1
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Niu Q, Zhang H, Wang F, Xu X, Luo Y, He B, Shi M, Jiang E, Feng X. GSNOR overexpression enhances CAR-T cell stemness and anti-tumor function by enforcing mitochondrial fitness. Mol Ther 2024; 32:1875-1894. [PMID: 38549378 PMCID: PMC11184305 DOI: 10.1016/j.ymthe.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/27/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell has been developed as a promising agent for patients with refractory or relapsed lymphoma and leukemia, but not all the recipients could achieve a long-lasting remission. The limited capacity of in vivo expansion and memory differentiation post activation is one of the major reasons for suboptimal CAR-T therapeutic efficiency. Nitric oxide (NO) plays multifaceted roles in mitochondrial dynamics and T cell activation, but its function on CAR-T cell persistence and anti-tumor efficacy remains unknown. Herein, we found the continuous signaling from CAR not only promotes excessive NO production, but also suppressed S-nitrosoglutathione reductase (GSNOR) expression in T cells, which collectively led to increased protein S-nitrosylation, resulting in impaired mitochondrial fitness and deficiency of T cell stemness. Intriguingly, enforced expression of GSNOR promoted memory differentiation of CAR-T cell after immune activation, rendered CAR-T better resistance to mitochondrial dysfunction, further enhanced CAR-T cell expansion and anti-tumor capacity in vitro and in a mouse tumor model. Thus, we revealed a critical role of NO in restricting CAR-T cell persistence and functionality, and defined that GSNOR overexpression may provide a solution to combat NO stress and render patients with more durable protection from CAR-T therapy.
Collapse
Affiliation(s)
- Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Fang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xing Xu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
4
|
Kim J, Choi JY, Min H, Hwang KW. Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management. Immune Netw 2024; 24:e26. [PMID: 38974210 PMCID: PMC11224668 DOI: 10.4110/in.2024.24.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.
Collapse
Affiliation(s)
- Jisu Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jee Yeon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
5
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Gu X, Zhang L, Sun M, Zhou Y, Ji J, Xu Y, You J, Deng Z. Dexamethasone promotes renal fibrosis by upregulating ILT4 expression in myeloid-derived suppressor cells. J Cell Mol Med 2024; 28:e18310. [PMID: 38676361 PMCID: PMC11053352 DOI: 10.1111/jcmm.18310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-β and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-β and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-β and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.
Collapse
Affiliation(s)
- Xiaowen Gu
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Lianmei Zhang
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Min Sun
- Department of Science and EducationHuai'an Municipal Center for Disease Control and PreventionHuai'anChina
| | - Ying Zhou
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Jinling Ji
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - YunFang Xu
- Clinical LaboratoryHuai'an No 4 People's HospitalHuai'anChina
| | - Jianguo You
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Zhikui Deng
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| |
Collapse
|
7
|
Yang Y, Zhang X, Jing L, Xiao Y, Gao Y, Hu Y, Jia S, Zhou G, Xiong H, Dong G. MDSC-derived S100A8/9 contributes to lupus pathogenesis by promoting TLR7-mediated activation of macrophages and dendritic cells. Cell Mol Life Sci 2024; 81:110. [PMID: 38429401 PMCID: PMC10907481 DOI: 10.1007/s00018-024-05155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Lina Jing
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Shujiao Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Guangxi Zhou
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
8
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Śnieżewska A, Anisiewicz A, Gdesz-Birula K, Wietrzyk J, Filip-Psurska B. Age-Dependent Effect of Calcitriol on Mouse Regulatory T and B Lymphocytes. Nutrients 2023; 16:49. [PMID: 38201878 PMCID: PMC10780377 DOI: 10.3390/nu16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The hormonally active vitamin D3 metabolite, calcitriol, functions as an important modulator of the immune system. We assumed that calcitriol exerts different effects on immune cells and cytokine production, depending on the age of the animal; therefore, we analyzed its effects on regulatory T lymphocytes and regulatory B lymphocytes in healthy young and old female C57Bl/6/Foxp3GFP mice. In the lymph nodes of young mice, calcitriol decreased the percentage of Tregs, including tTregs and pTregs, and the expression of GITR, CD103, and CD101; however, calcitriol increased the level of IL-35 in adipose tissue. In the case of aged mice, calcitriol decreased the percentages of tTregs and CD19+ cells in lymph nodes and the level of osteopontin in the plasma. Additionally, increases in the levels of IgG and the lowest levels of IFN-γ, IL-10, and IL-35 were observed in the adipose tissue of aged mice. This study showed that calcitriol treatment had different effects, mainly on Treg phenotypes and cytokine secretion, in young and old female mice; it seemed that calcitriol enhanced the immunosuppressive properties of the lymphatic organs and adipose tissue of healthy young mice but not of healthy aged mice, where the opposite effects were observed.
Collapse
Affiliation(s)
| | | | | | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.Ś.); (A.A.); (K.G.-B.)
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.Ś.); (A.A.); (K.G.-B.)
