1
|
Zhao Y, Hu K, Wang F, Zhao L, Su Y, Chen J, Zou G, Yang L, Wei L, Deng M, He Y, Wang P, Ruan XZ, Chen Y, Yu C. Guanidine-Derived Polymeric Nanoinhibitors Target the Lysosomal V-ATPase and Activate AMPK Pathway to Ameliorate Liver Lipid Accumulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408906. [PMID: 39499772 PMCID: PMC11714212 DOI: 10.1002/advs.202408906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Current research efforts in polymer and nanotechnology applications are primarily focused on cargo delivery to enhance the therapeutic index, with limited attention being paid to self-molecularly targeted nanoparticles, which may also exhibit significant therapeutic potential. Long-term and anomalous lipid accumulation in the liver is a highly relevant factor contributing to liver diseases. However, the development of the reliable medications and their pharmacological mechanisms remain insufficient. Herein, a polyguanide nanoinhibitors (PGNI) depot is constructed by copolymerizing biguanide derivatives in different proportions onto prepolymers. The nanoinhibitors for their ability to ameliorate lipid accumulation in vitro and in vivo is screened, and subsequently demonstrated that covalently polymeric guanidine chains exhibit superior efficacy in ameliorating hepatic lipid accumulation via heterogeneous mechanisms compared to small-molecule guanidine. It is found that PGNIs stabilize guanidine metabolism in the liver, preferably for biosafety. More importantly, PGNI is ingested and localized in hepatocyte lysosomes and is locked to interact with vesicular adenosine triphosphatase (V-ATPase) on lysosomes, leading to the inhibition of V-ATPase and lysosomal acidification, thereby activating the AMPK pathway, reducing fatty acid synthesis, and enhancing lipolysis and fatty acid oxidation. These results imply that polymer-formed nanoparticles can serve as targeted inhibitors, offering a novel approach for therapeutic applications.
Collapse
Affiliation(s)
- Yunfei Zhao
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Ke Hu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Fangliang Wang
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Lulu Zhao
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Yu Su
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Jun Chen
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Gang Zou
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Liming Yang
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Li Wei
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Mengjiao Deng
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Yunyu He
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Ping Wang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Chao Yu
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| |
Collapse
|
2
|
Fattah S, Shinde AB, Baes M, Allegaert K, Augustijns P, Annaert P. Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human. Drug Metab Dispos 2024; 52:1253-1261. [PMID: 39209551 DOI: 10.1124/dmd.124.001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2-57 days old) and human hepatocytes (pediatric liver tissue donors: age 2-12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals. SIGNIFICANCE STATEMENT: Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Abhijit Babaji Shinde
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Myriam Baes
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Karel Allegaert
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Patrick Augustijns
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| |
Collapse
|
3
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Yao L, Wang L, Zhang R, Soukas AA, Wu L. The direct targets of metformin in diabetes and beyond. Trends Endocrinol Metab 2024:S1043-2760(24)00198-X. [PMID: 39227192 DOI: 10.1016/j.tem.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Metformin, an oral antihyperglycemic drug that has been in use for over 60 years, remains a first-line therapy for type 2 diabetes (T2D). Numerous studies have suggested that metformin promotes health benefits beyond T2D management, including weight loss, cancer prevention and treatment, and anti-aging, through several proposed mechanistic targets. Here we discuss the established effects of metformin and the progress made in identifying its direct targets. Additionally, we emphasize the importance of elucidating the structural bases of the drug and its direct targets. Ultimately, this review aims to highlight the current state of knowledge regarding metformin and its related emerging discoveries, while also outlining critical future research directions.
Collapse
Affiliation(s)
- Luxia Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lei Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Lianfeng Wu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
6
|
Shang T, Zhang C, Liu D. Drug disposition in cholestasis: An important concern. Pharmacol Res Perspect 2024; 12:e1220. [PMID: 38899589 PMCID: PMC11187734 DOI: 10.1002/prp2.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cholestasis, a chronic liver condition, disrupts bile acid homeostasis and complicates drug disposition, posing significant challenges in medicating cholestatic patients. Drug metabolism enzymes and transporters (DMETs) are pivotal in drug clearance. Research indicates that cholestasis leads to alterations in both hepatic and extrahepatic DMETs, with changes in expression and function documented in rodents and humans. This review synthesizes the modifications in key drug disposition components within cholestasis, focusing on cytochrome P450 (CYP450), drug transporters, and their substrates. Additionally, we briefly discuss certain drugs that have demonstrated efficacy in restoring DMET expression in cholestatic conditions. Ultimately, these insights necessitate a reevaluation of drug selection and dosing guidelines for patients with cholestasis.
Collapse
Affiliation(s)
- Tianze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Zhang S, Zhu A, Kong F, Chen J, Lan B, He G, Gao K, Cheng L, Sun X, Yan C, Chen L, Liu X. Structural insights into human organic cation transporter 1 transport and inhibition. Cell Discov 2024; 10:30. [PMID: 38485705 PMCID: PMC10940649 DOI: 10.1038/s41421-024-00664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
The human organic cation transporter 1 (hOCT1), also known as SLC22A1, is integral to hepatic uptake of structurally diversified endogenous and exogenous organic cations, influencing both metabolism and drug pharmacokinetics. hOCT1 has been implicated in the therapeutic dynamics of many drugs, making interactions with hOCT1 a key consideration in novel drug development and drug-drug interactions. Notably, metformin, the frontline medication for type 2 diabetes, is a prominent hOCT1 substrate. Conversely, hOCT1 can be inhibited by agents such as spironolactone, a steroid analog inhibitor of the aldosterone receptor, necessitating a deep understanding of hOCT1-drug interactions in the development of new pharmacological treatments. Despite extensive study, specifics of hOCT1 transport and inhibition mechanisms remain elusive at the molecular level. Here, we present cryo-electron microscopy structures of the hOCT1-metformin complex in three distinct conformational states - outward open, outward occluded, and inward occluded as well as substrate-free hOCT1 in both partially and fully open states. We also present hOCT1 in complex with spironolactone in both outward and inward facing conformations. These structures provide atomic-level insights into the dynamic metformin transfer process via hOCT1 and the mechanism by which spironolactone inhibits it. Additionally, we identify a 'YER' motif critical for the conformational flexibility of hOCT1 and likely other SLC22 family transporters. Our findings significantly advance the understanding of hOCT1 molecular function and offer a foundational framework for the design of new therapeutic agents targeting this transporter.
