1
|
Benitez Mora MP, Del Prete C, Longobardi V, Cocchia N, Esposito R, Piscopo F, Sicari A, Vinale F, Carbonari A, Gasparrini B. Incubating frozen-thawed buffalo sperm with olive fruit extracts counteracts thawing-induced oxidative stress and improves semen quality. Theriogenology 2024; 229:118-126. [PMID: 39178613 DOI: 10.1016/j.theriogenology.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Freezing-thawing procedures and semen manipulation for in vitro fertilization induce oxidative stress, which in turn leads to impaired sperm quality. The aim of this study was to evaluate whether incubation of frozen-thawed buffalo semen with olive fruit extracts (OFE), known to contain a high concentration of phenolic antioxidants, would improve semen quality by reducing oxidative stress. Frozen sperm (4 ejaculates/4 bulls/3 replicates) were thawed and diluted to 30 × 106/mL in IVF medium with 0, 72, 143, and 214 μL/mL of OFE, corresponding to 0 (D0-control), 50 (D50), 100 (D100), and 150 (D150) μM hydroxytyrosol. Sperm viability, acrosome integrity, membrane functionality, motility, and sperm kinetics were evaluated immediately after thawing (T0) and after 1 (T1) and 2 h (T2) of incubation at 38.7 °C. Based on the results, sperm biological antioxidant potential (BAP) and ROS levels (ROMs) were assessed in D0 and D100 groups at T1 and T2. To assess the effect of OFE on fertilizing ability, heterologous penetration rates were also evaluated, using bovine abattoir-derived oocytes. The treatment with OFE at all concentrations tested increased (P < 0.05) the percentage of acrosome intact spermatozoa compared to the D0-control at T1, but the effect was more evident (P < 0.01) with D100 (54.5 ± 3.0, 60.5 ± 1.5, 65.2 ± 3.3, and 62.5 ± 1.7, with D0, D50, D100, and D150 OFE, respectively). Total motility, progressive motility, rapid velocity, and progressive velocity decreased (P < 0.05) at T2 only in the D0-control group. The percentage of rapidly progressive sperm and the progressive motility tended to increase (P < 0.10) at T1 and T2, respectively, in D100 compared to D0 (24.7 ± 4.1 vs 16.4 ± 1.6 and 22.8 ± 2.7 vs 17.0 ± 1.2, respectively). The treatment with D100 OFE of frozen-thawed sperm increased (P < 0.05) some kinetic parameters (VAP and WOB). Spermatozoa incubated with D100 OFE exhibited higher (P < 0.01) total and normospermic oocyte penetration rates compared to D0 (86.5 ± 1.4 vs 78.5 ± 0.7, and 70.6 ± 1.5 vs 63.8 ± 1.1, respectively). Additionally, D100 OFE increased sperm BAP concentrations at both T1 and T2, while ROS levels were unaffected. These results suggest that incubating frozen-thawed buffalo semen with OFE is an effective strategy for preserving semen quality and in vitro fertilization ability by enhancing sperm antioxidant capacity.
Collapse
Affiliation(s)
- Maria Paz Benitez Mora
- Facultad de Ciencias Veterinarias, Universidad Nacional de Asunción, San Lorenzo, Paraguay; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Valentina Longobardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Federica Piscopo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Alice Carbonari
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Yılmaz DK, Kesbiç FI, Çelik EŞ, Odabaşı DA, Yilmaz S, Abdel-Latif HMR. Evaluation of the Antimicrobial Effects of Olive Mill Wastewater Extract Against Food Spoiling/Poisoning, Fish-Pathogenic and Non-Pathogenic Microorganisms. Microorganisms 2024; 12:2216. [PMID: 39597605 PMCID: PMC11596773 DOI: 10.3390/microorganisms12112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives is considered of vital importance. Investigation of the antimicrobial properties of several plant substances and extracts is of great value to replace antibiotics. With this objective, this study aimed to evaluate the antimicrobial activities of an ethanolic extract prepared from olive mill wastewater (OMWW), which is a by-product of olive oil production with considerable environmental burden, against 38 bacterial strains, including fish-associated pathogens, non-pathogenic isolates, collection strains, and one yeast strain, Candida albicans. Disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC/MFC) tests were used to determine the antimicrobial activity of the OMWWE. According to the results, OMWWE provoked strong inhibitory effects against Shewanella baltica strain SY-S145. It also showed a moderate inhibitory effect on Plesiomonas shigelloides strain SY-PS16 and Vibrio anguillarum strain SY-L24. The MIC and MBC of OMWWE on Shewanella baltica SY-S145, Vibrio gigantis strain C24, and V. anguillarum strain SY-L24 were 500 µg/mL. The MIC and MBC on V. parahaemolyticus ATCC 17802 were 1000 µg/mL, whereas the values for Aeromonas salmonicida ATCC 33658 were 500 µg/mL and 1000 µg/mL, respectively. To put it briefly, the OMWW extract showed high antimicrobial activity and can act as an environmentally friendly additive for the control and prevention of diseases caused by A. veronii, A. hydrophila, P. shigelloides, S. baltica, V. anguillarum, and V. parahaemolyticus. Its active agents also prevented infections of both fish-associated pathogens and food spoiling bacteria, which means it can not only help in the disease control mechanism but also in improving the safety of food by reduction of the microbial contamination.