| |
Collapse
|
11
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Zhou H, Zhu Q, Mao Z, Li M, Zhang Y, Yang J, Ma J, Tian J, Wang S. Extracellular vesicle-encapsulated miR-10a-5p derived from MDSCs restrains germinal center B cells in experimental Sjögren's syndrome. Immunol Res 2023; 71:760-770. [PMID: 37300798 DOI: 10.1007/s12026-023-09390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a progressive systemic autoimmune disease characterized by chronic inflammation of the exocrine glands, resulting in damage to the salivary and lacrimal glands. Our group and other researchers have reported that myeloid-derived suppressor cell-derived extracellular vesicles (MDSC-EVs) could attenuate the progression of autoimmune disease by impairing T-cell function. However, the effect of MDSC-EVs on B-cell function and the underlying mechanism remains largely unknown. In this study, we found that MDSC-EVs significantly attenuated the progression of experimental Sjögren's syndrome (ESS). Moreover, treatment with MDSC-EVs via intravenous injection markedly reduced the percentage of germinal center (GC) B cells in ESS mice. In vitro, MDSC-EVs could directly suppress the generation of GC B cells and the expression of B cell lymphoma 6 (Bcl-6) in B cells under GC B-cell-polarizing conditions. Mechanistically, miR-10a-5p carried by MDSC-EVs regulated the differentiation of GC B cells by targeting Bcl-6, and inhibition of miR-10a-5p in MDSC-EVs significantly reversed the effect of MDSC-EVs involved in alleviating the development of ESS. Taken together, our findings demonstrated that miR-10a-5p carried by MDSC-EVs inhibited the generation of B cells by targeting Bcl-6 and eventually alleviated the progression of ESS, which may provide novel therapeutic targets for the treatment of pSS.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
14
|
Ablikim D, Zeng X, Xu C, Zhao M, Yang X, Feng X, Liu J. The Multiple Facets and Disorders of B Cell Functions in Hepatitis B Virus Infection. J Clin Med 2023; 12:jcm12052000. [PMID: 36902786 PMCID: PMC10004556 DOI: 10.3390/jcm12052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a global public health burden. B cells play a pivotal role in mediating HBV clearance and can participate in the development of anti-HBV adaptive immune responses through multiple mechanisms, such as antibody production, antigen presentation, and immune regulation. However, B cell phenotypic and functional disorders are frequently observed during chronic HBV infection, suggesting the necessity of targeting the disordered anti-HBV B cell responses to design and test new immune therapeutic strategies for the treatment of chronic HBV infection. In this review, we provide a comprehensive summary of the multiple roles of B cells in mediating HBV clearance and pathogenesis as well as the latest developments in understanding the immune dysfunction of B cells in chronic HBV infection. Additionally, we discuss novel immune therapeutic strategies that aim to enhance anti-HBV B cell responses for curing chronic HBV infection.
Collapse
Affiliation(s)
- Dilhumare Ablikim
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunli Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengxiao Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: ; Tel.: +86-186-9615-9826
| |
Collapse
|
15
|
Qi J, Zhou X, Bai Z, Lu Z, Zhu X, Liu J, Wang J, Jin M, Liu C, Li X. FcγRIIIA activation-mediated up-regulation of glycolysis alters MDSCs modulation in CD4 + T cell subsets of Sjögren syndrome. Cell Death Dis 2023; 14:86. [PMID: 36746935 PMCID: PMC9902521 DOI: 10.1038/s41419-023-05631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Our and other researchers' previous studies found that myeloid-derived suppressor cells (MDSCs) were increased, and these MDSCs, supposed to play immunosuppressive roles, showed significant pro-inflammatory effects in Sjögren's syndrome (SS). However, the key factors and potential mechanisms leading MDSCs to be inflammatory remain unclear. In this study, we found that MDSCs from SS patients were positively correlated with the percentages of Th17 cells, disease activity and serum autoantibodies, and showed higher levels of Fc gamma receptor (FcγR) IIIA and glycolysis. Most importantly, SS MDSCs or heat-aggregated IgG (HAIG)-treated MDSCs down-regulated Th1/Th2 ratio and up-regulated Th17/Treg ratio, which could be obviously rescued by IgG monomer or glycolysis inhibitor 2-DG. As well, the levels of FcγRIV and glycolysis in MDSCs and the ratio of Th17/Treg were increased, and the ratio of Th1/Th2 was decreased in SS-like NOD mice. Our study indicated that MDSCs showed pro-inflammatory phenotypes by disturbing CD4+ T-cell balances in SS. The pro-inflammatory effects of MDSCs might be directly linked to the enhanced glycolysis mediated by FcγRIIIA activation.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Xinyang Zhou
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226006, People's Republic of China
| | - Xiaolu Zhu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Junli Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, 116083, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China.
| |
Collapse
|
16
|
Torres-Ruiz J, Absalón-Aguilar A, Reyes-Islas JA, Cassiano-Quezada F, Mejía-Domínguez NR, Pérez-Fragoso A, Maravillas-Montero JL, Núñez-Álvarez C, Juárez-Vega G, Culebro-Bermejo A, Gómez-Martín D. Peripheral expansion of myeloid-derived suppressor cells is related to disease activity and damage accrual in inflammatory myopathies. Rheumatology (Oxford) 2023; 62:775-784. [PMID: 35766810 DOI: 10.1093/rheumatology/keac374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Abdiel Absalón-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Juan Alberto Reyes-Islas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Culebro-Bermejo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
17
|
Ni J, Li X, Tu X, Zhu H, Wang S, Hou Y, Dou H. Halofuginone ameliorates systemic lupus erythematosus by targeting Blk in myeloid-derived suppressor cells. Int Immunopharmacol 2023; 114:109487. [PMID: 36493694 DOI: 10.1016/j.intimp.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, inflammatory autoimmune disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells participated in the pathogenesis of SLE. MDSCs has been considered a potential therapeutic target for lupus. As traditional Chinese medicine, Halofuginone (HF) has the extensive immunomodulatory effects on some autoimmune disorders. Our research was dedicated to discovering therapeutic efficacy of HF for lupus to explore novel mechanisms on MDSCs. We found that HF prominently alleviated the systemic symptoms especially nephritis in Imiquimod-induced lupus mice, and simultaneously repaired the immune system, reflected in the alteration of autoantibodies. HF diminished the quantity of MDSCs in lupus mice, and induced apoptosis of MDSCs. Through RNA sequencing performed on the sorted MDSC from lupus mice and HF-treated lupus mice, B lymphoid tyrosine kinase (Blk, a non-receptor cytoplasmic tyrosine kinase) was screened as the target molecule of HF. It's proven that HF had two independent effects on Blk. On the one hand, HF increased the mRNA expression of Blk in MDSCs by inhibiting the nuclear translocation of p65/p50 heterodimer. On the other hand, HF enhanced the kinase activity of Blk in MDSCs through direct molecular binding. We further investigated that Blk suppressed the phosphorylation of downstream ERK signaling pathway to increase the apoptosis of MDSCs. In conclusion, our study illustrated that HF alleviated the disease progression of lupus mice by targeting Blk to promote the apoptosis of MDSCs, which indicated the immunotherapeutic potential of HF to treat lupus.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaoying Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaodi Tu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
