1
|
Murray SO, Seczon DL, Pettet M, Rea HM, Woodard KM, Kolodny T, Webb SJ. Increased alpha power in autistic adults: Relation to sensory behaviors and cortical volume. Autism Res 2025; 18:56-69. [PMID: 39555754 DOI: 10.1002/aur.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Alpha-band (~10 Hz) neural oscillations, crucial for gating sensory information, may offer insights into the atypical sensory experiences characteristic of autism spectrum disorder (ASD). We investigated alpha-band EEG activity in autistic adults (n = 29) compared with a nonautistic group (n = 23) under various stimulus-driven and resting-state conditions. The autistic group showed consistently higher alpha amplitude across all time points. In addition, there was proportionally more suppression of alpha at stimulus onset in the autistic group, and alpha amplitude in this stimulus-onset period correlated with sensory behaviors. Recent research suggests a link between subcortical structures' volume and cortical alpha magnitude. Prompted by this, we explored the association between alpha power and the volume of subcortical structures and total cortical volume in ASD. Our findings indicate a significant correlation with total cortical volume and a group by hippocampal volume interaction, pointing to the potential role of anatomical structural characteristics as potential modulators of cortical alpha oscillations in ASD. Overall, the results highlight altered alpha in autistic individuals as potentially contributing to the heightened sensory symptoms in autistic compared with nonautistic adults.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Daniela L Seczon
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Mark Pettet
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Hannah M Rea
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
| | - Kristin M Woodard
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Gharavi M, Salem K, Adabdokht R, Ghasemi M. Effectiveness of two visual-pedagogical methods for toothbrushing skills in autistic children: A randomized clinical trial. SPECIAL CARE IN DENTISTRY 2024; 44:1759-1769. [PMID: 39135349 DOI: 10.1111/scd.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 11/14/2024]
Abstract
AIM This study aimed to compare the effectiveness of two visual pedagogy methods, video modeling and educational posters, on improving tooth-brushing autonomy in 10-12-year-old children with mild autism. METHODS Sixty-four autistic children were randomly assigned to either the video or poster groups using the Rand function in Excel. Toothbrushing skills were divided into five stages: preparation, buccal, occlusal, lingual surfaces, and the end. These five stages comprised a total of 20 steps, with each step scored from 1 (not done at all) to 5 (done independently). The final score was calculated by averaging the scores of the five stages. The FONES method of toothbrushing was used for training. Follow-up assessments were conducted after 1 and 3 months. The data were analyzed using SPSS V26, including t-tests, Mann-Whitney U tests, and repeated-measures ANOVA. RESULTS After 3 months, there were significant improvements in autonomy scores for both groups, with the video group showing greater benefits (4.37 ± 0.43) compared to the poster group (4.11 ± 0.49) (p = .03), with an effect size of η2 = .07. CONCLUSION Both video and poster methods were effective in improving tooth-brushing skills, but video modeling was associated with a higher total autonomy score.
Collapse
Affiliation(s)
- Matine Gharavi
- Department of Pediatric, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoun Salem
- Department of Pediatric, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rojin Adabdokht
- Research Assistant, Faculty of Medicine & Dentistry - Dentistry Chair, University of Alberta, Edmonton, Canada
| | - Mahmoud Ghasemi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Arutiunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with Autism Spectrum Disorder. Brain Struct Funct 2024; 229:1225-1242. [PMID: 38683212 DOI: 10.1007/s00429-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The neurobiology of Autism Spectrum Disorder (ASD) is hypothetically related to the imbalance between neural excitation (E) and inhibition (I). Different studies have revealed that alpha-band (8-12 Hz) activity in magneto- and electroencephalography (MEG and EEG) may reflect E and I processes and, thus, can be of particular interest in ASD research. Previous findings indicated alterations in event-related and baseline alpha activity in different cortical systems in individuals with ASD, and these abnormalities were associated with core and co-occurring conditions of ASD. However, the knowledge on auditory alpha oscillations in this population is limited. This MEG study investigated stimulus-induced (Event-Related Desynchronization, ERD) and baseline alpha-band activity (both periodic and aperiodic) in the auditory cortex and also the relationships between these neural activities and behavioral measures of children with ASD. Ninety amplitude-modulated tones were presented to two groups of children: 20 children with ASD (5 girls, Mage = 10.03, SD = 1.7) and 20 typically developing controls (9 girls, Mage = 9.11, SD = 1.3). Children with ASD had a bilateral reduction of alpha-band ERD, reduced baseline aperiodic-adjusted alpha power, and flattened aperiodic exponent in comparison to TD children. Moreover, lower raw baseline alpha power and aperiodic offset in the language-dominant left auditory cortex were associated with better language skills of children with ASD measured in formal assessment. The findings highlighted the alterations of E / I balance metrics in response to basic auditory stimuli in children with ASD and also provided evidence for the contribution of low-level processing to language difficulties in ASD.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, United States of America.
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
- University of Otago, Dunedin, New Zealand
| | - Makar Fedorov
- Center for Language and Brain, HSE University, Nizhny Novgorod, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Beker S, Molholm S. Do we all synch alike? Brain-body-environment interactions in ASD. Front Neural Circuits 2023; 17:1275896. [PMID: 38186630 PMCID: PMC10769494 DOI: 10.3389/fncir.2023.1275896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by rigidity of routines and restricted interests, and atypical social communication and interaction. Recent evidence for altered synchronization of neuro-oscillatory brain activity with regularities in the environment and of altered peripheral nervous system function in ASD present promising novel directions for studying pathophysiology and its relationship to ASD clinical phenotype. Human cognition and action are significantly influenced by physiological rhythmic processes that are generated by both the central nervous system (CNS) and the autonomic nervous system (ANS). Normally, perception occurs in a dynamic context, where brain oscillations and autonomic signals synchronize with external events to optimally receive temporally predictable rhythmic information, leading to improved performance. The recent findings on the time-sensitive coupling between the brain and the periphery in effective perception and successful social interactions in typically developed highlight studying the interactions within the brain-body-environment triad as a critical direction in the study of ASD. Here we offer a novel perspective of autism as a case where the temporal dynamics of brain-body-environment coupling is impaired. We present evidence from the literature to support the idea that in autism the nervous system fails to operate in an adaptive manner to synchronize with temporally predictable events in the environment to optimize perception and behavior. This framework could potentially lead to novel biomarkers of hallmark deficits in ASD such as cognitive rigidity and altered social interaction.
Collapse
Affiliation(s)
- Shlomit Beker
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
5
|
Todd JT, Bahrick LE. Individual Differences in Multisensory Attention Skills in Children with Autism Spectrum Disorder Predict Language and Symptom Severity: Evidence from the Multisensory Attention Assessment Protocol (MAAP). J Autism Dev Disord 2023; 53:4685-4710. [PMID: 36181648 PMCID: PMC10065966 DOI: 10.1007/s10803-022-05752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
Children with autism spectrum disorders (ASD) show atypical attention, particularly for social events. The new Multisensory Attention Assessment Protocol (MAAP) assesses fine-grained individual differences in attention disengagement, maintenance, and audiovisual matching for social and nonsocial events. We investigated the role of competing stimulation on attention, and relations with language and symptomatology in children with ASD and typical controls. Findings revealed: (1) the MAAP differentiated children with ASD from controls, (2) greater attention to social events predicted better language for both groups and lower symptom severity in children with ASD, (3) different pathways from attention to language were evident in children with ASD versus controls. The MAAP provides an ideal attention assessment for revealing diagnostic group differences and relations with outcomes.