Collapse
Affiliation(s)
- Dilek Kahraman Yılmaz
- Department of Marine and Inland Water Sciences, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.Ş.Ç.); (D.A.O.)
| | - Fevziye Işıl Kesbiç
- Central Research Laboratory, Kastamonu University, Kastamonu 37150, Türkiye;
| | - Ekrem Şanver Çelik
- Department of Marine and Inland Water Sciences, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.Ş.Ç.); (D.A.O.)
| | - Deniz Anıl Odabaşı
- Department of Marine and Inland Water Sciences, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.Ş.Ç.); (D.A.O.)
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| |
Collapse
|
3
|
Haydari I, Lissaneddine A, Aziz K, Ouazzani N, Mandi L, El Ghadraoui A, Aziz F. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80044-80061. [PMID: 35508849 DOI: 10.1007/s11356-022-20577-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Olive oil mill wastewater (OMWW) poses an undeniable environmental problem due to its high organic loads and phenolic compound (PC) content. This study determined the optimal conditions for preparing a new bio-sorbent from olive pomace (OP) and the adsorptive treatment of OMWW by this bio-sorbent. The activation reaction was performed with hydrogen peroxide. The results of the combination effect optimization of the three preparation variables, the activation temperature (°C) X1, the activation time (min) X2, and the impregnation ratio X3, are presented by the response surface methodology (RSM). The maximum adsorption capacity was obtained at an activation time of 240 min, a temperature of 80 °C, and a ratio equal to 6.2:1. The bio-sorbent was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometer (XRD). The adsorption process performance of this bio-sorbent was examined in batch (phenol solution) and fixed-bed columns (real effluent of OMWW). An adsorption capacity of 789.28 mg g-1 and 643.92 mg g-1 has been achieved for 4000 mg L-1 concentration of PCs, respectively, for batch and fixed-bed column essays. The adsorption isotherm and kinetics were consistent with the Langmuir and pseudo-second-order models. Therefore, the Thomas model best fits the fixed-bed column experimental data. The bio-sorbent gave a high desorption percentage of PCs, which was above 60% using HCl (0.1M).
Collapse
Affiliation(s)
- Imane Haydari
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Amina Lissaneddine
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, B.P 8106, 80000, Agadir, Morocco
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Laila Mandi
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Ayoub El Ghadraoui
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| |
Collapse
|
4
|
Piccinino D, Capecchi E, Trifero V, Tomaino E, Marconi C, Del Giudice A, Galantini L, Poponi S, Ruggieri A, Saladino R. Lignin Nanoparticles as Sustainable Photoprotective Carriers for Sunscreen Filters. ACS OMEGA 2022; 7:37070-37077. [PMID: 36312404 PMCID: PMC9608391 DOI: 10.1021/acsomega.2c02133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/09/2022] [Indexed: 06/01/2023]
Abstract
Sunscreen filters may be degraded after prolonged UV exposure with loss of their shielding property and generation of harmful radical species. They are contained in cosmetic formulations in high concentrations, so the improvement of photostability is of relevance for safety concerns. We report here that lignin nanoparticles are sustainable carriers and photostabilizers of two common UV chemical filters, namely, avobenzone and octyl methoxycinnamate. These compounds have been encapsulated by nanoprecipitation into kraft lignin nanoparticles using eco-certified dimethyl isosorbide as a primary solvent and deionized water as an antisolvent. After the encapsulation, both compounds significantly prolonged the half-life stability against UV irradiation. The stabilizing properties of lignin nanoparticles were further improved by coencapsulation of avobenzone and octyl methoxycinnamate with hydroxytyrosol, a natural phenol with antioxidant activity recovered from olive oil wastes and characterized by skin regenerative properties.