18
|
Li X, Fei F, Yao G, Yang X, Geng L, Wang D, Gao Y, Hou Y, Sun L. Notch1 signalling controls the differentiation and function of myeloid-derived suppressor cells in systemic lupus erythematosus. Immunology 2023; 168:170-183. [PMID: 36038992 DOI: 10.1111/imm.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging studies have reported the expansion of myeloid-derived suppressor cells (MDSCs) in some autoimmune disorders, such as systemic lupus erythematosus (SLE), but the detailed molecular mechanisms of the aberrant expansion in SLE are still unclear. In the present study, we confirmed that the increased MDSCs positively correlated with disease activity in SLE patients. The suppressive capacity of MDSCs from patients with high activity was lower than that of MDSCs from patients with low activity. Moreover, the potential precursors for MDSCs, common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs), were markedly increased in the bone marrow (BM) aspirates of SLE patients. As an important regulator of cell fate decisions, aberrant activation of Notch signalling was reported to participate in the pathogenesis of SLE. We found that the expression of Notch1 and its downstream target gene hairy and enhancer of split 1 (Hes-1) increased markedly in GMPs from SLE patients. Moreover, the Notch1 signalling inhibitor DAPT profoundly relieved disease progression and decreased the proportion of MDSCs in pristane-induced lupus mice. The frequency of GMPs was also decreased significantly in lupus mice after DAPT treatment. Furthermore, the inhibition of Notch1 signalling could limit the differentiation of MDSCs in vitro. The therapeutic effect of DAPT was also verified in Toll-like receptor 7 (TLR7) agonist-induced lupus mice. Taken together, our results demonstrated that Notch1 signalling played a crucial role in MDSC differentiation in SLE. These findings will provide a promising therapy for the treatment of SLE.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Fei
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xixi Yang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yingying Gao
- Department of Rheumatology and Immunology, The First People's Hospital of Nantong, Nantong, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Borgna E, Prochetto E, Gamba JC, Marcipar I, Cabrera G. Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:117-163. [PMID: 36967151 DOI: 10.1016/bs.ircmb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.
Collapse
|
20
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
21
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
22
|
The Therapeutic Effect of Tacrolimus in a Mouse Psoriatic Model is Associated with the Induction of Myeloid-derived Suppressor Cells. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:190-197. [PMID: 36879838 PMCID: PMC9984933 DOI: 10.2478/rir-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 02/10/2023]
Abstract
Objectives Topical administration of Tacrolimus (TAC) is efective in the treatment of psoriasis in human patients and in mouse models. Previously, we showed that, though promoting the proliferative expansion of CD4+Foxp3+ regulatory T cells (Tregs), TNFR2 was protective in mouse psoriasis model. We thus examined the role of TNFR2 signal in the efect of TAC in the treatment of mouse psoriasis. Methods To this end, psoriasis was induced in WT, or TNFR1 KO, or TNFR2 KO mice, and the psoriatic mice were treated with or without IMQ. Results The results showed that TAC treatment potently inhibited the development of psoriasis in WT and TNFR1 KO mice, but not in TNFR2 KO mice. However, the treatment of TAC failed to induce the expansion of Tregs in psoriatic mice. In addition to playing a decisive role in the activation of Tregs, TNFR2 stimulates the generation and activation of myeloid-derived suppressor cells (MDSCs). This led us to found that the topical treatment with TAC markedly increased the number of MDSCs in the spleen of WT and TNFR1 KO mice, but not in TNFR2 KO mice. Consequently, TAC potently decreased serum levels of IL-17A, INF-γ, and TNF and their mRNA levels in the inflamed skin lesion. Conclusion Therefore, our study for the first time found that the therapeutic efect of TAC in psoriasis is associated with the expansion of MDSCs in a TNFR2-dependent manner.
Collapse
|
23
|
Wei Y, Peng N, Deng C, Zhao F, Tian J, Tang Y, Yu S, Chen Y, Xue Y, Xiao F, Zhou Y, Li X, Zou H, Rui K, Lin X, Lu L. Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren's syndrome. Cell Mol Immunol 2022; 19:1361-1372. [PMID: 36369368 PMCID: PMC9709038 DOI: 10.1038/s41423-022-00943-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise heterogeneous myeloid cell populations with immunosuppressive capacity that contribute to immune regulation and tolerance induction. We previously reported impaired MDSC function in patients with primary Sjögren's syndrome (pSS) and mice with experimental SS (ESS). However, the molecular mechanisms underlying MDSC dysfunction remain largely unclear. In this study, we first found that aryl hydrocarbon receptor (AhR) was highly expressed by human and murine polymorphonuclear MDSCs (PMN-MDSCs). Indole-3-propionic acid (IPA), a natural AhR ligand produced from dietary tryptophan, significantly promoted PMN-MDSC differentiation and suppressive function on CD4+ T cells. In contrast, feeding a tryptophan-free diet resulted in a decreased PMN-MDSC response, a phenotype that could be reversed by IPA supplementation. The functional importance of PMN-MDSCs was demonstrated in ESS mice by using a cell-depletion approach. Notably, AhR expression was reduced in PMN-MDSCs during ESS development, while AhR antagonism resulted in exacerbated ESS pathology and dysregulated T effector cells, which could be phenocopied by a tryptophan-free diet. Interferon regulatory factor 4 (IRF4), a repressive transcription factor, was upregulated in PMN-MDSCs during ESS progression. Chromatin immunoprecipitation analysis revealed that IRF4 could bind to the promoter region of AhR, while IRF4 deficiency markedly enhanced AhR-mediated PMN-MDSC responses. Furthermore, dietary supplementation with IPA markedly ameliorated salivary glandular pathology in ESS mice with restored MDSC immunosuppressive function. Together, our results identify a novel function of AhR in modulating the PMN-MDSC response and demonstrate the therapeutic potential of targeting AhR for the treatment of pSS.