Collapse
Affiliation(s)
- James Torrence Todd
- Department of Psychology, Florida International University, 11200 South West 8 Street, Miami, FL, 33199, USA.
| | - Lorraine E Bahrick
- Department of Psychology, Florida International University, 11200 South West 8 Street, Miami, FL, 33199, USA
| |
Collapse
|
6
|
Tahmazian I, Watts A, Chen O, Ferrara HJ, McCrimmon A, Hu B, Chomiak T. A wearable device-enabled therapeutic approach to improve joint attention in autism spectrum disorder: a prospective pilot study. J Neural Transm (Vienna) 2023; 130:1601-1607. [PMID: 37648903 DOI: 10.1007/s00702-023-02683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
It has been previously proposed that interventions aimed at integrating and co-activating music processing and motor control systems could have therapeutic potential for priming social skill development in children with autism spectrum disorder (ASD). In this study, we assessed this hypothesis through a wearable sensor platform called Ambulosono ("Ambulo"-walk; "sono"-sound) in which pleasurable children's musical stimuli are contingently linked to effortful motor action (locomotor step size), thus creating a motivational state proposed to be conducive to joint attention (JA) operation. Five participants were recruited from a community-based partner and were assessed by scoring responses following therapist-directed bids for JA. Multiple assessment sessions through a repeated time-series design were conducted to determine baseline and post-intervention scores. The intervention session consisted of approximately 15 min of Ambulosono exposure. Baseline and post-intervention data were aggregated and analyzed using a linear mixed-effect model. The wearable sensor and wireless headphones of the Ambulosono system were tolerated by the participants, and there were no adverse effects associated with the use of the device. We found an increase in the average responses to bids for JA during the Ambulosono intervention phase compared to baseline across participants. This increase did not appear to result from enhanced general arousal. Our pilot data support feasibility and further testing of Ambulosono as a therapeutic aid for integration into community-based ASD programs to augment shared child-therapist social interactions.
Collapse
Affiliation(s)
- Isabelle Tahmazian
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada
| | - Alexander Watts
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada
| | - Oswald Chen
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada
| | - Hannah J Ferrara
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada
| | - Adam McCrimmon
- Werklund School of Education, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Keehn B, Kadlaskar G, McNally Keehn R. Elevated and accelerated: Locus coeruleus activity and visual search abilities in autistic children. Cortex 2023; 169:118-129. [PMID: 37866060 PMCID: PMC10842606 DOI: 10.1016/j.cortex.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Autistic individuals excel at visual search, however, the neural mechanism(s) underlying this advantage remain unclear. The locus coeruleus-norepinephrine (LC-NE) system, which plays a critical role in sensory perception and selective attention, has been shown to function in a persistently elevated state in individuals on the spectrum. However, the relationship between elevated tonic LC-NE activity and accelerated search in autism has not been explored. OBJECTIVE To examine the relationship between visual search abilities and resting pupil diameter (an indirect measure of tonic LC-NE activation) in autistic and neurotypical children. METHODS Participants were 24 school-aged autistic children and 24 age- and IQ-matched neurotypical children aged 8-15 years. Children completed two tasks: a resting eye-tracking task and a visual search paradigm. For the resting eye-tracking task, pupil diameter was monitored while participants fixated a central crosshair. For the visual search paradigm, participants were instructed to find the target (vertical line) embedded within an array of tilted (10°) distractor lines. The target was present on 50% of trials, and displayed within set sizes of 18, 24, and 36 items. RESULTS Consistent with previous studies, autistic children had significantly larger resting pupil size and searched faster and more efficiently compared to their neurotypical peers. Eye-tracking findings revealed that accelerated search was associated with fewer, not shorter, fixations in the autism group. Autistic children also showed reduced leftward search bias. Larger resting pupil size, indicative of increased tonic activation of the LC-NE system, was associated with greater search efficiency, longer fixation durations, and reduced leftward bias. Finally, within both groups reduced leftward bias was associated with increased autism symptomatology. DISCUSSION Together, these findings add to the existing body of research highlighting superior search in autism, suggest that elevated tonic LC-NE activity may contribute to more efficient search, and link non-social visual-spatial processing strengths to autism symptoms.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA; Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Choi I, Demir I, Oh S, Lee SH. Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220338. [PMID: 37545309 PMCID: PMC10404930 DOI: 10.1098/rstb.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multisensory integration (MSI) occurs in a variety of brain areas, spanning cortical and subcortical regions. In traditional studies on sensory processing, the sensory cortices have been considered for processing sensory information in a modality-specific manner. The sensory cortices, however, send the information to other cortical and subcortical areas, including the higher association cortices and the other sensory cortices, where the multiple modality inputs converge and integrate to generate a meaningful percept. This integration process is neither simple nor fixed because these brain areas interact with each other via complicated circuits, which can be modulated by numerous internal and external conditions. As a result, dynamic MSI makes multisensory decisions flexible and adaptive in behaving animals. Impairments in MSI occur in many psychiatric disorders, which may result in an altered perception of the multisensory stimuli and an abnormal reaction to them. This review discusses the diversity and flexibility of MSI in mammals, including humans, primates and rodents, as well as the brain areas involved. It further explains how such flexibility influences perceptual experiences in behaving animals in both health and disease. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ilayda Demir
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungmi Oh
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Arutiunian V, Arcara G, Buyanova I, Buivolova O, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Event-Related Desynchronization of MEG Alpha-Band Oscillations during Simultaneous Presentation of Audio and Visual Stimuli in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:1313. [PMID: 37759914 PMCID: PMC10526124 DOI: 10.3390/brainsci13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha-band (8-12 Hz) event-related desynchronization (ERD) or a decrease in alpha power in electro- and magnetoencephalography (EEG and MEG) reflects the involvement of a neural tissue in information processing. It is known that most children with autism spectrum disorder (ASD) have difficulties in information processing, and, thus, investigation of alpha oscillations is of particular interest in this population. Previous studies have demonstrated alterations in this neural activity in individuals with ASD; however, little is known about alpha ERD during simultaneous presentation of auditory and visual stimuli in children with and without ASD. As alpha oscillations are intimately related to attention, and attention deficit is one of the common co-occurring conditions of ASD, we predict that children with ASD can have altered alpha ERD in one of the sensory domains. In the present study, we used MEG to investigate alpha ERD in groups of 20 children with ASD and 20 age-matched typically developing controls. Simple amplitude-modulated tones were presented together with a fixation cross appearing on the screen. The results showed that children with ASD had a bilateral reduction in alpha-band ERD in the auditory but not visual cortex. Moreover, alterations in the auditory cortex were associated with a higher presence of autistic traits measured in behavioral assessment.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 70 Via Alberoni, Lido, 30126 Venice, Italy;
| | - Irina Buyanova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Olga Buivolova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, 2A Shelepikhinaskaya Naberezhnaya, 123290 Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Scientific Research and Practical Center of Pediatric Psychoneurology, 74 Michurinskiy Prospekt, 119602 Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
- Institute of Linguistics, Russian Academy of Sciences, 1/1 Bolshoy Kislovsky Ln, 125009 Moscow, Russia
| |
Collapse
|
10
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
11
|
Minor GN, Hannula DE, Gordon A, Ragland JD, Iosif AM, Solomon M. Relational memory weakness in autism despite the use of a controlled encoding task. Front Psychol 2023; 14:1210259. [PMID: 37691809 PMCID: PMC10484720 DOI: 10.3389/fpsyg.2023.1210259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Recent work challenged past findings that documented relational memory impairments in autism. Previous studies often relied solely on explicit behavioral responses to assess relational memory integrity, but successful performance on behavioral tasks may rely on other cognitive abilities (e.g., executive functioning) that are impacted in some autistic individuals. Eye-tracking tasks do not require explicit behavioral responses, and, further, eye movements provide an indirect measure of memory. The current study examined whether memory-specific viewing patterns toward scenes differ between autistic and non-autistic individuals. Methods Using a long-term memory paradigm that equated for complexity between item and relational memory tasks, participants studied a series of scenes. Following the initial study phase, scenes were re-presented, accompanied by an orienting question that directed participants to attend to either features of an item (i.e., in the item condition) or spatial relationships between items (i.e., in the relational condition) that might be subsequently modified during test. At test, participants viewed scenes that were unchanged (i.e., repeated from study), scenes that underwent an "item" modification (an exemplar switch) or a "relational" modification (a location switch), and scenes that had not been presented before. Eye movements were recorded throughout. Results During study, there were no significant group differences in viewing directed to regions of scenes that might be manipulated at test, suggesting comparable processing of scene details during encoding. However, there was a group difference in explicit recognition accuracy for scenes that underwent a relational change. Marginal group differences in the expression of memory-based viewing effects during test for relational scenes were consistent with this behavioral outcome, particularly when analyses were limited to scenes recognized correctly with high confidence. Group differences were also evident in correlational analyses that examined the association between study phase viewing and recognition accuracy and between performance on the Picture Sequence Memory Test and recognition accuracy. Discussion Together, our findings suggest differences in the integrity of relational memory representations and/or in the relationships between subcomponents of memory in autism.