Collapse
Affiliation(s)
- Davide Piccinino
- Department
of Ecological and Biological Sciences, University
of Tuscia, Via San Camillo de Lellis, 01100Viterbo, Italy
| | - Eliana Capecchi
- Department
of Ecological and Biological Sciences, University
of Tuscia, Via San Camillo de Lellis, 01100Viterbo, Italy
| | - Valentina Trifero
- Department
of Ecological and Biological Sciences, University
of Tuscia, Via San Camillo de Lellis, 01100Viterbo, Italy
| | - Elisabetta Tomaino
- Department
of Ecological and Biological Sciences, University
of Tuscia, Via San Camillo de Lellis, 01100Viterbo, Italy
| | - Claudia Marconi
- Department
of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185Rome, Italy
| | - Alessandra Del Giudice
- Department
of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185Rome, Italy
| | - Luciano Galantini
- Department
of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185Rome, Italy
| | - Stefano Poponi
- Department
of Economics, Engineering, Society, and Enterprise, University of Tuscia, Via del Paradiso 47, 01100Viterbo, Italy
| | - Alessandro Ruggieri
- Department
of Economics, Engineering, Society, and Enterprise, University of Tuscia, Via del Paradiso 47, 01100Viterbo, Italy
| | - Raffaele Saladino
- Department
of Ecological and Biological Sciences, University
of Tuscia, Via San Camillo de Lellis, 01100Viterbo, Italy
| |
Collapse
|
5
|
Determination of an optimum extraction region for the recovery of bioactive compounds from olive leaves (Olea europaea L.) using green dynamic pressurized liquid extraction. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Karadag A, Kayacan Cakmakoglu S, Metin Yildirim R, Karasu S, Avci E, Ozer H, Sagdic O. Enrichment of lecithin with phenolics from olive mill wastewater by cloud point extraction and its application in vegan salad dressing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayse Karadag
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | | | | | - Salih Karasu
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Esra Avci
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| | - Hayrettin Ozer
- Food Institute TUBITAK Marmara Research Center Gebze Turkey
| | - Osman Sagdic
- Department of Food Engineering Yildiz Technical University Istanbul Turkey
| |
Collapse
|
7
|
Zahi MR, Zam W, El Hattab M. State of knowledge on chemical, biological and nutritional properties of olive mill wastewater. Food Chem 2022; 381:132238. [PMID: 35114626 DOI: 10.1016/j.foodchem.2022.132238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
The Mediterranean olive oil industries are producing annually a massive quantity of olive mill wastewater (OMWW). Unfortunately, the OMWW is released arbitrarily in the nature without any pretreatment. Thus, it exhibits a high toxicity against the whole natural ecosystem including, microorganisms, plants and animals. In order to eliminate or reduce its pollution, OMWW must be properly treated prior to its release in the nature. In this regard, different treatment methods have been developed by researchers, but some of them were costly and others were inappropriate. Thus, more efforts should be made to save the nature from this pollutant. In the light of that, the current work summaries the state of knowledge regarding the OMWW from a chemical, biological, nutraceutical point of view, and the treatment methods that were used to eliminate its risk of pollution.
Collapse
Affiliation(s)
- Mohamed Reda Zahi
- Laboratory of Natural Products Chemistry and Biomolecules, Faculty of Sciences, Saad Dahlab University of Blida, 1- POB 270, Soumaa Road, Blida, Algeria.