Collapse
Affiliation(s)
- Shuhao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianan Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Baoliang Lan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Guodong He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Basic Medicine Sciences, Tsinghua University, Beijing, China
| | - Kaixuan Gao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Lili Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Xiaoou Sun
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Basic Medicine Sciences, Tsinghua University, Beijing, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China.
| |
Collapse
|
8
|
Pan Y, Zhang Y, Ouyang H, Gong T, Zhang Z, Cao X, Fu Y. Targeted Delivery of Celastrol via Chondroitin Sulfate Derived Hybrid Micelles for Alleviating Symptoms in Nonalcoholic Fatty Liver Disease. ACS APPLIED BIO MATERIALS 2023; 6:4877-4893. [PMID: 37890075 DOI: 10.1021/acsabm.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by an accumulation of excess fat in the liver leading to oxidative stress and liver cell injury, as well as overproduction of inflammatory cytokines. CD44 has been identified as a potential therapeutic target in the development of NAFLD to nonalcoholic steatohepatitis. Here, chondroitin sulfate (CS) is selected to construct a CD44-targeted delivery system for the treatment of NAFLD. Specifically, two CS-derived amphiphilic materials including CS conjugated with either 4-aminophenylboronic acid pinacol ester (CS-PBE) or phenformin (CS-PFM) were synthesized, respectively. The presence of PBE moieties on CS-PBE rendered the vehicle with enhanced loading capacity and scavenging potential against reactive oxygen species, while the presence of guanidine moieties on CS-PFM enhanced the internalization of vehicles in the differentiated hepatocytes. Next, celastrol (CLT) was encapsulated in the hybrid micelle to afford CS-Hybrid/CLT, which demonstrates sufficient stability, enhanced cellular uptake efficiencies in differentiated HepG2 cells, and therapeutic potential to alleviate lipid accumulation in differentiated HepG2 cells. In a high-fat-diet-induced NAFLD rat model, CS-Hybrid/CLT micelles demonstrated the capacity to dramatically decrease hepatic lipid accumulation and free fatty acid levels with greatly improved pathologic liver histology and downregulated hepatic inflammation levels. These results suggest that CS-based amphiphilic micelles may offer a promising strategy to effectively deliver therapeutic cargos to the liver for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Cao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230022, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Cedillo L, Ahsan FM, Li S, Stuhr NL, Zhou Y, Zhang Y, Adedoja A, Murphy LM, Yerevanian A, Emans S, Dao K, Li Z, Peterson ND, Watrous J, Jain M, Das S, Pukkila-Worley R, Curran SP, Soukas AA. Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. eLife 2023; 12:e82210. [PMID: 37606250 PMCID: PMC10444025 DOI: 10.7554/elife.82210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.
Collapse
Affiliation(s)
- Lucydalila Cedillo
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Sainan Li
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Yuyao Zhang
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Adebanjo Adedoja
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Luke M Murphy
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Armen Yerevanian
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Sinclair Emans
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Khoi Dao
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Zhaozhi Li
- Biomedical Informatics Core, Massachusetts General Hospital and Harvard Medical SchooCambridgeUnited States
| | - Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jeramie Watrous
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Mohit Jain
- Department of Medicine and Pharmacology, University of California San DiegoSan DiegoUnited States
| | - Sudeshna Das
- Biomedical Informatics Core, Massachusetts General Hospital and Harvard Medical SchooCambridgeUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| |
Collapse
|
10
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
11
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
12
|
Li S, Xu B, Fan S, Kang B, Deng L, Chen D, Yang B, Tang F, He Z, Xue Y, Zhou JC. Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol 2022; 15:1107-1117. [PMID: 36065506 DOI: 10.1080/17512433.2022.2118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.
Collapse
Affiliation(s)
- Shaoqian Li
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Xu
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shangzhi Fan
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Yang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Tang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Xue
- The Second Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie-Can Zhou
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Alhourani A, Førde JL, Nasrollahzadeh M, Eichacker LA, Herfindal L, Hagland HR. Graphene-based phenformin carriers for cancer cell treatment: a comparative study between oxidized and pegylated pristine graphene in human cells and zebrafish. NANOSCALE ADVANCES 2022; 4:1668-1680. [PMID: 36134366 PMCID: PMC9417205 DOI: 10.1039/d1na00778e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 06/16/2023]
Abstract
Graphene is an attractive choice for the development of an effective drug carrier in cancer treatment due to its high adsorption area and pH-responsive drug affinity. In combination with the highly potent metabolic drug phenformin, increased doses could be efficiently delivered to cancer cells. This study compares the use of graphene oxide (GO) and polyethylene glycol stabilized (PEGylated) pristine graphene nanosheets (PGNSs) for drug delivery applications with phenformin. The cytotoxicity and mitotoxicity of the graphene-based systems were assessed in human cells and zebrafish larvae. Targeted drug release from GO and PGNSs was evaluated at different pH levels known to arise in proliferating tumor microenvironments. PGNSs were less cytotoxic and mitotoxic than GO, and showed an increased release of phenformin at lower pH in cells, compared to GO. In addition, the systemic phenformin effect was mitigated in zebrafish larvae when bound to GO and PGNSs compared to free phenformin, as measured by flavin metabolic lifetime imaging. These results pave the way for improved phenformin-based cancer therapy using graphene nano-sheets, where PGNSs were superior to GO.
Collapse
Affiliation(s)
- Abdelnour Alhourani
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Bergen Norway
- Department of Internal Medicine, Haukeland University Hospital Bergen Norway
| | - Mojdeh Nasrollahzadeh
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Lutz Andreas Eichacker
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Bergen Norway
| | - Hanne Røland Hagland
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger Stavanger Norway
| |
Collapse
|
14
|
Markowicz-Piasecka M, Huttunen J, Zajda A, Sikora J, Huttunen KM. Sulfonamide metformin derivatives induce mitochondrial-associated apoptosis and cell cycle arrest in breast cancer cells. Chem Biol Interact 2021; 352:109795. [PMID: 34953865 DOI: 10.1016/j.cbi.2021.109795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Metformin, an oral anti-diabetic drug, has attracted scientific attention due to its anti-cancer effects. This biguanide exerts preventive effects against cancer, and interferes with cancer-promoting signaling pathways at the cellular level. However, the direct cytotoxic or anti-proliferative effect of the drug is observed at very high concentrations, often exceeding 5-10 mM. This paper presents the synthesis of eight novel sulfonamide-based biguanides with improved cellular uptake in two breast cancer cell lines (MCF-7 and MDA-MB-231), and evaluates their effects on cancer cell growth. The synthesized sulfonamide-based analogues of metformin (1-5) were efficiently taken up in MCF-7 and MDA-MB-231 cells, and were characterized by stronger cytotoxic properties than those of metformin. Generally, compounds were more effective in MCF-7 than in MDA-MB-231. Compound 2, with an n-octyl chain, was the most active molecule with IC50 = 114.0 μmol/L in MCF-7 cells. The cytotoxicity of compound 2 partially results from its ability to induce early and late apoptosis. Increased intracellular reactive oxygen species (ROS) production and reduced mitochondrial membrane potential suggest that compound 2 promotes mitochondrial dysfunction and activates the mitochondrial-associated apoptosis-signaling pathway. In addition, compound 2 was also found to arrest cell cycle in the G0/G1 and G2/M phase and significantly inhibit cancer cell migration. In conclusion, this study supports the hypothesis that improved transporter-mediated cellular uptake of potential drug molecule is accompanied by its increased cytotoxicity. Therefore, compound 2 is a very good example of how chemical modification of a biguanide scaffold can affect its biological properties and improve anti-neoplastic potential.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211, Kuopio, Finland
| | - Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211, Kuopio, Finland.