Collapse
Grants
- This work was supported by Chongqing International Institute for Immunology (2020YJC10), National Natural Science Foundation of China (NSFC) (82071817, 81971542, 82171771), Hong Kong Research Grants Council General Research Fund (17113319, 27111820) and Theme-Based Research Scheme (T12-703/19R), Shenzhen Science and Technology Program (YCYJ20210324114602008) and the Centre for Oncology and Immunology under the Health@InnoHK Initiative by the Innovation and Technology Commission, Hong Kong, China.
- Research Grants Council, University Grants Committee (RGC, UGC)
Collapse
Affiliation(s)
- Yanxia Wei
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Futao Zhao
- Department of Rheumatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Sulan Yu
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yacun Chen
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China.
| | - Xiang Lin
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
24
|
GITRL impairs the immunosuppressive function of MDSCs via PTEN-mediated signaling pathway in experimental Sjögren syndrome. Inflamm Res 2022; 71:1577-1588. [DOI: 10.1007/s00011-022-01660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
|
25
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
26
|
Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol 2022; 12:958756. [PMID: 36033455 PMCID: PMC9403891 DOI: 10.3389/fonc.2022.958756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
Collapse
Affiliation(s)
- Rongying Tan
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manhua Nie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wang Long, ; Manhua Nie,
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo, Japan
- *Correspondence: Wang Long, ; Manhua Nie,
| |
Collapse
|
27
|
Lv M, Zhuang X, Shao S, Li X, Cheng Y, Wu D, Wang X, Qiao T. Myeloid-Derived Suppressor Cells and CD68 +CD163 +M2-Like Macrophages as Therapeutic Response Biomarkers Are Associated with Plasma Inflammatory Cytokines: A Preliminary Study for Non-Small Cell Lung Cancer Patients in Radiotherapy. J Immunol Res 2022; 2022:3621496. [PMID: 35928634 PMCID: PMC9345704 DOI: 10.1155/2022/3621496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies show that myeloid-derived suppressor cells (MDSCs) and M2-like macrophages are involved in the treatment of tumors; however, their therapeutic response role is rarely known in non-small cell lung cancer (NSCLC) during radiotherapy. We aim to explore the dynamic alteration of the circulating MDSCs and M2-like macrophages, to examine their relationship, and to evaluate their therapeutic response value for NSCLC patients in radiotherapy. Methods Peripheral blood mononuclear cells from healthy controls and NSCLC patients with different radiotherapy phases were isolated to examine the circulating MDSCs and M2-like macrophages by flow cytometry. 40 plasma inflammatory cytokines were measured by multiplex ELISA. Results In comparison with healthy controls, the percentages of MDSCs and CD68+CD163+M2-like macrophages of NSCLC patients were significantly elevated and were distinctly higher in radiotherapy than in preradiotherapy. MDSCs were correlated positively with CD68+CD163+M2-like macrophages in NSCLC patients in radiotherapy and postradiotherapy. Especially, we found that in comparison with those in the poor group, the percentages of two cells in the good response group were markedly increased during radiotherapy and they had a significantly positive correlation. During radiotherapy, the proportions of MDSCs were clearly increased in adenocarcinoma patients and the percentages of CD68+CD163+M2-like macrophages were markedly elevated in squamous carcinoma patients. We found that after radiotherapy, the expressions of eotaxin, MIP-1β, MCP-1, and BLC were significantly increased in NSCLC patients. Further results showed that the low levels of eotaxin and TNF RII expression before radiotherapy could predict a good therapeutic response. IL-1ra and MIP-1β had a positive relation with MDSCs or CD68+CD163+M2-like macrophages in NSCLC patients during radiotherapy, and eotaxin was correlated with CD68+CD163+M2-like macrophages but not MDSCs in NSCLC patients after radiotherapy. Conclusions MDSCs and CD68+CD163+M2-like macrophages serve as therapeutic response biomarkers and are associated with the expressions of plasma inflammatory cytokines for NSCLC patients during radiotherapy.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Shali Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Xuan Li
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Xiangdong Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
28
|
Yao G, Qi J, Li X, Tang X, Li W, Chen W, Xia N, Wang S, Sun L. Mesenchymal stem cell transplantation alleviated atherosclerosis in systemic lupus erythematosus through reducing MDSCs. Stem Cell Res Ther 2022; 13:328. [PMID: 35850768 PMCID: PMC9290280 DOI: 10.1186/s13287-022-03002-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Objective The mechanism by which mesenchymal stem cell (MSC) transplantation alleviates atherosclerosis in systemic lupus erythematosus (SLE) remains elusive. In this study, we aim to explore the efficacy and mechanism of MSC in ameliorating atherosclerosis in SLE. Methods ApoE−/− and Fas−/− mice on the B6 background were cross-bred to generate SLE mice with atherosclerosis. Myeloid-derived suppressor cells (MDSCs) were sorted and quantified. The apoE−/−Fas−/− mice were either treated with anti-Gr antibody or injected with MDSCs. The lupus-like autoimmunity and atherosclerotic lesions were evaluated. Furthermore, the apoE−/−Fas−/− mice were transplanted with MSCs and lupus-like autoimmunity and atherosclerotic lesions were assessed. Results MDSCs in peripheral blood, spleen, draining lymph nodes increased in apoE−/−Fas−/− mice compared with B6 mice. Moreover, the adoptive transfer of MDSCs aggravated both atherosclerosis and SLE pathologies, whereas depleting MDSCs ameliorated those pathologies in apoE−/−Fas−/− mice. MSC transplantation in apoE−/−Fas−/− mice decreased the percentage of MDSCs, alleviated the typical atherosclerotic lesions, including atherosclerotic lesions in aortae and liver, and reduced serum cholesterol, triglyceride and low-density lipoprotein levels. MSC transplantation also reduced SLE pathologies, including splenomegaly, glomerular lesions, anti-dsDNA antibody in serum, urine protein and serum creatinine. Moreover, MSC transplantation regulated the generation and function of MDSCs through secreting prostaglandin E 2 (PGE2). Conclusion Taken together, these results indicated that the increased MDSCs contributed to atherosclerosis in SLE. MSC transplantation ameliorated the atherosclerosis and SLE through reducing MDSCs by secreting PGE2. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03002-y.