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Tartous University, Syria
| | - Mohamed El Hattab
- Laboratory of Natural Products Chemistry and Biomolecules, Faculty of Sciences, Saad Dahlab University of Blida, 1- POB 270, Soumaa Road, Blida, Algeria
| |
Collapse
|
8
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
9
|
Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olive oil production represents an agro-industrial activity of vital economic importance for many Mediterranean countries. However, it is associated with the generation of a huge amount of by-products, both in solid and liquid forms, mainly constituted by olive mill wastewater, olive pomace, wood, leaves, and stones. Although for many years olive by-products have only been considered as a relevant environmental issue, in the last decades, numerous studies have deeply described their antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antihypertensive, anticancer, anti-hyperglycemic activities. Therefore, the increasing interest in natural bioactive compounds represents a new challenge for olive mills. Studies have focused on optimizing methods to extract phenols from olive oil by-products for pharmaceutical or cosmetic applications and attempts have been made to describe microorganisms and metabolic activity involved in the treatment of such complex and variable by-products. However, few studies have investigated olive oil by-products in order to produce added-value ingredients and/or preservatives for food industries. This review provides an overview of the prospective of liquid olive oil by-products as a source of high nutritional value compounds to produce new functional additives or ingredients and to explore potential and future research opportunities.
Collapse
|
10
|
Identification of Tyrosyl Oleate as a Novel Olive Oil Lipophenol with Proliferative and Antioxidant Properties in Human Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10071051. [PMID: 34209968 PMCID: PMC8300722 DOI: 10.3390/antiox10071051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Lipophenols are an emerging subclass of phenolic compounds characterized by the presence of a lipid moiety. Recently, hydroxytyrosyl oleate (HtyOle), a derivative of hydroxytyrosol, has been identified in olive oil and by-products. Furthermore, HtyOle possesses anti-inflammatory, antioxidant, and tissue regenerating properties. In this work, the potential occurrence of tyrosyl oleate (TyOle) in olive oil was investigated based on the hypothesis that its precursors tyrosol and oleic acid, both present in relatively high amount can be coupled together. Moreover, TyOle effects have been investigated in human keratinocytes to verify its proliferative and antioxidant properties. The quantitative determination of TyOle was carried out by the external standard method in liquid chromatography coupled with mass spectrometry (LC/MS), in negative mode using multiple reaction monitoring (MRM). The proliferative properties of TyOle on immortalized human keratinocytes (HaCat) were evaluated by 3-(4,5-dimethylthiasol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological changes were observed by fluorescent staining with phalloidin (for F-actin) or 4,6-diamidino-2-phenylindole (DAPI, for chromatin) dye. The antioxidant activity was assessed at the level of production of mitochondrial reactive oxygen species (ROS) induced with UV exposure. TyOle was identified in all the oil samples investigated. Interestingly, TyOle concentration was higher in defective or low-quality oils than in extra virgin oils. The formation of TyOle likely occurs during the crushing and kneading processes and its concentration is related to the increase of rancidity and of the concentration of free precursors. Herein we show that TyOle induced an increase in the viability of HaCat cells and cytoskeletal remodeling.
Collapse
|
11
|
Liu J, Liu Z, Wang L, He H, Mu H, Sun W, Zhou Y, Liu Y, Ma W, Zhang W, Fu M, Fan Y, Song X. Bioactivity-guided isolation of immunomodulatory compounds from the fruits of Ligustrum lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114079. [PMID: 33798661 DOI: 10.1016/j.jep.2021.114079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Ligustrum lucidum (FLL) W.T. Aiton (Oleaceae) is included in the 2020 "Chinese Pharmacopoeia" and is widely used in traditional Chinese medicine as a tonic. In recent years, FLL has been reported to improve immune function, but the bioactive compounds and mechanisms of FLL remain poorly characterized. AIM OF THE STUDY To identify FFL compounds with strong immune activity and explore their molecular mechanisms. MATERIALS AND METHODS The phagocytic activity of RAW264.7 macrophages and proliferation activity of spleen lymphocytes were used to guide the isolation of bioactive compounds from FLL extracts. Lymphocyte subpopulations, Ca2+ concentrations, and surface molecule expression were analyzed using flow cytometry. Cytokine secretion was examined using ELISA. FITC-OVA uptake was observed using fluorescence microscopy. NF-κB activation was analyzed using western blotting. RESULTS The extraction and isolation produced ten compounds, namely oleuropeinic acid, nuezhenide, isonuezhenide, salidroside, isoligustrosidic acid, ligulucidumosides A, 8(E)-nuezhenide, hydroxytyrosol, oleuropein, and p-hydroxyphenethyl 7-β-D-glucosideelenolic acid ester were isolated and identified from FLL-Bu-30%. Immunoactivity experiments showed that hydroxytyrosol had the strongest macrophage phagocytotic and lymphocyte proliferation-promoting activities. Further studies showed that hydroxytyrosol could significantly enhance lymphocyte subsets CD3+, CD4+/CD8+, and CD3+CD4-CD8-, promote IL-4, IFN-γ, and TNF-α secretion, and increase intracellular Ca2+ concentrations. In addition, the results from RAW264.7 macrophages showed that hydroxytyrosol increased FITC-OVA uptake, induced TNF-α and IL-1β production, upregulated MHC-II, CD80, and CD86 expression, promoted cytoplasmic IκB-α degradation, and increased nuclear NF-κB p65 levels. CONCLUSION Our study provides substantial evidence regarding the mechanism of the immunomodulatory effects of compounds from FLL.