Collapse
Affiliation(s)
- Greta N. Minor
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Deborah E. Hannula
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Andrew Gordon
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - J. Daniel Ragland
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Ana-Maria Iosif
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Marjorie Solomon
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Wakim KM, Foxe JJ, Molholm S. Cued motor processing in autism and typical development: A high-density electrical mapping study of response-locked neural activity in children and adolescents. Eur J Neurosci 2023; 58:2766-2786. [PMID: 37340622 DOI: 10.1111/ejn.16063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Motor atypicalities are common in autism spectrum disorder (ASD) and are often evident prior to classical ASD symptoms. Despite evidence of differences in neural processing during imitation in autistic individuals, research on the integrity and spatiotemporal dynamics of basic motor processing is surprisingly sparse. To address this need, we analysed electroencephalography (EEG) data recorded from a large sample of autistic (n = 84) and neurotypical (n = 84) children and adolescents while they performed an audiovisual speeded reaction time (RT) task. Analyses focused on RTs and response-locked motor-related electrical brain responses over frontoparietal scalp regions: the late Bereitschaftspotential, the motor potential and the reafferent potential. Evaluation of behavioural task performance indicated greater RT variability and lower hit rates in autistic participants compared to typically developing age-matched neurotypical participants. Overall, the data revealed clear motor-related neural responses in ASD, but with subtle differences relative to typically developing participants evident over fronto-central and bilateral parietal scalp sites prior to response onset. Group differences were further parsed as a function of age (6-9, 9-12 and 12-15 years), sensory cue preceding the response (auditory, visual and bi-sensory audiovisual) and RT quartile. Group differences in motor-related processing were most prominent in the youngest group of children (age 6-9), with attenuated cortical responses observed for young autistic participants. Future investigations assessing the integrity of such motor processes in younger children, where larger differences may be present, are warranted.
Collapse
Affiliation(s)
- Kathryn-Mary Wakim
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
13
|
Ippolito G, Bertaccini R, Tarasi L, Di Gregorio F, Trajkovic J, Battaglia S, Romei V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022; 10:biomedicines10123189. [PMID: 36551945 PMCID: PMC9775381 DOI: 10.3390/biomedicines10123189] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations (7-13 Hz) are the dominant rhythm in both the resting and active brain. Accordingly, translational research has provided evidence for the involvement of aberrant alpha activity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia, major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes at play, not to mention recent technical and methodological advances in this domain. Herein, we seek to address this issue by reviewing the literature gathered on this topic over the last ten years. For each neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger the associated symptomatology, as well as a summary of the most relevant studies and scientific contributions issued throughout the last decade. We conclude with some advice and recommendations that might improve future inquiries within this field.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
14
|
Kim Y, Kadlaskar G, Keehn RM, Keehn B. Measures of tonic and phasic activity of the locus coeruleus-norepinephrine system in children with autism spectrum disorder: An event-related potential and pupillometry study. Autism Res 2022; 15:2250-2264. [PMID: 36164264 PMCID: PMC9722557 DOI: 10.1002/aur.2820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
A growing body of research suggests that locus coeruleus-norepinephrine (LC-NE) system may function differently in individuals with autism spectrum disorder (ASD). Understanding the dynamics of both tonic (resting pupil diameter) and phasic (pupil dilation response [PDR] and event-related potential [ERP]) indices may provide meaningful insights about the nature of LC-NE function in ASD. Twenty-four children with ASD and 27 age- and nonverbal-IQ matched typically developing (TD) children completed two experiments: (1) a resting eye-tracking task to measure tonic pupil diameter, and (2) a three-stimulus oddball paradigm to measure phasic responsivity using PDR and ERP. Consistent with prior reports, our results indicate that children with ASD exhibit increased tonic (resting pupil diameter) and reduced phasic (PDR and ERP) activity of the LC-NE system compared to their TD peers. For both groups, decreased phasic responsivity was associated with increased resting pupil diameter. Lastly, tonic and phasic LC-NE indices were primarily related to measures of attention-deficit/hyperactivity disorder (ADHD), and not ASD, symptomatology. These findings expand our understanding of neurophysiological differences present in ASD and demonstrate that aberrant LC-NE activation may be associated with atypical arousal and decreased responsivity to behaviorally-relevant information in ASD.
Collapse
Affiliation(s)
- Yesol Kim
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | | | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN,Department of Psychological Sciences, Purdue University,
West Lafayette, IN
| |
Collapse
|
15
|
Southon C. The relationship between executive function, neurodevelopmental disorder traits, and academic achievement in university students. Front Psychol 2022; 13:958013. [PMID: 36118426 PMCID: PMC9478894 DOI: 10.3389/fpsyg.2022.958013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Difficulties with executive function have often been identified in individuals with various neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), Attention-Deficit Hyperactivity Disorder (ADHD), and Developmental Co-ordination Disorder (DCD). Additionally, in childhood and adolescence, executive functioning is an important predictor of academic achievement. However, less research has explored these relationships in adult students, and those with a high level of neurodevelopmental disorder traits but no clinical diagnosis. Therefore, the current study aimed to assess whether ASD, ADHD, and DCD traits can predict academic achievement in university students, and whether traits of these neurodevelopmental conditions moderate the relationship between executive function and academic achievement. Both neurotypical students and those with a clinical diagnosis of a neurodevelopmental disorder were able to participate, with the majority being neurotypical. Participants completed four self-report questionnaires and provided a measure of academic achievement based on their university assignment results. Traits of ASD, ADHD, and DCD alone did not predict achievement, however, traits of ADHD and DCD significantly moderated the relationship between executive function and academic achievement. ASD traits did not significantly moderate this relationship. Implications and suggestions for future research are also discussed.
Collapse
Affiliation(s)
- Chloe Southon
- Department of Psychology, Social Work and Counselling, School of Human Sciences, University of Greenwich, London, United Kingdom
| |
Collapse
|
16
|
Granato G, Borghi AM, Mattera A, Baldassarre G. A computational model of inner speech supporting flexible goal-directed behaviour in Autism. Sci Rep 2022; 12:14198. [PMID: 35987942 PMCID: PMC9392752 DOI: 10.1038/s41598-022-18445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies propose that inner speech boosts categorisation skills and executive functions, making human behaviour more focused and flexible. In addition, many clinical studies highlight a relationship between poor inner-speech and an executive impairment in autism spectrum condition (ASC), but contrasting findings are reported. Here we directly investigate the latter issue through a previously implemented and validated computational model of the Wisconsin Cards Sorting Tests. In particular, the model was applied to explore potential individual differences in cognitive flexibility and inner speech contribution in autistic and neurotypical participants. Our model predicts that the use of inner-speech could increase along the life-span of neurotypical participants but would be reduced in autistic ones. Although we found more attentional failures (i.e., wrong behavioural rule switches) in autistic children/teenagers and more perseverative behaviours in autistic young/older adults, only autistic children and older adults exhibited a lower performance (i.e., fewer consecutive correct rule switches) than matched control groups. Overall, our results corroborate the idea that the reduced use of inner speech could represent a disadvantage for autistic children and autistic older adults. Moreover, the results suggest that cognitive-behavioural therapies should focus on developing inner speech skills in autistic children as this could provide cognitive support throughout their whole life span.