Collapse
Affiliation(s)
- Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Xia
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shiying Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
29
|
Wang Y, Yan C, Su C, Wang Y, Luo S, Lu J, Zhao C, Zhao G, Xi J. Increased Frequency of Myeloid-Derived Suppressor Cells in Myasthenia Gravis After Immunotherapy. Front Neurol 2022; 13:902384. [PMID: 35847216 PMCID: PMC9278661 DOI: 10.3389/fneur.2022.902384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of myeloid progenitor cells with immunoregulatory functions and their role in myasthenia gravis (MG) was unknown. In this study, we investigated the phenotypic and functional alterations of MDSCs in MG before and after immunotherapy. The frequency of MDSCs significantly increased and negatively correlated to that of Th1 or Th17 cells after immunotherapy. MDSCs from untreated patients with MG showed an impaired suppression of IFN-γ production in T-cells and improved immunosuppressive function was identified after immunotherapy. The MFI of Arg-1 in MDSCs also increased after immunotherapy. These findings suggested the functional difference in MDSCs before and after immunotherapy, and MDSCs might play a role in disease remission.
Collapse
Affiliation(s)
- Yan Wang
- Central Lab, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Caixia Su
- China Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Jun Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
| | - Gan Zhao
- China Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Gan Zhao
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai, China
- Jianying Xi
| |
Collapse
|
30
|
Ni J, Zhu H, Lu L, Zhao Z, Jiang J, You X, Wang Y, Ma Y, Yang Z, Hou Y, Dou H. Hydroxychloroquine induces apoptosis of myeloid-derived suppressor cells via up-regulation of CD81 contributing to alleviate lupus symptoms. Mol Med 2022; 28:65. [PMID: 35705919 PMCID: PMC9199128 DOI: 10.1186/s10020-022-00493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that results from widespread immune complex deposition and secondary tissue injury. Hydroxychloroquine (HCQ) has been used clinically to treat SLE, while its exact mechanism has still remained elusive. Some studies have shown that myeloid-derived suppressor cells (MDSCs) play a vital role in the regulation of SLE. In this study, we aimed to explore the effects of HCQ on the apoptosis of MDSCs in lupus mice and its possible molecular regulatory mechanism. Methods We constructed the imiquimod (IMQ)-induced lupus model in mice. The proportion and apoptosis of MDSCs were measured by flow cytometry. CD81-overexpressed adeno-associated virus was intraperitoneally injected into the lupus mice. We also transfected the CD81 siRNA into bone marrow-derived MDSCs, and employed qRT-PCR and Western blotting to quantify the level of CD81. Results The results showed that HCQ ameliorated IMQ-induced lupus symptoms, and simultaneously inhibited the expansion of MDSCs. In particular, HCQ induced the apoptosis of MDSCs, and also up-regulated the expression level of CD81 in MDSCs, which might indicate the relationship between the expression level of CD81 and the apoptosis of MDSCs. CD81 was further confirmed to participate in the apoptosis of MDSCs and lupus disease progression by overexpressing CD81 in vivo. Molecular docking experiment further proved the targeting effect of HCQ on CD81. And then we interfered CD81 in bone marrow derived MDSCs in vitro, and it was revealed that HCQ rescued the decreased expression level of CD81 and relieved the immune imbalance of Th17/Treg cells. Conclusion In summary, HCQ promoted the apoptosis of MDSCs by up-regulating the expression level of CD81 in MDSCs, and ultimately alleviated lupus symptoms. Our results may assist scholars to develop further effective therapies for SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00493-6.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zihe Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jiaxuan Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xiaokang You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yuliang Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zirui Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
31
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
32
|
Grassi G, Notari S, Gili S, Bordoni V, Casetti R, Cimini E, Tartaglia E, Mariotti D, Agrati C, Sacchi A. Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good. Front Immunol 2022; 13:842949. [PMID: 35572540 PMCID: PMC9092297 DOI: 10.3389/fimmu.2022.842949] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Viral replication in the respiratory tract induces the death of infected cells and the release of pathogen- associated molecular patterns (PAMPs). PAMPs give rise to local inflammation, increasing the secretion of pro- inflammatory cytokines and chemokines, which attract immune cells from the blood into the infected lung. In most individuals, lung-recruited cells clear the infection, and the immune response retreats. However, in some cases, a dysfunctional immune response occurs, which triggers a cytokine storm in the lung, leading to acute respiratory distress syndrome (ARDS). Severe COVID-19 is characterized by an impaired innate and adaptive immune response and by a massive expansion of myeloid-derived suppressor cells (MDSCs). MDSCs function as protective regulators of the immune response, protecting the host from over-immunoreactivity and hyper-inflammation. However, under certain conditions, such as chronic inflammation and cancer, MDSCs could exert a detrimental role. Accordingly, the early expansion of MDSCs in COVID-19 is able to predict the fatal outcome of the infection. Here, we review recent data on MDSCs during COVID-19, discussing how they can influence the course of the disease and whether they could be considered as biomarker and possible targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Simona Gili
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Davide Mariotti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
33
|
Munansangu BSM, Kenyon C, Walzl G, Loxton AG, Kotze LA, du Plessis N. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Mycobacterium tuberculosis Infection and Insights from Tumor Biology. Int J Mol Sci 2022; 23:ijms23073512. [PMID: 35408873 PMCID: PMC8998693 DOI: 10.3390/ijms23073512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.