Collapse
Affiliation(s)
- Jia Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lili Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hao He
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wenjing Sun
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yu Zhou
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
12
|
Technoeconomic Analysis of the Recovery of Phenols from Olive Mill Wastewater through Membrane Filtration and Resin Adsorption/Desorption. SUSTAINABILITY 2021. [DOI: 10.3390/su13042376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Olive mill wastewater is an important agro-industrial waste with no established treatment method. The authors have developed a phenol separation method that could potentially cover the treatment cost of the waste. The purpose of this study was to identify any economic hotspots in the process, the operational cost and examine the margin of profit for such a process. The equipment cost was scaled for different treatment capacities and then used to estimate the fixed capital investment and the yearly operational cost. The highest purchased equipment cost was identified for the membrane filtration system, while the cost for resin replacement was identified as the highest operational cost. The lifespan of the resin used in the adsorption step was identified as an economic hot spot for the process, with the phenols separation cost ranging from 0.84 to 13.6 €/g of phenols for a resin lifespan of 5–100 adsorption/desorption cycles. The lifespan of the resin proved to be the single most important aspect that determines the phenols separation cost. The price range that was calculated for the product of the process is very promising because of the typical value of antioxidants and the low concentration of phenols that are needed for food supplements and cosmetics.
Collapse
|
13
|
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021; 26:495. [PMID: 33477709 PMCID: PMC7831927 DOI: 10.3390/molecules26020495] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by-products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, considering also the need to implement "greener" practices in the latter sector.
Collapse
Affiliation(s)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (P.T.); (L.M.); (F.P.)
| | | | | | | |
Collapse
|
14
|
Nasrallah H, Aissa I, Slim C, Boujbiha MA, Zaouali MA, Bejaoui M, Wilke V, Ben Jannet H, Mosbah H, Ben Abdennebi H. Effect of oleuropein on oxidative stress, inflammation and apoptosis induced by ischemia-reperfusion injury in rat kidney. Life Sci 2020; 255:117833. [PMID: 32450167 DOI: 10.1016/j.lfs.2020.117833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study aimed to evaluate the effect of oleuropein (OLE), the main phenolic compound present in olive leaves, on kidney ischemia-reperfusion injury (IRI) and to explore the underlying protective mechanism. MAIN METHODS Rat kidneys were subjected to 60 min of bilateral warm ischemia followed by 120 min of reperfusion. OLE was administered orally 48 h, 24 h and 30 min prior to ischemia at doses of 10, 50 and 100 mg/kg body weight. The creatinine, urea, uric acid concentrations and lactate dehydrogenase (LDH) activity in plasma were evaluated. Oxidative stress and inflammation parameters were also assessed. Renal expression of AMP-activated protein kinase (p-AMPK), endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinases (MAPK), inflammatory proteins and apoptotic proteins were evaluated using Western blot. KEY FINDINGS Our results showed that OLE at 50 mg/kg reduced kidney IRI as revealed by a significant decrease of plasmatic creatinine, urea, uric acid concentrations and LDH activity. In parallel, OLE up-regulated antioxidant capacities. Moreover, OLE diminished the level of CRP and the expression of cyclooxygenase 2 (COX-2). Finally, OLE enhanced AMPK phosphorylation as well as eNOS expression whereas MAPK, and cleaved caspase-3 implicated in cellular apoptosis were attenuated in the ischemic kidneys. SIGNIFICANCE In conclusion, this study shows that OLE could be used as therapeutic agent to reduce IRI through its anti-oxidative, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hana Nasrallah
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Imen Aissa
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Mohamed Bejaoui
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Victoria Wilke
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Habib Mosbah
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| |
Collapse
|
15
|