Collapse
Affiliation(s)
- Giovanni Granato
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK.
| | - Anna M Borghi
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Sapienza University of Rome, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
| | - Andrea Mattera
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
| |
Collapse
|
17
|
Cañigueral R, Palmer J, Ashwood KL, Azadi B, Asherson P, Bolton PF, McLoughlin G, Tye C. Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. J Child Psychol Psychiatry 2022; 63:745-761. [PMID: 34477232 DOI: 10.1111/jcpp.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) share impairments in top-down and bottom-up modulation of attention. However, it is not yet well understood if co-occurrence of ASD and ADHD reflects a distinct or additive profile of attention deficits. We aimed to characterise alpha oscillatory activity (stimulus-locked alpha desynchronisation and prestimulus alpha) as an index of integration of top-down and bottom-up attentional processes in ASD and ADHD. METHODS Children with ASD, ADHD, comorbid ASD+ADHD, and typically-developing children completed a fixed-choice reaction-time task ('Fast task') while neurophysiological activity was recorded. Outcome measures were derived from source-decomposed neurophysiological data. Main measures of interest were prestimulus alpha power and alpha desynchronisation (difference between poststimulus and prestimulus alpha). Poststimulus activity linked to attention allocation (P1, P3), attentional control (N2), and cognitive control (theta synchronisation, 100-600 ms) was also examined. ANOVA was used to test differences across diagnostics groups on these measures. Spearman's correlations were used to investigate the relationship between attentional control processes (alpha oscillations), central executive functions (theta synchronisation), early visual processing (P1), and behavioural performance. RESULTS Children with ADHD (ADHD and ASD+ADHD) showed attenuated alpha desynchronisation, indicating poor integration of top-down and bottom-up attentional processes. Children with ADHD showed reduced N2 and P3 amplitudes, while children with ASD (ASD and ASD+ADHD) showed greater N2 amplitude, indicating atypical attentional control and attention allocation across ASD and ADHD. In the ASD group, prestimulus alpha and theta synchronisation were negatively correlated, and alpha desynchronisation and theta synchronisation were positively correlated, suggesting an atypical association between attentional control processes and executive functions. CONCLUSIONS ASD and ADHD are associated with disorder-specific impairments, while children with ASD+ADHD overall presented an additive profile with attentional deficits of both disorders. Importantly, these findings may inform the improvement of transdiagnostic procedures and optimisation of personalised intervention approaches.
Collapse
Affiliation(s)
- Roser Cañigueral
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Jason Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, CoMIT, Suita, Japan.,Institute for Neural Computation, Univeristy of California San Diego, La Jolla, CA, USA
| | - Karen L Ashwood
- Department of Forensic and Neurodevelopmental Sciences, King's College London, London, UK
| | - Bahar Azadi
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Gráinne McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| |
Collapse
|
18
|
Crosse MJ, Foxe JJ, Tarrit K, Freedman EG, Molholm S. Resolution of impaired multisensory processing in autism and the cost of switching sensory modality. Commun Biol 2022; 5:601. [PMID: 35773473 PMCID: PMC9246932 DOI: 10.1038/s42003-022-03519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Children with autism spectrum disorders (ASD) exhibit alterations in multisensory processing, which may contribute to the prevalence of social and communicative deficits in this population. Resolution of multisensory deficits has been observed in teenagers with ASD for complex, social speech stimuli; however, whether this resolution extends to more basic multisensory processing deficits remains unclear. Here, in a cohort of 364 participants we show using simple, non-social audiovisual stimuli that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Computational modelling indicated that multisensory processing transitions from a default state of competition to one of facilitation, and that this transition is delayed in ASD. Further analysis revealed group differences in how sensory channels are weighted, and how this is impacted by preceding cross-sensory inputs. Our findings indicate that there is a complex and dynamic interplay among the sensory systems that differs considerably in individuals with ASD. Crosse et al. study a cohort of 364 participants with autism spectrum disorders (ASD) and matched controls, and show that deficits in multisensory processing observed in high-functioning children and teenagers with ASD are not evident in adults with the disorder. Using computational modelling they go on to demonstrate that there is a delayed transition of multisensory processing from a default state of competition to one of facilitation in ASD, as well as differences in sensory weighting and the ability to switch between sensory modalities, which sheds light on the interplay among sensory systems that differ in ASD individuals.
Collapse
Affiliation(s)
- Michael J Crosse
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Trinity Centre for Biomedical Engineering, Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Katy Tarrit
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,The Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
19
|
Vetri L, Maniscalco L, Diana P, Guidotti M, Matranga D, Bonnet-Brilhault F, Tripi G. A Preliminary Study on Photic Driving in the Electroencephalogram of Children with Autism across a Wide Cognitive and Behavioral Range. J Clin Med 2022; 11:jcm11133568. [PMID: 35806858 PMCID: PMC9267250 DOI: 10.3390/jcm11133568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Intermittent photic stimulation (IPS) is a useful technique in electroencephalography (EEG) to investigate the neurophysiological anomalies of brain activity. Although not an active task, IPS has also been explored in ASD; it is thought to capture local potential oscillators at specific frequencies and perhaps tap into rhythmic activity in a way that general resting-state recordings cannot. Previous studies suggest that individuals with ASD showed photic driving reactivity predominantly at lower frequencies of stimulation. In our study we used IPS to measure rhythmic oscillatory activity in a sample of 81 ASD children. We found a significant correlation linking ASD children with photic driving activation only at low frequencies (δθ band) and increased severity of “restricted behavior”. This suggests that ASD children with higher severity of restricted behaviors could have a hypersynchronous θ power and an impaired resonance synchronization at middle-ranged frequencies (α). Furthermore, we found some evidence of hemispherical oscillatory asymmetry linked particularly to behavioral impairments. This result is in line with the EEG pattern model indicating a “U-shaped profile” of electrophysiological power alterations with excess power in low- and high-frequency bands and a reduction of power in the middle-ranged frequencies. IPS technique in electroencephalography is confirmed to reveal EEG biomarkers in autistic children, with a focus on spectral power, coherence, and hemisphere asymmetries.
Collapse
Affiliation(s)
- Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| | - Laura Maniscalco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.M.); (G.T.)
| | - Paola Diana
- Department of Neuropsychiatry of Childhood and Adolescence, S. Marta and S. Venera Hospital, ASP Catania, 95024 Catania, Italy;
| | - Marco Guidotti
- UMR1253, iBrain, University of Tours, INSERM, 37000 Tours, France; (M.G.); (F.B.-B.)
- Excellence Center in Autism and Neurodevelopmental Disorders, Centre Hospitalier Régional Universitaire, 37000 Tours, France
| | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.M.); (G.T.)
- Correspondence:
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, 37000 Tours, France; (M.G.); (F.B.-B.)
- Excellence Center in Autism and Neurodevelopmental Disorders, Centre Hospitalier Régional Universitaire, 37000 Tours, France
| | - Gabriele Tripi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.M.); (G.T.)
| |
Collapse
|
20
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
21
|
Tarasi L, Trajkovic J, Diciotti S, di Pellegrino G, Ferri F, Ursino M, Romei V. Predictive waves in the autism-schizophrenia continuum: A novel biobehavioral model. Neurosci Biobehav Rev 2021; 132:1-22. [PMID: 34774901 DOI: 10.1016/j.neubiorev.2021.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022]
Abstract
The brain is a predictive machine. Converging data suggests a diametric predictive strategy from autism spectrum disorders (ASD) to schizophrenic spectrum disorders (SSD). Whereas perceptual inference in ASD is rigidly shaped by incoming sensory information, the SSD population is prone to overestimate the precision of their priors' models. Growing evidence considers brain oscillations pivotal biomarkers to understand how top-down predictions integrate bottom-up input. Starting from the conceptualization of ASD and SSD as oscillopathies, we introduce an integrated perspective that ascribes the maladjustments of the predictive mechanism to dysregulation of neural synchronization. According to this proposal, disturbances in the oscillatory profile do not allow the appropriate trade-off between descending predictive signal, overweighted in SSD, and ascending prediction errors, overweighted in ASD. These opposing imbalances both result in an ill-adapted reaction to external challenges. This approach offers a neuro-computational model capable of linking predictive coding theories with electrophysiological findings, aiming to increase knowledge on the neuronal foundations of the two spectra features and stimulate hypothesis-driven rehabilitation/research perspectives.
Collapse
Affiliation(s)
- Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy.