Collapse
|
34
|
Park Y, Kwok SK. Recent Advances in Cell Therapeutics for Systemic Autoimmune Diseases. Immune Netw 2022; 22:e10. [PMID: 35291648 PMCID: PMC8901702 DOI: 10.4110/in.2022.22.e10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Systemic autoimmune diseases arise from loss of self-tolerance and immune homeostasis between effector and regulator functions. There are many therapeutic modalities for autoimmune diseases ranging from conventional disease-modifying anti-rheumatic drugs and immunosuppressants exerting nonspecific immune suppression to targeted agents including biologic agents and small molecule inhibitors aiming at specific cytokines and intracellular signal pathways. However, such current therapeutic strategies can rarely induce recovery of immune tolerance in autoimmune disease patients. To overcome limitations of conventional treatment modalities, novel approaches using specific cell populations with immune-regulatory properties have been attempted to attenuate autoimmunity. Recently progressed biotechnologies enable sufficient in vitro expansion and proper manipulation of such ‘tolerogenic’ cell populations to be considered for clinical application. We introduce 3 representative cell types with immunosuppressive features, including mesenchymal stromal cells, Tregs, and myeloid-derived suppressor cells. Their cellular definitions, characteristics, mechanisms of immune regulation, and recent data about preclinical and clinical studies in systemic autoimmune diseases are reviewed here. Challenges and limitations of each cell therapy are also addressed.
Collapse
Affiliation(s)
- Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
35
|
Tousif S, Wang Y, Jackson J, Hough KP, Strenkowski JG, Athar M, Thannickal VJ, McCusker RH, Ponnazhagan S, Deshane JS. Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer. Front Immunol 2021; 12:747780. [PMID: 34867973 PMCID: PMC8640488 DOI: 10.3389/fimmu.2021.747780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.
Collapse
Affiliation(s)
- Sultan Tousif
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John G Strenkowski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
36
|
Bottomley MJ, Brook MO, Shankar S, Hester J, Issa F. Towards regulatory cellular therapies in solid organ transplantation. Trends Immunol 2021; 43:8-21. [PMID: 34844848 DOI: 10.1016/j.it.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Organ transplantation is a modern medical success story. However, since its inception it has been limited by the need for pharmacological immunosuppression. Regulatory cellular therapies offer an attractive solution to these challenges by controlling transplant alloresponses through multiple parallel suppressive mechanisms. A number of cell types have seen an accelerated development into human trials and are now on the threshold of a long-awaited breakthrough in personalized transplant therapeutics. Here we assess recent developments with a focus on the most likely candidates, some of which have already facilitated successful immunosuppression withdrawal in early clinical trials. We propose that this may constitute a promising approach in clinical transplantation but also evaluate outstanding issues in the field, providing cause for cautious optimism.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Matthew O Brook
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
38
|
Targeting immunosuppressor cells with nanoparticles in autoimmunity: How far have we come to? Cell Immunol 2021; 368:104412. [PMID: 34340162 DOI: 10.1016/j.cellimm.2021.104412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Autoimmunity is the assault of immune response towards self-antigens, resulting to inflammation and tissue injury. It is staged into three phases and caused by malfunction of immune tolerance. In our body, immune tolerance is synchronized by several immunosuppressor cells such as regulatory T cells and B cells as well as myeloid-derived suppressor cells, which are prominently dysregulated in autoimmunity. Hence, targeting these cell populations serve as a significant potential in the therapy of autoimmunity. Nanotechnology with its advantageous properties is shown to be a remarkable tool as drug delivery system in this field. This review focused on the development of therapeutics in autoimmune diseases utilizing various nanoparticles formulation based on two targeting approaches in autoimmunity, passive and active targeting. Lastly, this review outlined the approved present nanomedicines as well as in clinical evaluations and issues regarding the lack of translation of these nanomedicines into the market, despite the abundant of positive experimental observations.
Collapse
|
39
|
Role of Myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target. Inflammopharmacology 2021; 29:1307-1315. [PMID: 34283371 DOI: 10.1007/s10787-021-00846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Myeloid suppressor cells (MDSCs) are an important class of immune-regulating cells that can suppress T cell function. Most of our knowledge about the function of MDSC comes from studies of cancer models. Recent studies, however, have greatly contributed to the description of MDSC involvement in autoimmune diseases. They are known as a cell population that may negatively affect immune responses by regulating the function of CD4+ and CD8+ cells, which makes them an attractive target for autoimmune diseases therapy. However, many questions about MDSC activation, differentiation, and inhibitory functions remain unanswered. In this study, we have summarized the role of MDSCs in various autoimmune diseases, and the potential of targeting them for therapeutic benefits has been discussed.
Collapse
|
40
|
Shi G, Li D, Zhang D, Xu Y, Pan Y, Lu L, Li J, Xia X, Dou H, Hou Y. IRF-8/miR-451a regulates M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. Cell Death Discov 2021; 7:179. [PMID: 34282122 PMCID: PMC8289825 DOI: 10.1038/s41420-021-00568-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. Myeloid-derived suppressor cells (MDSCs) have been found to be involved in the regulation of SLE development. However, little is known about the association between MDSC subsets and the factors that draw MDSCs into abnormal expansion. This study found that the percentage of M-MDSCs increased in mice with pristane-induced lupus. Toll-like receptor (TLR)7 signal activation and high interferon-α (IFN-α) level promoted M-MDSC differentiation in vitro. Moreover, both AMP-activated protein kinase (AMPK) agonist metformin and two mammalian targets of rapamycin (mTOR) inhibitors (INK128 and rapamycin) inhibited the percentage of M-MDSCs in lupus mice as well as in the TLR7- and IFN-α-induced bone marrow (BM) differentiation into MDSCs in vitro. In terms of mechanism, whole-genome transcriptome profiling was performed by RNA sequencing, revealing that the expression of the transcription factor IRF-8 was higher in M-MDSCs isolated from pristane-induced lupus mice, compared with control mice. IRF-8 was identified to be crucial for TLR7- and IFN-α-induced BM differentiation into MDSCs in vitro. Furthermore, interferon (IFN) regulatory factor8 (IRF-8) was targeted by miR-451a in M-MDSC differentiation. Of note, metformin-modified M-MDSCs could relieve lupus symptoms in pristane-induced lupus mice. The findings revealed a novel mechanism linking IRF-8/miR-451a to M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. This study might provide an important reference for SLE therapy by targeting M-MDSCs.