Visioli F, Davalos A, López de las Hazas M, Crespo MC, Tomé‐Carneiro J. An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 2020; 177:1316-1330. [PMID: 31270815 PMCID: PMC7056466 DOI: 10.1111/bph.14782] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to providing sensory stimuli, usually taste, smell and sight, olive oil contains a range of minor components, mostly phenolic in nature. These components are endowed with pharmacological or pharma‐nutritional properties that are the subject of active research worldwide. Based on our more than 25 years of experience in this field, we critically focus on what we believe are the most pharmacologically prominent actions of the constituents of olive oil. Most of the effects are due to the phenolic compounds in extra virgin olive oil, such as hydroxytyrosol and oleocanthal (which are often mis‐categorized as in vivo antioxidants) and concern the cardiovascular system. Other potentially beneficial activities are still to be investigated in depth. We conclude that—in the context of a proper diet that includes high‐quality products—the use of high‐quality olive oil contributes to achieving and sustaining overall health.Linked ArticlesThis article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Alberto Davalos
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María‐Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María Carmen Crespo
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - Joao Tomé‐Carneiro
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| |
Collapse
|
16
|
Rebollada-Merino A, Bárcena C, Ugarte-Ruiz M, Porras N, Mayoral-Alegre FJ, Tomé-Sánchez I, Domínguez L, Rodríguez-Bertos A. Effects on Intestinal Mucosal Morphology, Productive Parameters and Microbiota Composition after Supplementation with Fermented Defatted Alperujo (FDA) in Laying Hens. Antibiotics (Basel) 2019; 8:antibiotics8040215. [PMID: 31717572 PMCID: PMC6963227 DOI: 10.3390/antibiotics8040215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The olive oil sector is currently adapting its traditional function to also become a supplier of high-value by-products that possess antioxidant, anti-inflammatory and antimicrobial properties. In this study, we evaluated the effect of the fermented defatted alperujo (FDA) on the intestinal health of laying hens. The morphology of the duodenal and cecal mucosa, the composition of the intestinal microbiota and the productivity of a batch of laying hens were evaluated after FDA supplementation. At early life stages, significant differences (p < 0.001) were observed in duodenal villi height and in crypt depth of both the duodenum and the cecum in the FDA-supplemented group, indicating improved intestinal health in this group. Microbiota composition in the hatchery group supplemented with FDA had a higher abundance of Actinobacteria, Firmicutes and Proteobacteria, and higher bacterial diversity. During the production period, significant differences (p < 0.05) were observed in the number of broken eggs from the supplemented group. We conclude that FDA supplementation improves the absorption capacity of the intestinal mucosa and modifies the intestinal microbiota to favor a greater immune response, leading to an increase in egg production.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
| | - Carmen Bárcena
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
- Correspondence: ; Tel.: +34-913944097
| | - Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
| | - Francisco J. Mayoral-Alegre
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
| | - Irene Tomé-Sánchez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (C.B.); (N.P.); (F.J.M.-A.); (I.T.-S.); (L.D.); (A.R.-B.)
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Britton J, Davis R, O'Connor KE. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 2019; 103:5957-5974. [PMID: 31177312 DOI: 10.1007/s00253-019-09914-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Hydroxytyrosol (HT) is a polyphenol of interest to the food, feed, supplements and pharmaceutical sectors. It is one of the strongest known natural antioxidants and has been shown to confer other benefits such as anti-inflammatory and anti-carcinogenic properties, and it has the potential to act as a cardio- and neuroprotectant. It is known to be one of the compounds responsible for the health benefits of the Mediterranean diet. In nature, HT is found in the olive plant (Olea europaea) as part of the secoiridoid compound oleuropein, in its leaves, fruit, oil and oil production waste products. HT can be extracted from these olive sources, but it can also be produced by chemical synthesis or through the use of microorganisms. This review looks at the production of HT using plant extraction, chemical synthesis and biotechnological approaches.
Collapse
Affiliation(s)
- James Britton
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Reeta Davis
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland. .,Beacon Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
19
|
Silvan JM, Pinto-Bustillos MA, Vásquez-Ponce P, Prodanov M, Martinez-Rodriguez AJ. Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Synthesis, characterization and evaluation of antioxidant activity of tyrosol derivatives from olive mill wastewater. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|