| |
Collapse
|
15
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
16
|
Sakai T, Matsuo Y, Okuda K, Hirota K, Tsuji M, Hirayama T, Nagasawa H. Development of antitumor biguanides targeting energy metabolism and stress responses in the tumor microenvironment. Sci Rep 2021; 11:4852. [PMID: 33649449 PMCID: PMC7921556 DOI: 10.1038/s41598-021-83708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
To develop antitumor drugs capable of targeting energy metabolism in the tumor microenvironment, we produced a series of potent new biguanide derivatives via structural modification of the arylbiguanide scaffold. We then conducted biological screening using hypoxia inducible factor (HIF)-1- and unfolded protein response (UPR)-dependent reporter assays and selective cytotoxicity assay under low glucose conditions. Homologation studies of aryl-(CH2)n-biguanides (n = 0-6) yielded highly potent derivatives with an appropriate alkylene linker length (n = 5, 6). The o-chlorophenyl derivative 7l (n = 5) indicated the most potent inhibitory effects on HIF-1- and UPR-mediated transcriptional activation (IC50; 1.0 ± 0.1 μM, 7.5 ± 0.1 μM, respectively) and exhibited selective cytotoxicity toward HT29 cells under low glucose condition (IC50; 1.9 ± 0.1 μM). Additionally, the protein expression of HIF-1α induced by hypoxia and of GRP78 and GRP94 induced by glucose starvation was markedly suppressed by the biguanides, thereby inhibiting angiogenesis. Metabolic flux and fluorescence-activated cell sorting analyses of tumor cells revealed that the biguanides strongly inhibited oxidative phosphorylation and activated compensative glycolysis in the presence of glucose, whereas both were strongly suppressed in the absence of glucose, resulting in cellular energy depletion and apoptosis. These findings suggest that the pleiotropic effects of these biguanides may contribute to more selective and effective killing of cancer cells due to the suppression of various stress adaptation systems in the tumor microenvironment.
Collapse
Affiliation(s)
- Takayuki Sakai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-City, Gifu, 501-1196, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Kensuke Okuda
- Laboratory of Bioorganic and Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-City, Gifu, 501-1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-City, Gifu, 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-City, Gifu, 501-1196, Japan.
| |
Collapse
|
17
|
Nørgård MØ, Christensen M, Mutsaers HA, Nørregaard R. Phenformin Attenuates Renal Injury in Unilateral Ureteral Obstructed Mice without Affecting Immune Cell Infiltration. Pharmaceutics 2020; 12:pharmaceutics12040301. [PMID: 32224876 PMCID: PMC7238166 DOI: 10.3390/pharmaceutics12040301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Phenformin and metformin are antihyperglycemic drugs that belong to the class of biguanides. Previously, we demonstrated that metformin elicits renoprotective effects in unilateral ureteral obstructed mice by reducing the infiltration of immune cells into the kidney. Since phenformin is a more potent drug as compared to metformin, we investigated the renoprotective properties of phenformin. We studied the efficacy of both drugs using mice that underwent unilateral ureteral obstruction. Renal damage was evaluated on RNA and protein level by qPCR, Western blotting, and immunohistochemistry. Moreover, we studied immune cell infiltration using flow cytometry. Both biguanides significantly reduced UUO-induced kidney injury, as illustrated by a reduction in KIM-1 protein expression. In addition, both metformin and phenformin impacted the gene expression of several inflammatory markers but to a different extent. Moreover, in contrast to metformin, phenformin did not impact immune cell infiltration into UUO kidneys. In conclusion, we demonstrated that phenformin has similar renoprotective effects as metformin, but the mechanism of action differs, and phenformin is more potent. The beneficial effects of phenformin are probably due to inhibition of the STAT3 pathway and mitochondrial complex I. Further research is needed to unveil the therapeutic potential of phenformin for the treatment of renal injury, either at low, non-toxic concentrations or as part of a combination therapy.
Collapse
|
18
|
The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes. Oncotarget 2019; 10:6432-6443. [PMID: 31741708 PMCID: PMC6849649 DOI: 10.18632/oncotarget.27266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Phenformin is a biguanide drug which, besides the original anti-diabetic effect, also exerts anti-cancer effects. The aim of this study was to further characterize these latter in terms of both cell-viability and modulation of the secretion of the pro-tumorigenic chemokine CXCL8. Normal human thyrocytes in primary cultures (NHT) and thyroid cancer cell lines, TPC-1 and 8505C (RET/PTC and BRAFV600E mutated, respectively) were treated with increasing concentrations of phenformin at different times. Cell-viability was assessed by WST-1 and further characterized by AnnexinV/PI staining and cell proliferation colony-assay. CXCL8 levels were measured in cell supernatants. Phenformin reduced cell-viability in TPC-1 and 8505C and their ability to form colonies. In NHT cells, phenformin affected cell-viability only at the maximal dose but interestingly it inhibited CXCL8 secretion at all the concentrations not affecting cell-viability. Phenformin had no effect on CXCL8 secretion in thyroid cancer cell lines. Thus, phenformin exerts anti-cancer effects on both cancer cells (cell death induction) and surrounding normal cells (inhibition of CXCL8 secretion). These results highlight that the anti-cancer effects of phenformin are multifaceted and effective on both solid and soluble components of the tumor-microenvironment.
Collapse
|
19
|
Park J, Shim JK, Kang JH, Choi J, Chang JH, Kim SY, Kang SG. Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro Oncol 2019; 20:954-965. [PMID: 29294080 DOI: 10.1093/neuonc/nox243] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Targeted approaches for treating glioblastoma (GBM) attempted to date have consistently failed, highlighting the imperative for treatment strategies that operate on different mechanistic principles. Bioenergetics deprivation has emerged as an effective therapeutic approach for various tumors. We have previously found that cancer cells preferentially utilize cytosolic NADH supplied by aldehyde dehydrogenase (ALDH) for ATP production through oxidative phosphorylation (OxPhos). This study is aimed at examining therapeutic responses and underlying mechanisms of dual inhibition of ALDH and OxPhos against GBM. Methods For inhibition of ALDH and OxPhos, the corresponding inhibitors, gossypol and phenformin were used. Biological functions, including ATP levels, stemness, invasiveness, and viability, were evaluated in GBM tumorspheres (TSs). Gene expression profiles were analyzed using microarray data. In vivo anticancer efficacy was examined in a mouse orthotopic xenograft model. Results Combined treatment of GBM TSs with gossypol and phenformin significantly reduced ATP levels, stemness, invasiveness, and cell viability. Consistently, this therapy substantially decreased expression of genes associated with stemness, mesenchymal transition, and invasion in GBM TSs. Supplementation of ATP using malate abrogated these effects, whereas knockdown of ALDH1L1 mimicked them, suggesting that disruption of ALDH-mediated ATP production is a key mechanism of this therapeutic combination. In vivo efficacy confirmed remarkable therapeutic responses to combined treatment with gossypol and phenformin. Conclusion Our findings suggest that dual inhibition of tumor bioenergetics is a novel and effective strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Naguib A, Mathew G, Reczek CR, Watrud K, Ambrico A, Herzka T, Salas IC, Lee MF, El-Amine N, Zheng W, Di Francesco ME, Marszalek JR, Pappin DJ, Chandel NS, Trotman LC. Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells. Cell Rep 2018; 23:58-67. [PMID: 29617673 PMCID: PMC6003704 DOI: 10.1016/j.celrep.2018.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 03/08/2018] [Indexed: 01/21/2023] Open
Abstract
A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten-/-;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Colleen R Reczek
- Northwestern Medical School, Cell and Molecular Biology, Chicago, IL, USA
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Alexandra Ambrico
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Tali Herzka
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | | | - Matthew F Lee
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Nour El-Amine
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Wu Zheng
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Navdeep S Chandel
- Northwestern Medical School, Cell and Molecular Biology, Chicago, IL, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA.