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Ursino
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
22
|
Beker S, Foxe JJ, Molholm S. Oscillatory entrainment mechanisms and anticipatory predictive processes in children with autism spectrum disorder. J Neurophysiol 2021; 126:1783-1798. [PMID: 34644178 PMCID: PMC8794059 DOI: 10.1152/jn.00329.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022] Open
Abstract
Anticipating near-future events is fundamental to adaptive behavior, whereby neural processing of predictable stimuli is significantly facilitated relative to nonpredictable events. Neural oscillations appear to be a key anticipatory mechanism by which processing of upcoming stimuli is modified, and they often entrain to rhythmic environmental sequences. Clinical and anecdotal observations have led to the hypothesis that people with autism spectrum disorder (ASD) may have deficits in generating predictions, and as such, a candidate neural mechanism may be failure to adequately entrain neural activity to repetitive environmental patterns, to facilitate temporal predictions. We tested this hypothesis by interrogating temporal predictions and rhythmic entrainment using behavioral and electrophysiological approaches. We recorded high-density electroencephalography in children with ASD and typically developing (TD) age- and IQ-matched controls, while they reacted to an auditory target as quickly as possible. This auditory event was either preceded by predictive rhythmic visual cues or was not preceded by any cue. Both ASD and control groups presented comparable behavioral facilitation in response to the Cue versus No-Cue condition, challenging the hypothesis that children with ASD have deficits in generating temporal predictions. Analyses of the electrophysiological data, in contrast, revealed significantly reduced neural entrainment to the visual cues and altered anticipatory processes in the ASD group. This was the case despite intact stimulus-evoked visual responses. These results support intact behavioral temporal prediction in response to a cue in ASD, in the face of altered neural entrainment and anticipatory processes.NEW & NOTEWORTHY We examined behavioral and EEG indices of predictive processing in children with ASD to rhythmically predictable stimuli. Although behavioral measures of predictive processing and evoked neural responses were intact in the ASD group, neurophysiological measures of preparatory activity and entrainment were impaired. When sensory events are presented in a predictable temporal pattern, performance and neuronal responses in ASD may be governed more by the occurrence of the events themselves and less by their anticipated timing.
Collapse
Affiliation(s)
- Shlomit Beker
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
23
|
Ewen JB, Puts NA, Mostofsky SH, Horn PS, Gilbert DL. Associations between Task-Related Modulation of Motor-Evoked Potentials and EEG Event-Related Desynchronization in Children with ADHD. Cereb Cortex 2021; 31:5526-5535. [PMID: 34231840 PMCID: PMC8568000 DOI: 10.1093/cercor/bhab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolaas A Puts
- Neurodevelopmental Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Stewart H Mostofsky
- Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald L Gilbert
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Shifting attention between modalities: Revisiting the modality-shift effect in autism. Atten Percept Psychophys 2021; 83:2498-2509. [PMID: 33939157 PMCID: PMC8302542 DOI: 10.3758/s13414-021-02302-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 02/02/2023]
Abstract
Selective attention to a sensory modality has been observed experimentally in studies of the modality-shift effect – a relative performance benefit for targets preceded by a target in the same modality, compared to a different modality. Differences in selective attention are commonly observed in autism and we investigated whether exogenous (automatic) shift costs between modalities are increased. Autistic adults and neurotypical controls made speeded discrimination responses to simple visual, tactile and auditory targets. Shift costs were observed for each target modality in participant response times and were largest for auditory targets, reflective of fast responses on auditory repeat trials. Critically, shift costs were similar between the groups. However, integrating speed and accuracy data using drift-diffusion modelling revealed that shift costs in drift rates (reflecting the quality of information extracted from the stimulus) were reduced for autistic participants compared with neurotypicals. It may be that, unlike neurotypicals, there is little difference between attention within and between sensory modalities for autistic people. This finding also highlights the benefit of combining reaction time and accuracy data using decision models to better characterise selective attention in autism.
Collapse
|
25
|
Mallory C, Keehn B. Implications of Sensory Processing and Attentional Differences Associated With Autism in Academic Settings: An Integrative Review. Front Psychiatry 2021; 12:695825. [PMID: 34512416 PMCID: PMC8430329 DOI: 10.3389/fpsyt.2021.695825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
The impact of classroom environments on student engagement and academic performance is well-documented. Autism spectrum disorder (ASD) is associated with atypical sensory processing and attentional impairments, which may lead to challenges in successfully accessing educational material within these settings. These symptoms may help explain why students with ASD show discrepancies between intellectual ability and academic performance. Given the increasing number of students with ASD present in classrooms, understanding strengths and weaknesses in sensory processing and attention is necessary in order to design better classroom environments and develop more efficacious accommodations and interventions to support optimal student success. Therefore, the objectives of this review are to provide a brief review of the current literature on sensory processing and attention in ASD, survey how sensory and attentional functions affect academic outcomes in both neurotypical and ASD learners, and suggest potential accommodations/interventions for students with ASD based on these findings.
Collapse
Affiliation(s)
- Courtney Mallory
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States.,Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
26
|
Ruble LA, Love AMA, Wong V, Grisham-Brown JL, McGrew JH. Implementation Fidelity and Common Elements of High Quality Teaching Sequences for Students with Autism Spectrum Disorder in COMPASS. RESEARCH IN AUTISM SPECTRUM DISORDERS 2020; 71:101493. [PMID: 32863861 PMCID: PMC7453638 DOI: 10.1016/j.rasd.2019.101493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Evidence-based educational instruction includes teaching elements common across different approaches as well as specific elements of the chosen evidence-based practice. We were interested in evaluating the use and impact of common elements of teaching. Specifically, we adopted a model of elements of high quality teaching sequences and developed and tested an instructional quality index to capture evidence-based features within teaching sequences (Grisham-Brown & Ruble, 2014). METHOD The current investigation examined 29 special education teachers who received a consultation intervention called the Collaborative Model for Promoting Competence and Success (COMPASS; Ruble, Dalrymple & McGrew, 2012) that results in personalized teaching plans for young students with ASD and embeds elements of evidence-based teacher coaching of self-reflection and performance-based feedback. We analyzed the teaching plans to understand which of the common elements were present, and if teachers demonstrated improved performance after coaching. RESULTS Analysis of the use of common elements during the first and fourth coaching session demonstrated that all teachers showed improvement. Most importantly, the use of common elements correlated with student goal attainment outcomes. CONCLUSIONS These results suggest that common elements of teaching sequences which we view as core features of teaching quality, can be improved as a result of coaching, and most importantly, are associated with students' educational outcomes.
Collapse
Affiliation(s)
- Lisa A Ruble
- University of Kentucky, 237 Dickey Hall, 40506, Lexington
| | | | - Venus Wong
- University of Kentucky, 237 Dickey Hall, 40506, Lexington
| | | | - John H McGrew
- University of Kentucky, 237 Dickey Hall, 40506, Lexington
| |
Collapse
|
27
|
Mazaheri A, Slagter HA, Thut G, Foxe JJ. Orchestration of brain oscillations: principles and functions. Eur J Neurosci 2019; 48:2385-2388. [PMID: 30276895 DOI: 10.1111/ejn.14189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali Mazaheri
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - John J Foxe
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
28
|
Foxe JJ, Molholm S, Baudouin SJ, Wallace MT. Explorations and perspectives on the neurobiological bases of autism spectrum disorder. Eur J Neurosci 2019; 47:488-496. [PMID: 29575230 DOI: 10.1111/ejn.13902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John J Foxe
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Mark T Wallace
- Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
29
|
Vulchanova M, Chahboun S, Galindo-Prieto B, Vulchanov V. Gaze and Motor Traces of Language Processing: Evidence from Autism Spectrum Disorders in Comparison to Typical Controls. Cogn Neuropsychol 2019; 36:383-409. [PMID: 31434524 DOI: 10.1080/02643294.2019.1652155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated what strategies underlie figurative language processing in two groups of participants distinguished by the presence of a developmental deficit, highly-verbal participants with autism, and control participants without autism in two age ranges each. Individuals with autism spectrum disorder are characterised by impaired social interaction and communication. Even at the high end of the spectrum, where structural language is adequate, difficulties in comprehending non-literal aspects of language are widely attested. The exact causes of these problems are, however, still open to debate. In an interactive sentence-picture matching task participants selected the most suitable image representation of a non-literal figurative expression that matched the target meaning, while their eye-movements and hand movements were being tracked. Our results suggest that individuals with ASD have different processing patterns than typically developing peers when interpreting figurative language, even when they provide the correct answers. Both children with and without autism, and participants with autism display greater uncertainty and competition between alternatives when providing the answer, often reflected in also considering the literal interpretation of the expression against its target figurative meaning. We provide evidence that expression transparency and decomposability play a central role in figurative language processing across all groups.
