1
|
Obuchi C, Kawase T, Sasame Y, Yamamoto Y, Sasaki K, Iwasaki J, Okamoto H, Kaga K. Traits of Developmental Disorders in Adults With Listening Difficulties Without Diagnosis of Autism Spectrum Disorder And/or Attention-Deficit/Hyperactivity Disorder. J Clin Med 2024; 13:6281. [PMID: 39458230 PMCID: PMC11508553 DOI: 10.3390/jcm13206281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Some individuals have a normal audiogram but have listening difficulties (LiD). As many studies have investigated the relationship between listening and developmental disorders, the traits of developmental disorders might explain the symptoms of LiD. In this study, we examined the traits of developmental disorders of adults with LiD to help clarify the cause of LiD symptoms. Methods: In total, 60 adults with LiD and 57 adults without LiD were included. Participants completed a questionnaire for the autism spectrum quotient (AQ) test, the Adult Attention-Deficit Hyperactivity Disorder Self-Rating Scale (A-ADHD), the Adolescent/Adult Sensory Profile (SP), and the severity of subjective LiD in daily life. Results: Before analysis, we excluded participants with LiD who were already diagnosed or met the criteria for autism spectrum disorder (ASD) or ADHD, and the results of the remaining 30 participants (50.0%) with LiD were analyzed. Adults with LiD showed higher scores than those without LiD in the AQ. Attention switching in the AQ and attention ability in the A-ADHD scale were correlated with the severity of LiD symptoms in everyday life. The AQ scores were also significantly correlated with subscales of the SP. Conclusions: Adults with LiD showed greater autistic traits than those without LiD; therefore, LiD symptoms are possibly related to autistic symptoms. Furthermore, adults with LiD might have attention disorder traits of both ASD and ADHD and sensory processing problems. These findings suggest that the attention problems in adults with LiD noted in previous studies might be related to these traits of developmental disorders.
Collapse
Affiliation(s)
- Chie Obuchi
- Institute of Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yuka Sasame
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Yayoi Yamamoto
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Kaori Sasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Junya Iwasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Hidehiko Okamoto
- Department of Physiology, International University of Health and Welfare, Chiba 286-8686, Japan;
| | - Kimitaka Kaga
- National Hospital Organization Tokyo Medical Center, National Institute of Sensory Organs, Tokyo 152-8902, Japan;
| |
Collapse
|
2
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Dwyer P, Vukusic S, Williams ZJ, Saron CD, Rivera SM. "Neural Noise" in Auditory Responses in Young Autistic and Neurotypical Children. J Autism Dev Disord 2024; 54:642-661. [PMID: 36434480 PMCID: PMC10209352 DOI: 10.1007/s10803-022-05797-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Elevated "neural noise" has been advanced as an explanation of autism and autistic sensory experiences. However, functional neuroimaging measures of neural noise may be vulnerable to contamination by recording noise. This study explored variability of electrophysiological responses to tones of different intensities in 127 autistic and 79 typically-developing children aged 2-5 years old. A rigorous data processing pipeline, including advanced visualizations of different signal sources that were maximally independent across different time lags, was used to identify and eliminate putative recording noise. Inter-trial variability was measured using median absolute deviations (MADs) of EEG amplitudes across trials and inter-trial phase coherence (ITPC). ITPC was elevated in autism in the 50 and 60 dB intensity conditions, suggesting diminished (rather than elevated) neural noise in autism, although reduced ITPC to soft 50 dB sounds was associated with increased loudness discomfort. Autistic and non-autistic participants did not differ in MADs, and indeed, the vast majority of the statistical tests examined in this study yielded no significant effects. These results appear inconsistent with the neural noise account.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA.
- Center for Mind and Brain, UC Davis, Davis, CA, USA.
- MIND Institute, UC Davis Health, Sacramento, CA, USA.
| | | | - Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clifford D Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
| | - Susan M Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
- College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
5
|
Uddin LQ. Exceptional abilities in autism: Theories and open questions. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2022; 31:509-517. [PMID: 36776583 PMCID: PMC9916188 DOI: 10.1177/09637214221113760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vast majority of research on autism spectrum disorder (ASD) focuses on characterizing and addressing the social communication deficits and restricted, repetitive patterns of behavior that constitute the diagnostic criteria for the disorder. Yet, a small but significant portion of individuals diagnosed with ASD exhibit exceptional cognitive abilities in one or more domains. These "twice-exceptional" individuals often have unique skills that enable them to make significant contributions to the workforce, while at the same time facing unique challenges during the transition to independent living due to a lack of services and broad public misperceptions regarding their condition. Here we review the current literature on cognitive divergence in ASD, focusing on cognitive theories, neural substrates, and clinical and societal implications for increasing understanding of this phenomenon.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
7
|
The effect of autistic traits on disembedding and mental rotation in neurotypical women and men. Sci Rep 2022; 12:4639. [PMID: 35302087 PMCID: PMC8931084 DOI: 10.1038/s41598-022-08497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Recent data has revealed dissociations between social and non-social skills in both autistic and neurotypical populations. In the present study, we investigated whether specific visuospatial abilities, such as figure disembedding and mental rotation, are differently related to social and non-social autistic traits, in neurotypical women and men. University students (N = 426) completed the Autism Spectrum Quotient (AQ), figure disembedding and mental rotation of two-dimensional figures tasks. AQ social skills (AQ-social) and attention-to-details (AQ-attention) subscales were used as measures of social and non-social autistic traits, respectively. Mental rotation was affected by a significant interaction between sex, social and non-social traits. When non-social traits were above the mean (+ 1 SD), no sex differences in mental rotation were found. Instead, below this value, sex differences depended on the social traits, with men on average outperforming women at middle-to-high social traits, and with a comparable performance, and with women on average outperforming men, at lower social traits. A small positive correlation between figure disembedding and social traits was observed in the overall sample. These results are interpreted in terms of the hyper-systemizing theory of autism and contribute to the evidence of individual differences in the cognitive style of autistic people and neurotypical people with autistic traits.