| |
Collapse
|
22
|
Andrzejewski S, Siegel PM, St-Pierre J. Metabolic Profiles Associated With Metformin Efficacy in Cancer. Front Endocrinol (Lausanne) 2018; 9:372. [PMID: 30186229 PMCID: PMC6110930 DOI: 10.3389/fendo.2018.00372] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Metformin is one of the most commonly prescribed medications for the treatment of type 2 diabetes. Numerous reports have suggested potential anti-cancerous and cancer preventive properties of metformin, although these findings vary depending on the intrinsic properties of the tumor, as well as the systemic physiology of patients. These intriguing studies have led to a renewed interest in metformin use in the oncology setting, and fueled research to unveil its elusive mode of action. It is now appreciated that metformin inhibits complex I of the electron transport chain in mitochondria, causing bioenergetic stress in cancer cells, and rendering them dependent on glycolysis for ATP production. Understanding the mode of action of metformin and the consequences of its use on cancer cell bioenergetics permits the identification of cancer types most susceptible to metformin action. Such knowledge may also shed light on the varying results to metformin usage that have been observed in clinical trials. In this review, we discuss metabolic profiles of cancer cells that are associated with metformin sensitivity, and rationalize combinatorial treatment options. We use the concept of bioenergetic flexibility, which has recently emerged in the field of cancer cell metabolism, to further understand metabolic rearrangements that occur upon metformin treatment. Finally, we advance the notion that metabolic fitness of cancer cells increases during progression to metastatic disease and the emergence of therapeutic resistance. As a result, sophisticated combinatorial approaches that prevent metabolic compensatory mechanisms will be required to effectively manage metastatic disease.
Collapse
Affiliation(s)
- Sylvia Andrzejewski
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Julie St-Pierre
| |
Collapse
|
23
|
Results from 11C-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Sci Rep 2017; 7:9436. [PMID: 28842630 PMCID: PMC5573362 DOI: 10.1038/s41598-017-10010-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
The anti-diabetic biguanide drugs metformin (METF) and phenformin (PHEN) may have anti-cancer effects. Biguanides suppress plasma growth factors, but nonetheless, the view that these mitochondrial inhibitors accumulate in tumor tissue to an extent that leads to severe energetic stress or alleviation of hypoxia-induced radioresistance is gaining ground. Our cell studies confirm that biguanides inhibits cell proliferation by targeting respiration, but only at highly suprapharmacological concentrations due to low drug retention. Biodistribution/PET studies of 11C-labeled metformin (11C-METF) revealed that plasma bioavailability remained well below concentrations with metabolic/anti-proliferative in vitro effects, following a high oral dose. Intraperitoneal administration resulted in higher drug concentrations, which affected metabolism in normal organs with high METF uptake (e.g., kidneys), but tumor drug retention peaked at low levels comparable to plasma levels and hypoxia was unaffected. Prolonged intraperitoneal treatment reduced tumor growth in two tumor models, however, the response did not reflect in vitro drug sensitivity, and tumor metabolism and hypoxia was unaffected. Our results do not support that direct inhibition of tumor cell respiration is responsible for reduced tumor growth, but future studies using 11C-METF-PET are warranted, preferably in neoplasia’s originating from tissue with high drug transport capacity, to investigate the controversial idea of direct targeting.
Collapse
|
24
|
Fattah S, Shinde AB, Matic M, Baes M, van Schaik RHN, Allegaert K, Parmentier C, Richert L, Augustijns P, Annaert P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm Res 2017; 34:1309-1319. [PMID: 28364304 DOI: 10.1007/s11095-017-2148-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE OCT1/3 (Organic Cation Transporter-1 and -3; SLC22A1/3) are transmembrane proteins localized at the basolateral membrane of hepatocytes. They mediate the uptake of cationic endogenous compounds and/or xenobiotics. The present study was set up to verify whether the previously observed variability in OCT activity in hepatocytes may be explained by inter-individual differences in OCT1/3 mRNA levels or OCT1 genotype. METHODS Twenty-seven batches of cryopreserved human hepatocytes (male and female, age 24-88 y) were characterized for OCT activity, normalized OCT1/3 mRNA expression, and OCT1 genetic mutation. ASP+ (4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide) was used as probe substrate. RESULTS ASP+ uptake ranged between 75 ± 61 and 2531 ± 202 pmol/(min × million cells). The relative OCT1 and OCT3 mRNA expression ranged between 0.007-0.46 and 0.0002-0.005, respectively. The presence of one or two nonfunctional SLC22A1 alleles was observed in 13 batches and these exhibited significant (p = 0.04) association with OCT1 and OCT3 mRNA expression. However, direct association between genotype and OCT activity could not be established. CONCLUSION mRNA levels and genotype of OCT only partially explain inter-individual variability in OCT-mediated transport. Our findings illustrate the necessity of in vitro transporter activity profiling for better understanding of inter-individual drug disposition behavior.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maja Matic
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands.,Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Lysiane Richert
- KaLy-Cell, Plobsheim, France.,Université de Franche-Comté, 4267, Besançon, EA, France
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium.
| |
Collapse
|
25
|
Bueno MJ, Mouron S, Quintela-Fandino M. Personalising and targeting antiangiogenic resistance: a complex and multifactorial approach. Br J Cancer 2017; 116:1119-1125. [PMID: 28301873 PMCID: PMC5418445 DOI: 10.1038/bjc.2017.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023] Open
Abstract
Pathological angiogenesis involves complex and dynamic interactions between tumour cells and other lineages existing in the microenvironment of the tumour. Preclinical and clinical data suggest that tumours can show dual, different adaptive responses against antiangiogenic agents: one successful adaptation is vascular normalisation, whereas the second adaptation is elicited through vascular trimming and increased hypoxia. These phenomena depend on the type of tumour and the type of agent. The classical approach for investigating acquired resistance against antiangiogenic agents is to identify compensatory signalling pathways emerging in response to VEGF blockade, which has led to the development of highly effective drugs; however, ultimately these drugs fail. Here we review how the dual stromal adaptive patterns determine the mechanisms of escape that go beyond the reprogramming of signal transduction pathways, which obliges us to investigate the tumour as an ecosystem and to develop uni- and multicompartmental models that explain drug resistance involving metabolic and immune reprogramming. We also propose a method for facilitating personalised therapeutic decisions, which uses 18F-fluoromisonidazole-positron emission tomography to monitor the dual stromal response in tumours of individual patients.