Collapse
Affiliation(s)
- Mila Vulchanova
- Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sobh Chahboun
- Department of Pedagogy, Queen Maud University College, Trondheim, Norway
| | - Beatriz Galindo-Prieto
- Idletechs AS, Trondheim, Norway.,Department of Engineering Cybernetics (ITK), Norwegian University of Science and Technology (NTNU), Norway.,Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine (WCM), Cornell University, New York, NY, USA
| | - Valentin Vulchanov
- Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
30
|
Keehn B, Westerfield M, Townsend J. Brief Report: Cross-Modal Capture: Preliminary Evidence of Inefficient Filtering in Children with Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:385-390. [PMID: 30014248 DOI: 10.1007/s10803-018-3674-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study investigates how task-irrelevant auditory information is processed in children with autism spectrum disorder (ASD). Eighteen children with ASD and 19 age- and IQ-matched typically developing (TD) children were presented with semantically-congruent and incongruent picture-sound pairs, and in separate tasks were instructed to attend to only visual or both audio-visual sensory channels. Preliminary results showed that when required to attend to both modalities, both groups were equally slowed for semantically-incongruent compared to congruent pairs. However, when asked to attend to only visual information, children with ASD were disproportionally slowed by incongruent auditory information, suggesting that they may have more difficulty filtering task-irrelevant cross-modal information. Correlational analyses showed that this inefficient cross-modal attentional filtering was related to greater sociocommunicative impairment.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, IN, 47907, USA. .,Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Marissa Westerfield
- Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Jeanne Townsend
- Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
31
|
Thornton D, Harkrider AW, Jenson DE, Saltuklaroglu T. Sex differences in early sensorimotor processing for speech discrimination. Sci Rep 2019; 9:392. [PMID: 30674942 PMCID: PMC6344575 DOI: 10.1038/s41598-018-36775-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Sensorimotor activity in speech perception tasks varies as a function of context, cognitive load, and cognitive ability. This study investigated listener sex as an additional variable. Raw EEG data were collected as 21 males and 21 females discriminated /ba/ and /da/ in quiet and noisy backgrounds. Independent component analyses of data from accurately discriminated trials identified sensorimotor mu components with characteristic alpha and beta peaks from 16 members of each sex. Time-frequency decompositions showed that in quiet discrimination, females displayed stronger early mu-alpha synchronization, whereas males showed stronger mu-beta desynchronization. Findings indicate that early attentional mechanisms for speech discrimination were characterized by sensorimotor inhibition in females and predictive sensorimotor activation in males. Both sexes showed stronger early sensorimotor inhibition in noisy discrimination conditions versus in quiet, suggesting sensory gating of the noise. However, the difference in neural activation between quiet and noisy conditions was greater in males than females. Though sex differences appear unrelated to behavioral accuracy, they suggest that males and females exhibit early sensorimotor processing for speech discrimination that is fundamentally different, yet similarly adaptable to adverse conditions. Findings have implications for understanding variability in neuroimaging data and the male prevalence in various neurodevelopmental disorders with inhibitory dysfunction.
Collapse
Affiliation(s)
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| | - David E Jenson
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| |
Collapse
|
32
|
Diametric effects of autism tendencies and psychosis proneness on attention control irrespective of task demands. Sci Rep 2018; 8:8478. [PMID: 29855492 PMCID: PMC5981437 DOI: 10.1038/s41598-018-26821-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Abstract
Our capacity to attend a target while ignoring irrelevant distraction impacts our ability to successfully interact with our environment. Previous reports have sometimes identified excessive distractor interference in both autism and schizophrenia spectrum disorders and in neurotypical individuals with high subclinical expressions of these conditions. Independent of task, we show that the direction of the effect of autism or psychosis traits on the suppression or rejection of a non-target item is diametrical. In Study 1, in which the presence of a salient non-target item hindered performance, higher autism traits were associated with better performance, while higher psychosis traits were associated with worse performance. In Study 2, in which the presence of a salient non-target item facilitated performance, a complete reversal of effects was observed. Future clinical interventions may be informed by the context-specific advantages we observed for the autism and psychosis spectra, and by the need to consider the diametric effects they yield.
Collapse
|
33
|
Butler JS, Molholm S, Andrade GN, Foxe JJ. An Examination of the Neural Unreliability Thesis of Autism. Cereb Cortex 2018; 27:185-200. [PMID: 27923839 PMCID: PMC5939224 DOI: 10.1093/cercor/bhw375] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
An emerging neuropathological theory of Autism, referred to here as “the neural unreliability thesis,” proposes greater variability in moment-to-moment cortical representation of environmental events, such that the system shows general instability in its impulse response function. Leading evidence for this thesis derives from functional neuroimaging, a methodology ill-suited for detailed assessment of sensory transmission dynamics occurring at the millisecond scale. Electrophysiological assessments of this thesis, however, are sparse and unconvincing. We conducted detailed examination of visual and somatosensory evoked activity using high-density electrical mapping in individuals with autism (N = 20) and precisely matched neurotypical controls (N = 20), recording large numbers of trials that allowed for exhaustive time-frequency analyses at the single-trial level. Measures of intertrial coherence and event-related spectral perturbation revealed no convincing evidence for an unreliability account of sensory responsivity in autism. Indeed, results point to robust, highly reproducible response functions marked for their exceedingly close correspondence to those in neurotypical controls
Collapse
Affiliation(s)
- John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.,School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,Trinity College Institute of Neuroscience, Trinity College, University of Dublin, Dublin, Ireland
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gizely N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.,Trinity College Institute of Neuroscience, Trinity College, University of Dublin, Dublin, Ireland.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Social Attention, Joint Attention and Sustained Attention in Autism Spectrum Disorder and Williams Syndrome: Convergences and Divergences. J Autism Dev Disord 2018; 47:1866-1877. [PMID: 28349363 DOI: 10.1007/s10803-017-3106-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is limited knowledge on shared and syndrome-specific attentional profiles in autism spectrum disorder (ASD) and Williams syndrome (WS). Using eye-tracking, we examined attentional profiles of 35 preschoolers with ASD, 22 preschoolers with WS and 20 typically developing children across social and non-social dimensions of attention. Children with ASD and those with WS presented with overlapping deficits in spontaneous visual engagement with the target of others' attention and in sustained attention. Children with ASD showed syndrome-specific abnormalities in monitoring and following a person's referential gaze, as well as a lack of preferential attention to social stimuli. Children with ASD and WS present with shared as well as syndrome-specific abnormalities across social and non-social dimensions of attention.
Collapse
|
35
|
Beker S, Foxe JJ, Molholm S. Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neurosci Biobehav Rev 2018; 84:182-192. [PMID: 29162518 PMCID: PMC6389331 DOI: 10.1016/j.neubiorev.2017.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Abstract
Difficulty integrating inputs from different sensory sources is commonly reported in individuals with Autism Spectrum Disorder (ASD). Accumulating evidence consistently points to altered patterns of behavioral reactions and neural activity when individuals with ASD observe or act upon information arriving through multiple sensory systems. For example, impairments in the integration of seen and heard speech appear to be particularly acute, with obvious implications for interpersonal communication. Here, we explore the literature on multisensory processing in autism with a focus on developmental trajectories. While much remains to be understood, some consistent observations emerge. Broadly, sensory integration deficits are found in children with an ASD whereas these appear to be much ameliorated, or even fully recovered, in older teenagers and adults on the spectrum. This protracted delay in the development of multisensory processing raises the possibility of applying early intervention strategies focused on multisensory integration, to accelerate resolution of these functions. We also consider how dysfunctional cross-sensory oscillatory neural communication may be one key pathway to impaired multisensory processing in ASD.