Collapse
|
8
|
Visual consciousness dynamics in adults with and without autism. Sci Rep 2022; 12:4376. [PMID: 35288609 PMCID: PMC8921201 DOI: 10.1038/s41598-022-08108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Sensory differences between autism and neuro-typical populations are well-documented and have often been explained by either weak-central-coherence or excitation/inhibition-imbalance cortical theories. We tested these theories with perceptual multi-stability paradigms in which dissimilar images presented to each eye generate dynamic cyclopean percepts based on ongoing cortical grouping and suppression processes. We studied perceptual multi-stability with Interocular Grouping (IOG), which requires the simultaneous integration and suppression of image fragments from both eyes, and Conventional Binocular Rivalry (CBR), which only requires global suppression of either eye, in 17 autistic adults and 18 neurotypical participants. We used a Hidden-Markov-Model as tool to analyze the multistable dynamics of these processes. Overall, the dynamics of multi-stable perception were slower (i.e. there were longer durations and fewer transitions among perceptual states) in the autistic group compared to the neurotypical group for both IOG and CBR. The weighted Markovian transition distributions revealed key differences between both groups and paradigms. The results indicate overall lower levels of suppression and decreased levels of grouping in autistic than neurotypical participants, consistent with elements of excitation/inhibition imbalance and weak-central-coherence theories.
Collapse
|
9
|
Hughes RB, Whittingham-Dowd J, Clapcote SJ, Broughton SJ, Dawson N. Altered medial prefrontal cortex and dorsal raphé activity predict genotype and correlate with abnormal learning behavior in a mouse model of autism-associated 2p16.3 deletion. Autism Res 2022; 15:614-627. [PMID: 35142069 PMCID: PMC9303357 DOI: 10.1002/aur.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14C‐2‐deoxyglucose imaging. We also assess performance in an olfactory‐based discrimination and reversal learning (OB‐DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/− mice. Behaviorally, Nrxn1α+/− mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/− mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/− mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/− mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
10
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
11
|
Ostojic SM, Engeset D. Improving Brain Creatine Uptake by Klotho Protein Stimulation: Can Diet Hit the Big Time? Front Nutr 2022; 8:795599. [PMID: 35004821 PMCID: PMC8732999 DOI: 10.3389/fnut.2021.795599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | - Dagrun Engeset
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| |
Collapse
|
12
|
Huang Q, Pereira AC, Velthuis H, Wong NML, Ellis CL, Ponteduro FM, Dimitrov M, Kowalewski L, Lythgoe DJ, Rotaru D, Edden RAE, Leonard A, Ivin G, Ahmad J, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. GABA B receptor modulation of visual sensory processing in adults with and without autism spectrum disorder. Sci Transl Med 2022; 14:eabg7859. [PMID: 34985973 DOI: 10.1126/scitranslmed.abg7859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra 3000-548, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra 3000-548, Portugal
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Diana Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London SE5 8AZ, UK
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London SE10 9LS, UK
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
13
|
Kang QQ, Li X, Tong GL, Fan YL, Shi L. Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1250-1255. [PMID: 34911608 PMCID: PMC8690718 DOI: 10.7499/j.issn.1008-8830.2108137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To study the changes in biochemical metabolites in the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder (ASD). METHODS In this prospective study, magnetic resonance spectroscopy (MRS) with point-resolved spatial selection was used to analyze the thalamus and the cerebellum at both sides in 50 children with ASD aged 2-6 years. Creatine (Cr) was as the internal standard to measure the relative values of N-acetylaspartate (NAA)/Cr, choline (Cho)/Cr, myoinositol (MI)/Cr, and glutamine and glutamate complex (Glx)/Cr, and the differences in metabolites and their association with clinical symptoms were compared. RESULTS In the children with ASD, NAA/Cr in the left thalamus was positively correlated with the scores of hearing-language and hand-eye coordination in the Griffiths Development Scales-Chinese (P<0.05). Cho/Cr in the right cerebellum was positively correlated with the scores of personal-social competence, hearing-language, and hand-eye coordination (P<0.05). NAA/Cr and Glx/Cr in the left thalamus were positively correlated with those in the left cerebellum (P<0.05). There was no significant difference in metabolites between the left and right sides of the thalamus and the cerebellum in the children with ASD (P>0.05). CONCLUSIONS There are metabolic disorders in the cerebellum and the thalamus in children with ASD, and there is a correlation between the changes of metabolites in the left cerebellum and the left thalamus. Some metabolic indexes are related to the clinical symptoms of ASD. MRS may reveal the pathological basis of ASD and provide a basis for diagnosis and prognosis assessment of ASD as a noninvasive and quantitative detection method.