Collapse
Affiliation(s)
- Maria J Bueno
- Breast Cancer Clinical Research Unit, CNIO-Spanish National Research Cancer Centre, Madrid, Spain
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO-Spanish National Research Cancer Centre, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO-Spanish National Research Cancer Centre, Madrid, Spain.,Medical Oncology, Hospital Universitario Quirón, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
26
|
Litchfield LM, Mukherjee A, Eckert MA, Johnson A, Mills KA, Pan S, Shridhar V, Lengyel E, Romero IL. Hyperglycemia-induced metabolic compensation inhibits metformin sensitivity in ovarian cancer. Oncotarget 2016; 6:23548-60. [PMID: 26172303 PMCID: PMC4695136 DOI: 10.18632/oncotarget.4556] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Increasing interest in repurposing the diabetic medication metformin for cancer treatment has raised important questions about the translation of promising preclinical findings to therapeutic efficacy, especially in non-diabetic patients. A significant limitation of the findings to date is the use of supraphysiologic metformin doses and hyperglycemic conditions in vitro. Our goals were to determine the impact of hyperglycemia on metformin response and to address the applicability of metformin as a cancer therapeutic in non-diabetic patients. In normoglycemic conditions, lower concentrations of metformin were required to inhibit cell viability, while metformin treatment in hyperglycemic conditions resulted in increased glucose uptake and glycolytic flux, contributing to cell survival. Mechanistically, maintenance of c-Myc expression under conditions of hyperglycemia or via gene amplification facilitated metabolic escape from the effects of metformin. In vivo, treatment of an ovarian cancer mouse model with metformin resulted in greater tumor weight reduction in normoglycemic vs. hyperglycemic mice, with increased c-Myc expression observed in metformin-treated hyperglycemic mice. These findings indicate that hyperglycemia inhibits the anti-cancer effects of metformin in vitro and in vivo. Furthermore, our results suggest that metformin may elicit stronger responses in normoglycemic vs. hyperglycemic patients, highlighting the need for prospective clinical testing in patients without diabetes.
Collapse
Affiliation(s)
- Lacey M Litchfield
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Abir Mukherjee
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Mark A Eckert
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Kathryn A Mills
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Shawn Pan
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| | - Iris L Romero
- Department of Obstetrics and Gynecology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev 2016; 48:139-58. [DOI: 10.1080/03602532.2016.1188936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Burt HJ, Neuhoff S, Almond L, Gaohua L, Harwood MD, Jamei M, Rostami-Hodjegan A, Tucker GT, Rowland-Yeo K. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur J Pharm Sci 2016; 88:70-82. [PMID: 27019345 DOI: 10.1016/j.ejps.2016.03.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/10/2016] [Accepted: 03/22/2016] [Indexed: 01/11/2023]
Abstract
Metformin is used as a probe for OCT2 mediated transport when investigating possible DDIs with new chemical entities. The aim of the current study was to investigate the ability of physiologically-based pharmacokinetic (PBPK) models to simulate the effects of OCT and MATE inhibition by cimetidine on metformin kinetics. PBPK models were developed, incorporating mechanistic kidney and liver sub-models for metformin (OCT and MATE substrate) and a mechanistic kidney sub-model for cimetidine. The models were used to simulate inhibition of the MATE1, MATE2-K, OCT1 and OCT2 mediated transport of metformin by cimetidine. Assuming competitive inhibition and using cimetidine Ki values determined in vitro, the predicted metformin AUC ratio was 1.0 compared to an observed value of 1.46. The observed AUC ratio could only be recovered with this model when the cimetidine Ki for OCT2 was decreased 1000-fold or the Ki's for both OCT1 and OCT2 were decreased 500-fold. An alternative description of metformin renal transport by OCT1 and OCT2, incorporating electrochemical modulation of the rate of metformin uptake together with 8-18-fold decreases in cimetidine Ki's for OCTs and MATEs, allowed recovery of the extent of the observed effect of cimetidine on metformin AUC. While the final PBPK model has limitations, it demonstrates the benefit of allowing for the complexities of passive permeability combined with active cellular uptake modulated by an electrochemical gradient and active efflux.
Collapse
Affiliation(s)
- H J Burt
- Simcyp (a Certara Company), Sheffield, UK.
| | - S Neuhoff
- Simcyp (a Certara Company), Sheffield, UK.
| | - L Almond
- Simcyp (a Certara Company), Sheffield, UK.
| | - L Gaohua
- Simcyp (a Certara Company), Sheffield, UK.
| | | | - M Jamei
- Simcyp (a Certara Company), Sheffield, UK.
| | - A Rostami-Hodjegan
- Simcyp (a Certara Company), Sheffield, UK; Manchester Pharmacy School, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - G T Tucker
- Medicine and Biomedical Sciences (emeritus), University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
29
|
Choi MK, Song IS. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level. Biomol Ther (Seoul) 2016; 24:199-205. [PMID: 26797108 PMCID: PMC4774502 DOI: 10.4062/biomolther.2015.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
30
|
Proctor WR, Ming X, Bourdet D, Han T(K, Everett RS, Thakker DR. Why Does the Intestine Lack Basolateral Efflux Transporters for Cationic Compounds? A Provocative Hypothesis. J Pharm Sci 2016; 105:484-496. [DOI: 10.1016/j.xphs.2015.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/11/2023]
|
31
|
Tissue Discs: A 3D Model for Assessing Modulation of Tissue Oxygenation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 876:169-175. [PMID: 26782209 DOI: 10.1007/978-1-4939-3023-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of hypoxia in solid tumours is correlated with poor treatment outcome. We have developed a 3-D tissue engineered construct to quantitatively monitor oxygen penetration through tumour tissue using the exogenous 2-nitroimidazole bioreductive probe pimonidazole and phosphorescence quenching technologies. Using this in vitro model we were able to examine the influence of the biguanides metformin and phenformin, antimycin A and KCN, on the distribution and kinetics of oxygen delivery as prototypes of modulators of oxygen metabolism.
Collapse
|
32
|
Zhai T, Wang J, Sun L, Chen Y. The effect of streptozotocin and alloxan on the mRNA expression of rat hepatic transporters in vivo. AAPS PharmSciTech 2015; 16:767-70. [PMID: 25549789 DOI: 10.1208/s12249-014-0262-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The effect of streptozotocin (STZ) and alloxan (ALX) on the hepatic messenger RNA (mRNA) expression of four transporters (Mrp2, Mdr1, Oct1, and Oatp1) was studied in the present work. After the healthy male Wistar rats were individually treated by a single intraperitoneal injection of ALX monohydrate (150 mg/kg) or STZ (50 mg/kg), the hepatic mRNA expression levels of Mrp2, Mdr1, Oct1, and Oatp1 were detected by real-time quantitative PCR. The results indicated that the mRNA expression levels of the Mrp2, Mdr1, Oct1, and Oatp1 in ALX-induced diabetic rats, as well as the hepatic mRNA expression of Mdr1 and Oatp1 in STZ-induced diabetic rats, were significantly decreased as compared with the control. The inhibition of ALX and STZ on hepatic transporter expression suggested that alterations of drug transporters under diabetic condition can be responsible for reduced drug clearance.