Collapse
Affiliation(s)
- Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
41
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
42
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
43
|
Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1 -PD-L1 + Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer. Cell Death Dis 2021; 12:465. [PMID: 33967272 PMCID: PMC8107179 DOI: 10.1038/s41419-021-03745-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that are closely related to tumor immune escape, but the mechanism by which MDSCs regulate B cells has not been elucidated. Our previous studies revealed that breast cancer-derived MDSCs could induce a group of PD-1-PD-L1+ Bregs with immunosuppressive functions. Here, we reported that blocking PD-1/PD-L1 interaction between MDSCs and B cells could reverse the immunosuppressive functions of PD-1-PD-L1+ Bregs. The activation of PI3K/AKT/NF-κB signaling pathway is essential for PD-1-PD-L1+ Bregs to exert immunosuppressive effects. MDSCs activated the PI3K/AKT/NF-κB pathway in B cells via the PD-1/PD-L1 axis. Furthermore, inhibition of PD-1/PD-L1 or PI3K/AKT signaling suppressed both tumor growth and the immunosuppressive functions of PD-1-PD-L1+ Bregs. Dual suppression of PD-1/PD-L1 and PI3K/AKT exerted better antitumor effect. Finally, MDSCs and PD-1-PD-L1+ Bregs were colocalized in breast cancer tissues and PD-1-PD-L1+ Bregs were positively correlated with poor prognosis. Thus, MDSC-educated PD-1-PD-L1+ Bregs and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for MDSC-mediated regulation of B cell immunity, which might shed new light on tumor immunotherapy.
Collapse
|
44
|
Park MJ, Baek JA, Choi JW, Jang SG, Kim DS, Park SH, Cho ML, Kwok SK. Programmed Death-Ligand 1 Expression Potentiates the Immune Modulatory Function Of Myeloid-Derived Suppressor Cells in Systemic Lupus Erythematosus. Front Immunol 2021; 12:606024. [PMID: 33986739 PMCID: PMC8110929 DOI: 10.3389/fimmu.2021.606024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple studies have explored the potential role of programmed death-ligand 1 (PD-L1) as a mediator of Myeloid-derived suppressor cells (MDSCs) effects in various cancers. However, the role PD-L1 expression in MDSCs on autoimmune disease is still largely unknown.This study was undertaken to whether MDSC expressing PD-L1 have more potent immunoregulatory activity and control autoimmunity more effectively in two murine models of lupus (MRL/lpr mice and Roquinsan/san mice). The populations of MDSC were increased in peripheral blood of lupus patients. The mRNA levels of immunosuppressive molecules were profoundly decreased in MDSCs from lupus patients and mice. Co-culture with splenocytes showed that PD-L1 expressing MDSCs from control mice expand both Treg cells and regulatory B cells more potently. Infusion of PD-L1 expressing MDSCs reduced autoantibody levels and degree of proteinuria and improved renal pathology of two animal models of lupus. Moreover, PD-L1 expressing MDSCs therapy can suppress double negative (CD4-CD8-CD3+) T cells, the major pathogenic immune cells and follicular helper T cells in MRL/lpr mice, and podocyte damage. Our results indicate PD-L1 expressing MDSCs have more potent immunoregualtory activity and ameliorate autoimmunity more profoundly. These findings suggest PD-L1 expressing MDSCs be a promising therapeutic strategy targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
45
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
46
|
Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol 2021; 12:619268. [PMID: 33746959 PMCID: PMC7966510 DOI: 10.3389/fimmu.2021.619268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells have been implicated in the regulation and maintenance of immune homeostasis. Whether gender and sex hormones differentially influence the expression and function of regulatory T cell phenotype and their influence on FoxP3 expression remains obscure. We provide evidence in this study that the number and percent of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3 mRNA expression compared to healthy females. Female SLE patients, compared to healthy women, have elevated plasma levels of estradiol and decreased levels of testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression in females with SLE. These data suggest that females may be more susceptible than males to SLE and other autoimmune diseases in part because they have fewer Tregs and reduced FoxP3 expression within those cells due to normal E2 levels which suppress FoxP3 expression. In addition, low levels of plasma testosterone in women may further reduce the ability of the Tregs to express FoxP3. These data suggest that gender and sex hormones can influence susceptibility to SLE via effects on regulatory T cells and FoxP3 expression.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Neri D, Carevic-Neri M, Brück J, Holstein J, Schäfer I, Solimani F, Handgretinger R, Hartl D, Ghoreschi K. Arginase 1 + IL-10 + polymorphonuclear myeloid-derived suppressor cells are elevated in patients with active pemphigus and correlate with an increased Th2/Th1 response. Exp Dermatol 2021; 30:782-791. [PMID: 33528891 DOI: 10.1111/exd.14298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which are characterized by their capability to suppress T-cell responses. While MDSCs have been traditionally associated with cancer diseases, their role as regulators of autoimmune diseases is emerging. Pemphigus is a chronic autoimmune blistering skin disease characterized by dysregulated T-cell responses and autoantibody production. The role of MDSCs in pemphigus disease has not been defined yet. The aim of this study was to characterize MDSCs in pemphigus patients and to dissect their relationship with CD4+ T-cell subsets and clinical disease assessments. For this purpose, we performed a cross-sectional analysis of 20 patients with pemphigus. Our results indicate that a population of CD66b+ CD11b+ polymorphonuclear-like MDSCs (PMN-MDSCs) is expanded in the peripheral blood mononuclear cell fraction of pemphigus patients compared to age-matched healthy donors. These PMN-MDSCs have the capability of suppressing allogeneic T-cell proliferation in vitro and show increased expression of characteristic effector molecules such as arginase I and interleukin-10. We further demonstrate that PMN-MDSCs are especially expanded in patients with active pemphigus, but not in patients in remission. Moreover, MDSC frequencies correlate with an increased Th2/Th1 cell ratio. In conclusion, the identification of a functional PMN-MDSC population suggests a possible role of these cells as regulators of Th cell responses in pemphigus.