Collapse
Affiliation(s)
- Qian-Qian Kang
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Xu Li
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Guang-Lei Tong
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Ya-Lan Fan
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Lei Shi
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| |
Collapse
|
14
|
Finkelman T, Furman-Haran E, Paz R, Tal A. Quantifying the excitatory-inhibitory balance: A comparison of SemiLASER and MEGA-SemiLASER for simultaneously measuring GABA and glutamate at 7T. Neuroimage 2021; 247:118810. [PMID: 34906716 DOI: 10.1016/j.neuroimage.2021.118810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022] Open
Abstract
The importance of the excitatory-inhibitory (E/I) balance in a wide range of cognitive and behavioral processes has prompted a commensurate interest in methods for reliably quantifying it. Proton Magnetic Resonance Spectroscopy (1H-MRS) remains the only method capable of safely and non-invasively measuring the concentrations of the brain's major excitatory (glutamate) and inhibitory (γ-aminobutyric-acid, GABA) neurotransmitters in-vivo. MRS relies on spectral Mescher-Garwood (MEGA) editing techniques at 3T to distinguish GABA from its overlapping resonances. However, with the increased spectral resolution at ultrahigh field strengths of 7T and above, non-edited spectroscopic techniques become potential viable alternatives to MEGA based approaches, and also address some of their shortcomings, such as signal loss, sensitivity to transmitter inhomogeneities and temporal resolution. We present a comprehensive comparison of both edited and non-edited strategies at 7T for simultaneously quantifying glutamate and GABA from the dorsal anterior cingulate cortex (dACC), and evaluate their reproducibility and relative bias. The combined root-mean-square test-retest reproducibility of Glu and GABA (CVE/I) was as low as 13.3% for unedited MRS at TE=80 ms using SemiLASER localization, while edited MRS at TE=80 ms yielded CVE/I=20% and 21% for asymmetric and symmetric MEGA editing, respectively. An unedited SemiLASER acquisition using a shorter echo time of TE=42 ms yielded CVE/I as low as 24.9%. Our results show that non-edited sequences at an echo time of 80 ms provide better reproducibility than either edited sequences at the same TE, or non-edited sequences at a shorter TE of 42 ms. This is supported by numerical simulations and is driven in part by a pseudo-singlet appearance of the GABA multiplets at TE=80 ms, and the excellent spectral resolution at 7T. Our results uphold a transition to non-edited MRS for monitoring the E/I balance at ultrahigh fields, and stress the importance of using a properly-optimized echo time.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Are We Right about the Right TPJ? A Review of Brain Stimulation and Social Cognition in the Right Temporal Parietal Junction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the past decade, the functional role of the TPJ (Temporal Parietal Junction) has become more evident in terms of its contribution to social cognition. Studies have revealed the TPJ as a ‘distinguisher’ of self and other with research focused on non-clinical populations as well as in individuals with Autism and Type I Schizophrenia. Further research has focused on the integration of self-other distinctions with proprioception. Much of what we now know about the causal role of the right TPJ derives from TMS (Transcranial Magnetic Stimulation), rTMS repetitive Transcranial Magnetic Stimulation), and tDCS (transcranial Direct Cortical Stimulation). In this review, we focus on the role of the right TPJ as a moderator of self, which is integrated and distinct from ‘other’ and how brain stimulation has established the causal relationship between the underlying cortex and agency.
Collapse
|
16
|
Sensory over-responsivity is related to GABAergic inhibition in thalamocortical circuits. Transl Psychiatry 2021; 11:39. [PMID: 33436538 PMCID: PMC7804323 DOI: 10.1038/s41398-020-01154-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = -0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.
Collapse
|
17
|
Pierce S, Kadlaskar G, Edmondson DA, McNally Keehn R, Dydak U, Keehn B. Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: an EEG-MRS study. J Neurodev Disord 2021; 13:5. [PMID: 33407072 PMCID: PMC7788714 DOI: 10.1186/s11689-020-09351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. Methods Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. Results Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. Conclusions Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09351-0.
Collapse
Affiliation(s)
- Sarah Pierce
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - David A Edmondson
- Cincinnati Children's Hospital Medical Center, Imaging Research Center, Cincinnati, OH, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brandon Keehn
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA. .,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|