Collapse
|
33
|
Oshima R, Yamada M, Kurogi E, Ogino Y, Serizawa Y, Tsuda S, Ma X, Egawa T, Hayashi T. Evidence for organic cation transporter-mediated metformin transport and 5'-adenosine monophosphate-activated protein kinase activation in rat skeletal muscles. Metabolism 2015; 64:296-304. [PMID: 25433920 DOI: 10.1016/j.metabol.2014.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE 5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key molecule of metabolic enhancement in skeletal muscle. We investigated whether metformin (MET) acts directly on skeletal muscle, is transported into skeletal muscle via organic cation transporters (OCTs), and activates AMPK. MATERIALS/METHODS Isolated rat epitrochlearis and soleus muscles were incubated in vitro either in the absence or in the presence of MET. The activation status of AMPK, the intracellular energy status, and glucose and MET transport activity were then evaluated. The effect of cimetidine, which is an OCT inhibitor, on AMPK activation was also examined. RESULTS MET (10 mmol/L, ≥60 min) increased the phosphorylation of Thr¹⁷² at the catalytic α subunit of AMPK in both muscles. AMPK activity assays showed that both AMPKα1 and AMPKα2 activity increased significantly. The AMPK activation was associated with energy deprivation, which was estimated from the ATP, phosphocreatine (PCr), and glycogen content, and with increased rates of 3-O-methyl-D-glucose (3MG) transport. MET did not change the basal phosphorylation status of insulin receptor signaling molecules. MET was transported into the cytoplasm in a time-dependent manner, and cimetidine suppressed MET-induced AMPK phosphorylation and 3MG transport. CONCLUSION These results suggest that MET is acutely transported into skeletal muscle by OCTs, and stimulates AMPKα1 and α2 activity in both fast- and slow-twitch muscle types, at least in part by reducing the energy state.
Collapse
Affiliation(s)
- Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Mayumi Yamada
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Eriko Kurogi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yohei Ogino
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yasuhiro Serizawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Xiao Ma
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, Yunnan Province, China
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-0016, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
34
|
Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem 2015; 290:2024-33. [PMID: 25505174 PMCID: PMC4303657 DOI: 10.1074/jbc.m114.596817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/08/2014] [Indexed: 01/21/2023] Open
Abstract
The widely used anti-diabetic drug metformin has been shown to exert strong antineoplastic actions in numerous tumor types, including prostate cancer (PCa). In this study, we show that BI2536, a specific Plk1 inhibitor, acted synergistically with metformin in inhibiting PCa cell proliferation. Furthermore, we also provide evidence that Plk1 inhibition makes PCa cells carrying WT p53 much more sensitive to low-dose metformin treatment. Mechanistically, we found that co-treatment with BI2536 and metformin induced p53-dependent apoptosis and further activated the p53/Redd-1 pathway. Moreover, we also show that BI2536 treatment inhibited metformin-induced glycolysis and glutamine anaplerosis, both of which are survival responses of cells against mitochondrial poisons. Finally, we confirmed the cell-based observations using both cultured cell-derived and patient-derived xenograft studies. Collectively, our findings support another promising therapeutic strategy by combining two well tolerated drugs against PCa proliferation and the progression of androgen-dependent PCa to the castration-resistant stage.
Collapse
Affiliation(s)
- Chen Shao
- From the Departments of Biochemistry and
| | - Nihal Ahmad
- the Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Kurt Hodges
- the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Tim Ratliff
- the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Xiaoqi Liu
- From the Departments of Biochemistry and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
35
|
Piel S, Ehinger JK, Elmér E, Hansson MJ. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition. Acta Physiol (Oxf) 2015; 213:171-80. [PMID: 24801139 DOI: 10.1111/apha.12311] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/21/2013] [Accepted: 04/26/2014] [Indexed: 12/25/2022]
Abstract
AIM Metformin is a widely used antidiabetic drug associated with the rare side effect of lactic acidosis which has been proposed to be linked to drug-induced mitochondrial dysfunction. Using respirometry, the aim of this study was to evaluate mitochondrial toxicity of metformin to human blood cells in relation to that of phenformin, a biguanide analogue withdrawn in most countries due to a high incidence of lactic acidosis. METHODS Peripheral blood mononuclear cells and platelets were isolated from healthy volunteers, and integrated mitochondrial function was studied in permeabilized and intact cells using high-resolution respirometry. A wide concentration range of metformin (0.1-100 mm) and phenformin (25-500 μm) was investigated for dose- and time-dependent effects on respiratory capacities, lactate production and pH. RESULTS Metformin induced respiratory inhibition at complex I in peripheral blood mononuclear cells and platelets (IC50 0.45 mm and 1.2 mm respectively). Phenformin was about 20-fold more potent in complex I inhibition of platelets than metformin. Metformin further demonstrated a dose- and time-dependent respiratory inhibition and augmented lactate release at a concentration of 1 mm and higher. CONCLUSION Respirometry of human peripheral blood cells readily detected respiratory inhibition by metformin and phenformin specific to complex I, providing a suitable model for probing drug toxicity. Lactate production was increased at concentrations relevant for clinical metformin intoxication, indicating mitochondrial inhibition as a direct causative pathophysiological mechanism. Relative to clinical dosing, phenformin displayed a more potent respiratory inhibition than metformin, possibly explaining the higher incidence of lactic acidosis in phenformin-treated patients.
Collapse
Affiliation(s)
- S. Piel
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
| | - J. K. Ehinger
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Otorhinolaryngology; Head and Neck Surgery; Skåne University Hospital; Lund Sweden
| | - E. Elmér
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Clinical Neurophysiology; Skåne University Hospital & Lund University; Lund Sweden
| | - M. J. Hansson
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Clinical Physiology; Skåne University Hospital & Lund University; Lund Sweden
| |
Collapse
|
36
|
Adam WR, O'Brien RC. A justification for less restrictive guidelines on the use of metformin in stable chronic renal failure. Diabet Med 2014; 31:1032-8. [PMID: 24909998 DOI: 10.1111/dme.12515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022]
Abstract
AIM The aim was to justify less restrictive use of metformin in stable chronic renal failure, because a literature review reveals metformin is associated with a significantly lower incidence of cardiovascular events and mortality compared with other hypoglycaemic agents, and metformin-associated lactic acidosis is rare and causation uncertain. Studies on intentional metformin overdose and metformin bioavailability, renal clearance and plasma metformin in renal impairment provide evidence in support of a less restrictive use of metformin. METHODS In metformin overdose (n = 22), lactic acidosis was not inevitable with a plasma metformin > 40 mg/l (therapeutic level c. 1 mg/l): Severe lactic acidosis (pH ≤ 7.21, plasma lactate ≥ 11 mmol/l, n = 8) did not occur unless plasma metformin was > 40 mg/l. Plasma lactate was a more consistent predictor of pH than plasma metformin, with plasma lactate ≤ 4.7 being associated with a pH ≥ 7.34. A likely 'safe' plasma lactate is < 3.5 mmol/l and plasma metformin < 10 mg/l. RESULTS Plasma metformin can be predicted from estimated glomerular filtration rate and metformin dose. Reported plasma metformin in renal failure was always less than predicted plasma metformin. Predicted plasma metformin (mg/l), with an estimated glomerular filtration rate of 30 ml/min and metformin 2000 mg/day was 6.8; an estimated glomerular filtration rate of 20 ml/min and metformin 1500 mg/day was 5.1; an estimated glomerular filtration rate of 10 ml/min and metformin 500 mg/day was 4.4. CONCLUSION Metformin accumulates in renal failure and, although accumulation does not always lead to lactic acidosis, dose modification to achieve a predicted plasma metformin < 10 mg/l is suggested. As plasma metformin is not routinely available, plasma lactate should be useful in monitoring the use of metformin in renal failure.