Collapse
Affiliation(s)
- Davide Neri
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Melanie Carevic-Neri
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Brück
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Julia Holstein
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Iris Schäfer
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Farzan Solimani
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rupert Handgretinger
- Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany.,Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kamran Ghoreschi
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
48
|
Jang E, Cho S, Pyo S, Nam JW, Youn J. An Inflammatory Loop Between Spleen-Derived Myeloid Cells and CD4 + T Cells Leads to Accumulation of Long-Lived Plasma Cells That Exacerbates Lupus Autoimmunity. Front Immunol 2021; 12:631472. [PMID: 33643317 PMCID: PMC7904883 DOI: 10.3389/fimmu.2021.631472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Splenic long-lived plasma cells are abnormally numerous and deleterious in systemic autoimmune diseases, yet how they accumulate remains poorly understood. We demonstrate here that a pathological role of spleen-derived CD11b+Gr-1+ myeloid cells (SDMCs) underpins the accumulation of splenic long-lived plasma cells in a lupus-prone model named sanroque. We found that SDMCs were progressively accumulated in sanroque mice from the early clinical phase. Transcriptome profiles revealed that SDMCs have a predominant shift toward an inflammatory phenotype relative to the bone marrow-derived counterparts and are distinct from neutrophils and monocytes. SDMCs were expanded in situ via splenic extramedullary myelopoiesis under the proinflammatory cytokine milieu during lupus progression. SDMCs promoted the development of IFN-γ-secreting Th1 and follicular helper T cells, thereby licensing CD4+ T cells to be pathologic activators of SDMCs and plasma cells. SDMCs also directly promoted the survival of plasma cells by providing B-cell activating factor of the TNF family. The frequency of SDMCs correlated with that of splenic long-lived plasma cells. Selective depletion of CD11b+Gr-1+ cells reduced autoantibody production in sanroque mice. Thus, our findings suggest that SDMCs expanded in situ establish a positive feedback loop with CD4+ T cells, leading to accumulation of long-lived plasma cells which exacerbates lupus autoimmunity.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sungjin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea.,Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
49
|
Zhang J, Hodges A, Chen SH, Pan PY. Myeloid-derived suppressor cells as cellular immunotherapy in transplantation and autoimmune diseases. Cell Immunol 2021; 362:104300. [PMID: 33582607 DOI: 10.1016/j.cellimm.2021.104300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which have been characterized for their immunosuppressive capacity through multiple mechanisms. These cells have been extensively studied in the field of tumor immunity. Emerging evidence has highlighted its essential role in maintaining immune tolerance in transplantation and autoimmunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapy. Various pre-clinical studies have demonstrated that the adoptive transfer of MDCS represented a promising therapeutic strategy for immune-related disorders. In this review, we summarize relevant studies of MDSC-based cell therapy in transplantation and autoimmune diseases and discuss the challenges and future directions for clinical application of MDSC-based cell therapy.
Collapse
Affiliation(s)
- Jilu Zhang
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States.
| | - Alan Hodges
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Ping-Ying Pan
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States.
| |
Collapse
|
50
|
Park MJ, Baek JA, Kim SY, Jung KA, Choi JW, Park SH, Kwok SK, Cho ML. Myeloid-derived suppressor cells therapy enhance immunoregulatory properties in acute graft versus host disease with combination of regulatory T cells. J Transl Med 2020; 18:483. [PMID: 33317573 PMCID: PMC7734831 DOI: 10.1186/s12967-020-02657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) play a critical role in modulating the immune response and promoting immune tolerance in models of autoimmunity and transplantation. Regulatory T cells (Tregs) exert therapeutic potential due to their immunomodulatory properties, which have been demonstrated both in vitro and in clinical trials. Cell-based therapy for acute graft-versus-host disease (aGVHD) may enable induction of donor-specific tolerance in the preclinical setting. Methods We investigated whether the immunoregulatory activity of the combination of MDSCs and Tregs on T cell and B cell subset and alloreactive T cell response. We evaluated the therapeutic effects of combined cell therapy for a murine aGVHD model following MHC-mismatched bone marrow transplantation. We compared histologic analysis from the target tissues of each groups were and immune cell population by flow cytometric analysis. Results We report a novel approach to inducing immune tolerance using a combination of donor-derived MDSCs and Tregs. The combined cell-therapy modulated in vitro the proliferation of alloreactive T cells and the Treg/Th17 balance in mice and human system. Systemic infusion of MDSCs and Tregs ameliorated serverity and inflammation of aGVHD mouse model by reducing the populations of proinflammatory Th1/Th17 cells and the expression of proinflammatory cytokines in target tissue. The combined therapy promoted the differentiation of allogeneic T cells toward Foxp3 + Tregs and IL-10-producing regulatory B cells. The combination treatment control also activated human T and B cell subset. Conclusions Therefore, the combination of MDSCs and Tregs has immunomodulatory activity and induces immune tolerance to prevent of aGVHD severity. This could lead to the development of new clinical approaches to the prevent aGVHD.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Kyung-Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.
| |
Collapse
|