, DNASE1L3, and IKZF1. Seven additional patients carried heterozygous variants in complement or type I interferon-associated autosomal recessive genes, with decreased concentrations of the encoded proteins C3 and C9 recorded in two patients. Rare variants that were predicted to be damaging were significantly enriched in the childhood-onset SLE cohort compared with controls; 25% of SLE probands versus 5% of controls were identified to harbour at least one rare, predicted damaging variant (p=2·98 × 10-11). Inborn errors of immunity were estimated to account for 7% of cases of childhood-onset SLE, with defects in innate immunity representing the main monogenic contribution. INTERPRETATION An accumulation of rare variants that are predicted to be damaging in SLE-associated genes might contribute to disease expression and clinical heterogeneity. FUNDING European Research Council.
Collapse
Affiliation(s)
- Alexandre Belot
- Paediatric Nephrology, Rheumatology, Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, France; CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sulliman Ommar Omarjee
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Quentin Rouchon
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Eve M D Smith
- Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK; Department of Women and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Maud Tusseau
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Cécile Frachette
- Paediatric Nephrology, Rheumatology, Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, France; CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Raphael Bournhonesque
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Nicole Thielens
- University of Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Isabelle Rouvet
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Emilie Chopin
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France; University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Bruno Ranchin
- Paediatric Nephrology, Rheumatology, Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, France
| | - Rolando Cimaz
- Rheumatology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Florence, Italy
| | - Paula Romagnani
- Nephrology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Florence, Italy
| | - Christophe Malcus
- Service d'Immunologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69437 Lyon, France
| | - Nicole Fabien
- Service d'immunologie, Hospices Civils de Lyon, CHLS, 69495 Pierre-Bénite, France
| | - Marie-Nathalie Sarda
- Service d'immunologie, Hospices Civils de Lyon, CHLS, 69495 Pierre-Bénite, France
| | - Behrouz Kassai
- EPICIME-CIC 1407 de Lyon, Inserm, Service de Pharmacotoxicologie, Hospices Civils de Lyon & Université Lyon 1, 69677, Bron, France
| | - Jean-Christophe Lega
- Internal Medicine Unit, CHLS, Hospices Civils de Lyon, Pierre Benite, Université de Lyon 1, Lyon, France
| | - Stéphane Decramer
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Centre De Référence des Maladies Rénales Rares du Sud Ouest & Inserm U1048, France
| | - Pauline Abou-Jaoude
- Department of Paediatric Nephrology, St George Hospital, University Medical Center, Beirut, Lebanon
| | - Ian N Bruce
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Thomas Simonet
- Department of Biostatistics-bioinformatics, Hospices Civils de Lyon, 69677, Bron, France
| | - Claire Bardel
- Department of Biostatistics-bioinformatics, Hospices Civils de Lyon, 69677, Bron, France; CNRS UMR5558, Biometry and evolutionary biology lab, Lyon University, Lyon 1 University, F-69622 Villeurbanne, France
| | - Pierre Antoine Rollat-Farnier
- CNRS UMR5558, Biometry and evolutionary biology lab, Lyon University, Lyon 1 University, F-69622 Villeurbanne, France
| | - Sebastien Viel
- Service d'immunologie, Hospices Civils de Lyon, CHLS, 69495 Pierre-Bénite, France
| | | | - James O'Sullivan
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie/ International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Gaelle Marenne
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Thomas Ludwig
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, Brest, France
| | | | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Brigitte Bader-Meunier
- Paediatric Rheumatology and Immunology Unit, Necker Hospital, Imagine Institution, Paris, France
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michael W Beresford
- Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK; Department of Women and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France; Paris Descartes University, Sorbonne-Paris-Cité, Institut Imagine, Paris, France; Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease which is facing the difficulties in treatment. Genetics play an important role in SLE. Several studies have shown that genetic factors not only affect the development of SLE, but also affect its clinical progress. In this review article, we focus on exploring the influence of genetics on different aspects of SLE pathogenesis, clinical course, and treatment and will provide some references in further precision medicine for SLE patients. The coming era of precision medicine, SLE patients will be stratified by genetic profiling. This will enable us to make more effective and precise choices of treatment plan.
Collapse
Affiliation(s)
- Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
50
|
van de Ven A, Mader I, Wolff D, Goldacker S, Fuhrer H, Rauer S, Grimbacher B, Warnatz K. Structural Noninfectious Manifestations of the Central Nervous System in Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1047-1062.e6. [PMID: 31857261 DOI: 10.1016/j.jaip.2019.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Central nervous system (CNS) disease in adult common variable immunodeficiency (CVID) is rare, and therefore diagnostic and therapeutic protocols are lacking. OBJECTIVE To provide clinical information aiming to establish awareness and first experience-based recommendations. METHODS We reviewed clinical manifestations, genetic and immunological characteristics, diagnostic evaluation, and treatment of patients with CVID with abnormal magnetic resonance imaging (MRI) of the CNS disease in our cohort. RESULTS Seventeen patients with CNS manifestation and a previous diagnosis of CVID were identified. Presenting symptoms of the CNS disease included loss of sensory or motoric function, headache, or epilepsy. Contrast-enhancing lesions of the brain or solely the spinal cord were the most common findings on MRI. The prevalence of splenomegaly, lymphadenopathy, interstitial lung disease, and autoimmune cytopenia was significantly increased compared with control CVID patients. In 8 patients, a molecular defect was identified, including mutations in CTLA4, NFKB1, and CECR1. Patients with CVID with CNS involvement generally displayed lymphopenia, skewed CD4+ T-cell subsets, and increased proportions of CD21low B cells in the peripheral blood. CNS involvement usually responded well to high-dose steroids, but regularly required maintenance therapy to prevent relapse. CONCLUSION CNS disease is a severe but rare complication in CVID disorders, particularly affecting patients with other noninfectious disease symptoms. Diagnostic evaluation needs to rule out infectious causes by all means; a genetic evaluation is recommended given the high probability of an underlying monogenic disorder. Possible treatment consists of steroids with yet to be determined optimal maintenance therapy in case of relapse.
Collapse
Affiliation(s)
- Annick van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands; Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Radiology, Schön Klinik, Vogtareuth, Germany; Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Fuhrer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Freiburg, Germany
| | - Sebastian Rauer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|