Collapse
Affiliation(s)
- W R Adam
- Rural Health Academic Centre, Shepparton
| | | |
Collapse
|
37
|
Pyla R, Osman I, Pichavaram P, Hansen P, Segar L. Metformin exaggerates phenylephrine-induced AMPK phosphorylation independent of CaMKKβ and attenuates contractile response in endothelium-denuded rat aorta. Biochem Pharmacol 2014; 92:266-79. [PMID: 25179145 DOI: 10.1016/j.bcp.2014.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
Abstract
Metformin, a widely prescribed antidiabetic drug, has been shown to reduce the risk of cardiovascular disease, including hypertension. Its beneficial effect toward improved vasodilation results from its ability to activate AMPK and enhance nitric oxide formation in the endothelium. To date, metformin regulation of AMPK has not been fully studied in intact arterial smooth muscle, especially during contraction evoked by G protein-coupled receptor (GPCR) agonists. In the present study, ex vivo incubation of endothelium-denuded rat aortic rings with 3mM metformin for 2h resulted in significant accumulation of metformin (∼ 600 pmoles/mg tissue), as revealed by LC-MS/MS MRM analysis. However, metformin did not show significant increase in AMPK phosphorylation under these conditions. Exposure of aortic rings to a GPCR agonist (e.g., phenylephrine) resulted in enhanced AMPK phosphorylation by ∼ 2.5-fold. Importantly, in metformin-treated aortic rings, phenylephrine challenge showed an exaggerated increase in AMPK phosphorylation by ∼ 9.7-fold, which was associated with an increase in AMP/ATP ratio. Pretreatment with compound C (AMPK inhibitor) prevented AMPK phosphorylation induced by phenylephrine alone and also that induced by phenylephrine after metformin treatment. However, pretreatment with STO-609 (CaMKKβ inhibitor) diminished AMPK phosphorylation induced by phenylephrine alone but not that induced by phenylephrine after metformin treatment. Furthermore, attenuation of phenylephrine-induced contraction (observed after metformin treatment) was prevented by AMPK inhibition but not by CaMKKβ inhibition. Together, these findings suggest that, upon endothelial damage in the vessel wall, metformin uptake by the underlying vascular smooth muscle would accentuate AMPK phosphorylation by GPCR agonists independent of CaMKKβ to promote vasorelaxation.
Collapse
Affiliation(s)
- Rajkumar Pyla
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th Street, HM-1200 Georgia Regents University Campus, Augusta, GA 30912-2450, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th Street, HM-1200 Georgia Regents University Campus, Augusta, GA 30912-2450, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Prahalathan Pichavaram
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th Street, HM-1200 Georgia Regents University Campus, Augusta, GA 30912-2450, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Paul Hansen
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th Street, HM-1200 Georgia Regents University Campus, Augusta, GA 30912-2450, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th Street, HM-1200 Georgia Regents University Campus, Augusta, GA 30912-2450, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
38
|
Glossmann H, Reider N. A marriage of two "Methusalem" drugs for the treatment of psoriasis?: Arguments for a pilot trial with metformin as add-on for methotrexate. DERMATO-ENDOCRINOLOGY 2014; 5:252-63. [PMID: 24194965 PMCID: PMC3772913 DOI: 10.4161/derm.23874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 02/06/2023]
Abstract
In this article we present arguments that the “antidiabetic” drug metformin could be useful as an add-on therapy to methotrexate for the treatment of psoriasis and, perhaps, for rheumatoid arthritis as well. Biochemical data suggest that both drugs may share a common cellular target, the AMP-activated protein kinase (AMPK). This enzyme is a master regulator of metabolism and controls a number of downstream targets, e.g., important for cellular growth or function in many tissues including T-lymphocytes. Clinical observations as well as experimental results argue for anti-inflammatory, antineoplastic and antiproliferative activities of metformin and a case-control study suggests that the drug reduces the risk for psoriasis.
Patients with psoriasis have higher risk of metabolic syndrome, type 2 diabetes and cardiovascular mortality. Metformin has proven efficacy in the treatment of prediabetes and leads to a pronounced and sustained weight loss in overweight individuals. We expect that addition of metformin to methotrexate can lead to positive effects with respect to the PASI score, reduction of the weekly methotrexate dose and of elevated cardiovascular risk factors in patients with metabolic syndrome and psoriasis. For reasons explained later we suggest that only male, overweight patients are to be included in a pilot trial. On the other side of the coin are concerns that the gastrointestinal side effects of metformin are intolerable for patients under low dose, intermittent methotrexate therapy. Metformin has another side effect, namely interference with vitamin B12 and folate metabolism, leading to elevated homocysteine serum levels. As patients must receive folate supplementation and will be controlled with respect to their B12 status increased hematological toxicity is unlikely to result.
Collapse
Affiliation(s)
- Hartmut Glossmann
- Institute for Biochemical Pharmacology; Department of Dermatology; Medical University of Innsbruck; Innsbruck, Austria
| | | |
Collapse
|
39
|
Narise K, Okuda K, Enomoto Y, Hirayama T, Nagasawa H. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:701-17. [PMID: 24944508 PMCID: PMC4057329 DOI: 10.2147/dddt.s59679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer therapy, to be subjected to further in vivo study.
Collapse
Affiliation(s)
- Kosuke Narise
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | - Kensuke Okuda
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | - Yukihiro Enomoto
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| |
Collapse
|
40
|
Abstract
Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5'-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Ida Pernicova
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| |
Collapse
|
41
|
Jenkins Y, Sun TQ, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, Boros LG, Laplante MA, Marcotte B, Kohen R, Viollet B, Marette A, Payan DG, Kinsella TM, Hitoshi Y. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One 2013; 8:e81870. [PMID: 24339975 PMCID: PMC3855387 DOI: 10.1371/journal.pone.0081870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022] Open
Abstract
Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both 13C-palmitate and 13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.
Collapse
Affiliation(s)
- Yonchu Jenkins
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tian-Qiang Sun
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Vadim Markovtsov
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Wei Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Henry Nguyen
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yingwu Li
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alison Pan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Gerald Uy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Lisa Gross
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kristen Baltgalvis
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Stephanie L. Yung
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Tarikere Gururaja
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Taisei Kinoshita
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Alexander Owyang
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Ira J. Smith
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kelly McCaughey
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Kathy White
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Guillermo Godinez
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Raniel Alcantara
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Carmen Choy
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Hong Ren
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rachel Basile
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David J. Sweeny
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Xiang Xu
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Sarkiz D. Issakani
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - David C. Carroll
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Dane A. Goff
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Simon J. Shaw
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Rajinder Singh
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Laszlo G. Boros
- SiDMAP, LLC, Los Angeles, California, United States of America
- Department of Pediatrics, Los Angeles Biomedical Research Institute (LABIOMED) at the Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc-André Laplante
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Bruno Marcotte
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Rita Kohen
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
| | - Donald G. Payan
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Todd M. Kinsella
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
| | - Yasumichi Hitoshi
- Rigel Pharmaceuticals, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Transport of biguanides by human organic cation transporter OCT2. Biomed Pharmacother 2013; 67:425-30. [DOI: 10.1016/j.biopha.2013.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 01/02/2023] Open
|
43
|
Song IS, Choi MK, Shim WS, Shim CK. Transport of organic cationic drugs: effect of ion-pair formation with bile salts on the biliary excretion and pharmacokinetics. Pharmacol Ther 2013; 138:142-54. [PMID: 23353097 DOI: 10.1016/j.pharmthera.2013.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/11/2023]
Abstract
More than 40% of clinically used drugs are organic cations (OCs), which are positively charged at a physiologic pH, and recent reports have established that these drugs are substrates of membrane transporters. The transport of OCs via membrane transporters may play important roles in gastrointestinal absorption, distribution to target sites, and biliary and/or renal elimination of various OC drugs. Almost 40 years ago, a molecular weight (Mw) threshold of 200 was reported to exist in rats for monoquaternary ammonium (mono QA) compounds to be substantially (e.g., >10% of iv dose) excreted to bile. It is well known that some OCs interact with appropriate endogenous organic anions in the body (e.g., bile salts) to form lipophilic ion-pair complexes. The ion-pair formation may influence the affinity or binding of OCs to membrane transporters that are relevant to biliary excretion. In that sense, the association of the ion-pair formation with the existence of the Mw threshold appears to be worthy of examination. It assumes the ion-pair formation of high Mw mono QA compounds (i.e., >200) in the presence of bile salts in the liver, followed by accelerated transport of the ion-pair complexes via relevant bile canalicular transporter(s). In this article, therefore, the transport of OC drugs will be reviewed with a special focus on the ion-pair formation hypothesis. Such information will deepen the understanding of the pharmacokinetics of OC drugs as well as the physiological roles of endogenous bile salts in the detoxification or phase II metabolism of high Mw QA drugs.