Collapse
Affiliation(s)
- Shlomit Beker
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States; The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States; Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (IDDRC), Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States; The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
36
|
Brief Report: Which Came First? Exploring Crossmodal Temporal Order Judgements and Their Relationship with Sensory Reactivity in Autism and Neurotypicals. J Autism Dev Disord 2017; 47:215-223. [PMID: 27704294 PMCID: PMC5222899 DOI: 10.1007/s10803-016-2925-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have indicated that visual-auditory temporal acuity is reduced in children with autism spectrum conditions (ASC) in comparison to neurotypicals. In the present study we investigated temporal acuity for all possible bimodal pairings of visual, tactile and auditory information in adults with ASC (n = 18) and a matched control group (n = 18). No group differences in temporal acuity for crossmodal stimuli were observed, suggesting that this may be typical in adults with ASC. However, visual-tactile temporal acuity and bias towards vision when presented with visual-auditory information were both predictors of self-reported sensory reactivity. This suggests that reduced multisensory temporal acuity and/or attention towards vision may contribute to atypical sensory reactivity.
Collapse
|
37
|
Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:528-536. [PMID: 29170759 DOI: 10.1016/j.bpsc.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. Methods The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. Results In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. Conclusions These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.
Collapse
|
38
|
Simon DM, Damiano CR, Woynaroski TG, Ibañez LV, Murias M, Stone WL, Wallace MT, Cascio CJ. Neural Correlates of Sensory Hyporesponsiveness in Toddlers at High Risk for Autism Spectrum Disorder. J Autism Dev Disord 2017; 47:2710-2722. [PMID: 28597185 PMCID: PMC5880549 DOI: 10.1007/s10803-017-3191-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered patterns of sensory responsiveness are a frequently reported feature of Autism Spectrum Disorder (ASD). Younger siblings of individuals with ASD are at a greatly elevated risk of a future diagnosis of ASD, but little is known about the neural basis of sensory responsiveness patterns in this population. Younger siblings (n = 20) of children diagnosed with ASD participated in resting electroencephalography (EEG) at an age of 18 months. Data on toddlers' sensory responsiveness were obtained using the Sensory Experiences Questionnaire. Correlations were present between hyporesponsiveness and patterns of oscillatory power, functional connectivity, and signal complexity. Our findings suggest that neural signal features hold promise for facilitating early identification and targeted remediation in young children at risk for ASD.
Collapse
Affiliation(s)
- David M Simon
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Cara R Damiano
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Tiffany G Woynaroski
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa V Ibañez
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Michael Murias
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Wendy L Stone
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Carissa J Cascio
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
39
|
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci 2016; 20:805-817. [PMID: 27707588 DOI: 10.1016/j.tics.2016.09.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
The most salient electrical signal measured from the human brain is the α-rhythm, neural activity oscillating at ∼100ms intervals. Recent findings challenge the longstanding dogma of α-band oscillations as the signature of a passively idling brain state but diverge in terms of interpretation. Despite firm correlations with behavior, the mechanistic role of the α-rhythm in brain function remains debated. We suggest that three large-scale brain networks involved in different facets of top-down cognitive control differentially modulate α-oscillations, ranging from power within and synchrony between brain regions. Thereby, these networks selectively influence local signal processing, widespread information exchange, and ultimately perception and behavior.
Collapse
|
40
|
Dysfunction of sensory oscillations in Autism Spectrum Disorder. Neurosci Biobehav Rev 2016; 68:848-861. [PMID: 27451342 DOI: 10.1016/j.neubiorev.2016.07.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 07/16/2016] [Indexed: 11/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a highly prevalent developmental disability characterized by deficits in social communication and interaction, restricted interests, and repetitive behaviors. Recently, anomalous sensory and perceptual function has gained an increased level of recognition as an important feature of ASD. A specific impairment in the ability to integrate information across brain networks has been proposed to contribute to these disruptions. A crucial mechanism for these integrative processes is the rhythmic synchronization of neuronal excitability across neural populations; collectively known as oscillations. In ASD there is believed to be a deficit in the ability to efficiently couple functional neural networks using these oscillations. This review discusses evidence for disruptions in oscillatory synchronization in ASD, and how disturbance of this neural mechanism contributes to alterations in sensory and perceptual function. The review also frames oscillatory data from the perspective of prevailing neurobiologically-inspired theories of ASD.
Collapse
|
41
|
Theofanopoulou C. Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome. Front Neurosci 2016; 10:271. [PMID: 27378840 PMCID: PMC4906233 DOI: 10.3389/fnins.2016.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
The neurohormone oxytocin (OXT) has been found to mediate the regulation of complex socioemotional cognition in multiple ways both in humans and other animals. Recent studies have investigated the effects of OXT in different levels of analysis (from genetic to behavioral) chiefly targeting its impact on the social component and only indirectly indicating its implications in other components of our socio-interactive abilities. This article aims at shedding light onto how OXT might be modulating the multimodality that characterizes our higher-order linguistic abilities (vocal-auditory-attentional-memory-social systems). Based on evidence coming from genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this perspective with the goal of stressing the need for neuropeptide treatments to enter clinical practice.
Collapse
|
42
|
Ewen JB, Lakshmanan BM, Pillai AS, McAuliffe D, Nettles C, Hallett M, Crone NE, Mostofsky SH. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task. Front Hum Neurosci 2016; 10:198. [PMID: 27199719 PMCID: PMC4858522 DOI: 10.3389/fnhum.2016.00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18–22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7–13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = −0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimore, MD, USA
| | - Balaji M Lakshmanan
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Ajay S Pillai
- Department of Neurology and Developmental Medicine, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| | - Danielle McAuliffe
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Carrie Nettles
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Stewart H Mostofsky
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Center for Neurodevelopmental and Imaging Research, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
43
|
Haigh SM, Heeger DJ, Heller LM, Gupta A, Dinstein I, Minshew NJ, Behrmann M. No difference in cross-modal attention or sensory discrimination thresholds in autism and matched controls. Vision Res 2016; 121:85-94. [PMID: 26940029 DOI: 10.1016/j.visres.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
Autism has been associated with abnormalities in sensory and attentional processing. Here, we assessed these processes independently in the visual and auditory domains using a visual contrast-discrimination task and an auditory modulation-depth discrimination task. To evaluate changes in sensory function by attention, we measured behavioral performance (discrimination accuracy) when subjects were cued to attend and respond to the same stimulus (frequent valid cue) or cued to attend to one stimulus and respond to the non-cued stimulus (infrequent invalid cue). The stimuli were presented at threshold to ensure equal difficulty across participants and groups. Results from fifteen high-functioning adult individuals with autism and fifteen matched controls revealed no significant differences in visual or auditory discrimination thresholds across groups. Furthermore, attention robustly modulated performance accuracy (performance was better for valid than invalid cues) in both sensory modalities and to an equivalent extent in both groups. In conclusion, when using this well-controlled method, we found no evidence of atypical sensory function or atypical attentional modulation in a group of high functioning individuals with clear autism symptomatology.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Laurie M Heller
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Akshat Gupta
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Ilan Dinstein
- Psychology Department, Ben-Gurion University of the Negev, 653, Beer-Sheva 84105, Israel
| | - Nancy J Minshew
- Departments of Psychiatry & Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Keehn B, Nair A, Lincoln AJ, Townsend J, Müller RA. Under-reactive but easily distracted: An fMRI investigation of attentional capture in autism spectrum disorder. Dev Cogn Neurosci 2015; 17:46-56. [PMID: 26708773 PMCID: PMC4728050 DOI: 10.1016/j.dcn.2015.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023] Open
Abstract
Children and adolescents with ASD were hypo-responsive to behaviorally-relevant stimuli. Evidence of contingent attentional capture was inconsistent in ASD. Impaired non-social attentional processes were related to sociocommunicative deficits in ASD.