Collapse
Affiliation(s)
- I S Song
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Veltkamp SA, van Dijk J, Collins C, van Bruijnsvoort M, Kadokura T, Smulders RA. Combination treatment with ipragliflozin and metformin: a randomized, double-blind, placebo-controlled study in patients with type 2 diabetes mellitus. Clin Ther 2012; 34:1761-71. [PMID: 22795925 DOI: 10.1016/j.clinthera.2012.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ipragliflozin (ASP1941) is a selective sodium glucose cotransporter 2 inhibitor in clinical development for the treatment of patients with type 2 diabetes mellitus (T2DM). OBJECTIVES The primary objective was to evaluate the safety profile and tolerability of ipragliflozin as a glucose-lowering agent in combination with stable metformin therapy in patients with T2DM. A secondary objective was to evaluate the effect of ipragliflozin on the pharmacokinetic (PK) properties of metformin. METHODS Thirty-six patients with T2DM stable on metformin therapy (850, 1000, or 1500 mg bid) were randomized in a double-blind manner to receive ipragliflozin (300 mg qd; n = 18) or matching placebo (n = 18) for 14 days. Safety profiles, including monitoring of hypoglycemic events, treatment-emergent adverse events (TEAEs), laboratory measurements, and vital signs were assessed throughout the study. The PK properties of metformin and ipragliflozin were determined in plasma. The geometric mean ratio and its 90% CI for the maximum plasma concentration and AUC(0-10) were calculated for metformin + ipragliflozin (day 14) versus metformin alone (day -1). Pharmacodynamic properties were assessed by measurement of urinary glucose excretion over 24 hours (UGE(0-24)). RESULTS All the TEAEs, except 1, were mild. Fifteen TEAEs were observed in the ipragliflozin group (7 of 18 patients [38.9%]), and 19 TEAEs were observed in the placebo group in (8 of 18 patients [44.4%]). Treatment-related TEAEs were reported by 3 of 18 patients (16.7%) receiving metformin + ipragliflozin and by 5 of 18 patients (27.8%) receiving metformin + placebo. No hypoglycemic events (blood glucose level <54 mg/L [to convert to millimoles per liter, multiply by 0.0555]) were observed. The geometric mean ratios for C(max) and AUC(0-10) of metformin + ipragliflozin versus metformin alone were 1.11 (90% CI, 1.03-1.19) and 1.18 (90% CI, 1.08-1.28), respectively. After ipragliflozin treatment, UGE(0-24) on day 14 (74.9 g) was significantly higher than that in the placebo group (3.6 g) and at baseline (3.3 g). CONCLUSIONS Combination treatment for 14 days with ipragliflozin and metformin was well tolerated in patients withT2DM without hypoglycemia. The addition of ipragliflozin (300 mg qd) to metformin therapy did not result in a clinically relevant change in the PK properties of metformin. ClinicalTrials.gov identifier: NCT01302145.
Collapse
Affiliation(s)
- Stephan A Veltkamp
- Global Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Europe, Leiderdorp, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 2011; 414:694-9. [PMID: 21986525 DOI: 10.1016/j.bbrc.2011.09.134] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
Abstract
Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1) is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.
Collapse
Affiliation(s)
- Eric D Segal
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Sogame Y, Kitamura A, Yabuki M, Komuro S. Liver uptake of Biguanides in rats. Biomed Pharmacother 2011; 65:451-5. [DOI: 10.1016/j.biopha.2011.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/23/2011] [Indexed: 12/16/2022] Open
|
47
|
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50:81-98. [PMID: 21241070 DOI: 10.2165/11534750-000000000-00000] [Citation(s) in RCA: 804] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin is widely used for the treatment of type 2 diabetes mellitus. It is a biguanide developed from galegine, a guanidine derivative found in Galega officinalis (French lilac). Chemically, it is a hydrophilic base which exists at physiological pH as the cationic species (>99.9%). Consequently, its passive diffusion through cell membranes should be very limited. The mean ± SD fractional oral bioavailability (F) of metformin is 55 ± 16%. It is absorbed predominately from the small intestine. Metformin is excreted unchanged in urine. The elimination half-life (t(½)) of metformin during multiple dosages in patients with good renal function is approximately 5 hours. From published data on the pharmacokinetics of metformin, the population mean of its clearances were calculated. The population mean renal clearance (CL(R)) and apparent total clearance after oral administration (CL/F) of metformin were estimated to be 510 ± 130 mL/min and 1140 ± 330 mL/min, respectively, in healthy subjects and diabetic patients with good renal function. Over a range of renal function, the population mean values of CL(R) and CL/F of metformin are 4.3 ± 1.5 and 10.7 ± 3.5 times as great, respectively, as the clearance of creatinine (CL(CR)). As the CL(R) and CL/F decrease approximately in proportion to CL(CR), the dosage of metformin should be reduced in patients with renal impairment in proportion to the reduced CL(CR). The oral absorption, hepatic uptake and renal excretion of metformin are mediated very largely by organic cation transporters (OCTs). An intron variant of OCT1 (single nucleotide polymorphism [SNP] rs622342) has been associated with a decreased effect on blood glucose in heterozygotes and a lack of effect of metformin on plasma glucose in homozygotes. An intron variant of multidrug and toxin extrusion transporter [MATE1] (G>A, SNP rs2289669) has also been associated with a small increase in antihyperglycaemic effect of metformin. Overall, the effect of structural variants of OCTs and other cation transporters on the pharmacokinetics of metformin appears small and the subsequent effects on clinical response are also limited. However, intersubject differences in the levels of expression of OCT1 and OCT3 in the liver are very large and may contribute more to the variations in the hepatic uptake and clinical effect of metformin. Lactic acidosis is the feared adverse effect of the biguanide drugs but its incidence is very low in patients treated with metformin. We suggest that the mean plasma concentrations of metformin over a dosage interval be maintained below 2.5 mg/L in order to minimize the development of this adverse effect.
Collapse
Affiliation(s)
- Garry G Graham
- Department of Pharmacology & Toxicology, St Vincents Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|