For individuals with autism spectrum disorder (ASD), salient behaviorally-relevant information often fails to capture attention, while subtle behaviorally-irrelevant details commonly induce a state of distraction. The present study used functional magnetic resonance imaging (fMRI) to investigate the neurocognitive networks underlying attentional capture in sixteen high-functioning children and adolescents with ASD and twenty-one typically developing (TD) individuals. Participants completed a rapid serial visual presentation paradigm designed to investigate activation of attentional networks to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors. In individuals with ASD, target stimuli failed to trigger bottom-up activation of the ventral attentional network and the cerebellum. Additionally, the ASD group showed no differences in behavior or occipital activation associated with contingent attentional capture. Rather, results suggest that to-be-ignored distractors that shared either task-relevant or irrelevant features captured attention in ASD. Results indicate that individuals with ASD may be under-reactive to behaviorally-relevant stimuli, unable to filter irrelevant information, and that both top-down and bottom-up attention networks function atypically in ASD. Lastly, deficits in target-related processing were associated with autism symptomatology, providing further support for the hypothesis that non-social attentional processes and their neurofunctional underpinnings may play a significant role in the development of sociocommunicative impairments in ASD.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA; Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA; Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA.
| | - Aarti Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - Jeanne Townsend
- Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
45
|
Baum SH, Stevenson RA, Wallace MT. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Prog Neurobiol 2015; 134:140-60. [PMID: 26455789 PMCID: PMC4730891 DOI: 10.1016/j.pneurobio.2015.09.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/21/2015] [Accepted: 09/05/2015] [Indexed: 01/24/2023]
Abstract
Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD.
Collapse
Affiliation(s)
- Sarah H Baum
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Theofanopoulou C. Brain asymmetry in the white matter making and globularity. Front Psychol 2015; 6:1355. [PMID: 26441731 PMCID: PMC4564653 DOI: 10.3389/fpsyg.2015.01355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i) white matter myelination is delayed relative to other brain structures and, in humans, is protracted compared with other primates and that (ii) neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I argue that one significant evolutionary change in Homo sapiens' lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum present an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas "high- order" areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry ('lateralization') in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry, and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain.
Collapse
|
47
|
Murphy JW, Foxe JJ, Molholm S. Neuro-oscillatory mechanisms of intersensory selective attention and task switching in school-aged children, adolescents and young adults. Dev Sci 2015; 19:469-87. [PMID: 26190204 DOI: 10.1111/desc.12316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/17/2015] [Indexed: 11/29/2022]
Abstract
The ability to attend to one among multiple sources of information is central to everyday functioning. Just as central is the ability to switch attention among competing inputs as the task at hand changes. Such processes develop surprisingly slowly, such that even into adolescence, we remain slower and more error prone at switching among tasks compared to young adults. The amplitude of oscillations in the alpha band (~8-14 Hz) tracks the top-down deployment of attention, and there is growing evidence that alpha can act as a suppressive mechanism to bias attention away from distracting sensory input. Moreover, the amplitude of alpha has also been shown to be sensitive to the demands of switching tasks. To understand the neural basis of protracted development of these executive functions, we recorded high-density electrophysiology from school-aged children (8-12 years), adolescents (13-17), and young adults (18-34) as they performed a cued inter-sensory selective attention task. The youngest participants showed increased susceptibility to distracting inputs that was especially evident when switching tasks. Concordantly, they showed weaker and delayed onset of alpha modulation compared to the older groups. Thus the flexible and efficient deployment of alpha to bias competition among attentional sets remains underdeveloped in school-aged children.
Collapse
Affiliation(s)
- Jeremy W Murphy
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, New York, USA.,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, New York, USA.,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, New York, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, New York, USA.,Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, USA.,The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
48
|
Ross LA, Del Bene VA, Molholm S, Frey HP, Foxe JJ. Sex differences in multisensory speech processing in both typically developing children and those on the autism spectrum. Front Neurosci 2015; 9:185. [PMID: 26074757 PMCID: PMC4445312 DOI: 10.3389/fnins.2015.00185] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous work has revealed sizeable deficits in the abilities of children with an autism spectrum disorder (ASD) to integrate auditory and visual speech signals, with clear implications for social communication in this population. There is a strong male preponderance in ASD, with approximately four affected males for every female. The presence of sex differences in ASD symptoms suggests a sexual dimorphism in the ASD phenotype, and raises the question of whether this dimorphism extends to ASD traits in the neurotypical population. Here, we investigated possible sexual dimorphism in multisensory speech integration in both ASD and neurotypical individuals. METHODS We assessed whether males and females differed in their ability to benefit from visual speech when target words were presented under varying levels of signal-to-noise, in samples of neurotypical children and adults, and in children diagnosed with an ASD. RESULTS In typically developing (TD) children and children with ASD, females (n = 47 and n = 15, respectively) were significantly superior in their ability to recognize words under audiovisual listening conditions compared to males (n = 55 and n = 58, respectively). This sex difference was absent in our sample of neurotypical adults (n = 28 females; n = 28 males). CONCLUSIONS We propose that the development of audiovisual integration is delayed in male relative to female children, a delay that is also observed in ASD. In neurotypicals, these sex differences disappear in early adulthood when females approach their performance maximum and males "catch up." Our findings underline the importance of considering sex differences in the search for autism endophenotypes and strongly encourage increased efforts to study the underrepresented population of females within ASD.
Collapse
Affiliation(s)
- Lars A. Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine & Montefiore Medical CenterBronx, NY, USA
- The Gordon F. Derner Institute of Advanced Psychological Studies, Adelphi UniversityGarden City, NY, USA
| | - Victor A. Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine & Montefiore Medical CenterBronx, NY, USA
- Ferkauf Graduate School of Psychology, Albert Einstein College of MedicineBronx, NY, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine & Montefiore Medical CenterBronx, NY, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of MedicineBronx, NY, USA
| | - Hans-Peter Frey
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine & Montefiore Medical CenterBronx, NY, USA
- Division of Neurocritical Care, Department of Neurology, Columbia University Medical CenterNew York, NY, USA
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Department of Pediatrics, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine & Montefiore Medical CenterBronx, NY, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
49
|
Banerjee S, Frey HP, Molholm S, Foxe JJ. Interests shape how adolescents pay attention: the interaction of motivation and top-down attentional processes in biasing sensory activations to anticipated events. Eur J Neurosci 2015; 41:818-34. [PMID: 25546318 PMCID: PMC6287492 DOI: 10.1111/ejn.12810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/11/2014] [Accepted: 11/26/2014] [Indexed: 11/27/2022]
Abstract
The voluntary allocation of attention to environmental inputs is a crucial mechanism of healthy cognitive functioning, and is probably influenced by an observer's level of interest in a stimulus. For example, an individual who is passionate about soccer but bored by botany will obviously be more attentive at a soccer match than an orchid show. The influence of monetary rewards on attention has been examined, but the impact of more common motivating factors (i.e. the level of interest in the materials under observation) remains unclear, especially during development. Here, stimulus sets were designed based on survey measures of the level of interest of adolescent participants in several item classes. High-density electroencephalography was recorded during a cued spatial attention task in which stimuli of high or low interest were presented in separate blocks. The motivational impact on performance of a spatial attention task was assessed, along with event-related potential measures of anticipatory top-down attention. As predicted, performance was improved for the spatial target detection of high interest items. Further, the impact of motivation was observed in parieto-occipital processes associated with anticipatory top-down spatial attention. The anticipatory activity over these regions was also increased for high vs. low interest stimuli, irrespective of the direction of spatial attention. The results also showed stronger anticipatory attentional and motivational modulations over the right vs. left parieto-occipital cortex. These data suggest that motivation enhances top-down attentional processes, and can independently shape activations in sensory regions in anticipation of events. They also suggest that attentional functions across hemispheres may not fully mature until late adolescence.
Collapse
Affiliation(s)
- Snigdha Banerjee
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
- Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Hans-Peter Frey
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
- Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual & Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
- Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual & Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
50
|
Markant J, Worden MS, Amso D. Not all attention orienting is created equal: recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiol Learn Mem 2015; 120:28-40. [PMID: 25701278 DOI: 10.1016/j.nlm.2015.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/05/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
Abstract
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location would boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone. To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, 1980; Posner, Rafal, & Choate, 1985) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally.
Collapse
Affiliation(s)
- Julie Markant
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States.
| | - Michael S Worden
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | - Dima Amso
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States
| |
Collapse
|