1
|
Huang W, Page RL, Morris T, Ayres S, Ferdinand AO, Sinha S. Maternal exposure to SSRIs or SNRIs and the risk of congenital abnormalities in offspring: A systematic review and meta-analysis. PLoS One 2023; 18:e0294996. [PMID: 38019759 PMCID: PMC10686472 DOI: 10.1371/journal.pone.0294996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The association of maternal exposure to selective serotonin reuptake inhibitors (SSRIs) or serotonin and norepinephrine reuptake inhibitors (SNRIs) with the risk of system-specific congenital malformations in offspring remains unclear. We conducted a meta-analysis to examine this association and the risk difference between these two types of inhibitors. METHODS A literature search was performed from January 2000 to May 2023 using PubMed and Web of Science databases. Cohort and case-control studies that assess the association of maternal exposure to SSRIs or SNRIs with the risk of congenital abnormalities were eligible for the study. RESULTS Twenty-one cohort studies and seven case-control studies were included in the meta-analysis. Compared to non-exposure, maternal exposure to SNRIs is associated with a higher risk of congenital cardiovascular abnormalities (pooled OR: 1.64 with 95% CI: 1.36, 1.97), anomalies of the kidney and urinary tract (pooled OR: 1.63 with 95% CI: 1.21, 2.20), malformations of nervous system (pooled OR: 2.28 with 95% CI: 1.50, 3.45), anomalies of digestive system (pooled OR: 2.05 with 95% CI: 1.60, 2.64) and abdominal birth defects (pooled OR: 2.91 with 95%CI: 1.98, 4.28), while maternal exposure to SSRIs is associated with a higher risk of congenital cardiovascular abnormalities (pooled OR: 1.25 with 95%CI: 1.20, 1.30), anomalies of the kidney and urinary tract (pooled OR: 1.14 with 95%CI: 1.02, 1.27), anomalies of digestive system (pooled OR: 1.11 with 95%CI: 1.01, 1.21), abdominal birth defects (pooled OR: 1.33 with 95%CI: 1.16, 1.53) and musculoskeletal malformations (pooled OR: 1.44 with 95%CI: 1.32, 1.56). CONCLUSIONS SSRIs and SNRIs have various teratogenic risks. Clinicians must consider risk-benefit ratios and patient history when prescribing medicines.
Collapse
Affiliation(s)
- Weiyi Huang
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, United States of America
| | - Robin L. Page
- School of Nursing, Texas A&M University, College Station, TX, United States of America
| | - Theresa Morris
- Department of Sociology, Texas A&M University, College Station, TX, United States of America
| | - Susan Ayres
- School of Law, Texas A&M University, Fort Worth, TX, United States of America
| | - Alva O. Ferdinand
- Southwest Rural Health Research Center, Texas A&M University, College Station, TX, United States of America
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
2
|
Bravo K, González-Ortiz M, Beltrán-Castillo S, Cáceres D, Eugenín J. Development of the Placenta and Brain Are Affected by Selective Serotonin Reuptake Inhibitor Exposure During Critical Periods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:179-198. [PMID: 37466774 DOI: 10.1007/978-3-031-32554-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are usually prescribed to treat major depression and anxiety disorders. Fetal brain development exhibits dependency on serotonin (5-hydroxytryptamine, 5-HT) from maternal, placental, and fetal brain sources. At very early fetal stages, fetal serotonin is provided by maternal and placental sources. However, in later fetal stages, brain sources are indispensable for the appropriate development of neural circuitry and the rise of emergent functions implied in behavior acquisition. Thus, susceptible serotonin-related critical periods are recognized, involving the early maternal and placental 5-HT synthesis and the later endogenous 5-HT synthesis in the fetal brain. Acute and chronic exposure to SSRIs during these critical periods may result in short- and long-term placental and brain dysfunctions affecting intrauterine and postnatal life. Maternal and fetal cells express serotonin receptors which make them susceptible to changes in serotonin levels influenced by SSRIs. SSRIs block the serotonin transporter (SERT), which is required for 5-HT reuptake from the synaptic cleft into the presynaptic neuron. Chronic SSRI administration leads to pre- and postsynaptic 5-HT receptor rearrangement. In this review, we focus on the effects of SSRIs administered during critical periods upon placentation and brain development to be considered in evaluating the risk-safety balance in the clinical use of SSRIs.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile.
- Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Sebastian Beltrán-Castillo
- Centro integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| |
Collapse
|
3
|
Inkster AM, Konwar C, Peñaherrera MS, Brain U, Khan A, Price EM, Schuetz JM, Portales-Casamar É, Burt A, Marsit CJ, Vaillancourt C, Oberlander TF, Robinson WP. Profiling placental DNA methylation associated with maternal SSRI treatment during pregnancy. Sci Rep 2022; 12:22576. [PMID: 36585414 PMCID: PMC9803674 DOI: 10.1038/s41598-022-26071-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) for treatment of prenatal maternal depression have been associated with neonatal neurobehavioral disturbances, though the molecular mechanisms remain poorly understood. In utero exposure to SSRIs may affect DNA methylation (DNAme) in the human placenta, an epigenetic mark that is established during development and is associated with gene expression. Chorionic villus samples from 64 human placentas were profiled with the Illumina MethylationEPIC BeadChip; clinical assessments of maternal mood and SSRI treatment records were collected at multiple time points during pregnancy. Case distribution was 20 SSRI-exposed cases and 44 SSRI non-exposed cases. Maternal depression was defined using a mean maternal Hamilton Depression score > 8 to indicate symptomatic depressed mood ("maternally-depressed"), and we further classified cases into SSRI-exposed, maternally-depressed (n = 14); SSRI-exposed, not maternally-depressed (n = 6); SSRI non-exposed, maternally-depressed (n = 20); and SSRI non-exposed, not maternally-depressed (n = 24). For replication, Illumina 450K DNAme profiles were obtained from 34 additional cases from an independent cohort (n = 17 SSRI-exposed, n = 17 SSRI non-exposed). No CpGs were differentially methylated at FDR < 0.05 comparing SSRI-exposed to non-exposed placentas, in a model adjusted for mean maternal Hamilton Depression score, or in a model restricted to maternally-depressed cases with and without SSRI exposure. However, at a relaxed threshold of FDR < 0.25, five CpGs were differentially methylated (|Δβ| > 0.03) by SSRI exposure status. Four were covered by the replication cohort measured by the 450K array, but none replicated. No CpGs were differentially methylated (FDR < 0.25) comparing maternally depressed to not depressed cases. In sex-stratified analyses for SSRI-exposed versus non-exposed cases (females n = 31; males n = 33), three additional CpGs in females, but none in males, were differentially methylated at the relaxed FDR < 0.25 cut-off. We did not observe large-scale alterations of DNAme in placentas exposed to maternal SSRI treatment, as compared to placentas with no SSRI exposure. We also found no evidence for altered DNAme in maternal depression-exposed versus depression non-exposed placentas. This novel work in a prospectively-recruited cohort with clinician-ascertained SSRI exposure and mood assessments would benefit from future replication.
Collapse
Affiliation(s)
- Amy M. Inkster
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Chaini Konwar
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3 Canada
| | - Maria S. Peñaherrera
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Ursula Brain
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Almas Khan
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - E. Magda Price
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada ,grid.28046.380000 0001 2182 2255Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2 Canada
| | - Johanna M. Schuetz
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Élodie Portales-Casamar
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Amber Burt
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Carmen J. Marsit
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Cathy Vaillancourt
- grid.418084.10000 0000 9582 2314INRS-Centre Armand Frappier and Réseau intersectoriel de recherche en santé de l’Université du Québec, Laval, QC H7V 1B7 Canada
| | - Tim F. Oberlander
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Wendy P. Robinson
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
4
|
Lou ZQ, Zhou YY, Zhang X, Jiang HY. Exposure to selective noradrenalin reuptake inhibitors during the first trimester of pregnancy and risk of congenital malformations: A meta-analysis of cohort studies. Psychiatry Res 2022; 316:114756. [PMID: 35932572 DOI: 10.1016/j.psychres.2022.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
Selective serotonin-noradrenalin reuptake inhibitors (SNRIs) are used to treat depression and anxiety during pregnancy; however, information regarding their foetal safety is limited. Cohort studies concerning congenital malformations in infants born to mothers exposed to SNRIs during the first trimester of pregnancy were identified. Eight studies were included in the analysis. In general, the use of SNRIs was not associated with an increased risk of overall congenital malformations when compared with no exposure (rate ratio [RR] = 1.07, 95% confidence interval [CI] = 0.94-1.22; P = 0.31), exposure to SSRIs (RR = 1.12, 95% CI = 0.97-1.31; P = 0.12) and no exposure with clinical indication (RR = 1.04, 95% CI = 0.9-1.2; P = 0.564). A significantly increased risk of cardiac malformations was observed (RR = 1.33, 95% CI = 1.15-1.53; P < 0.001); however, this association was not statistically significant when the reference group comprised mothers exposed to SSRIs (RR = 1.1, 95% CI = 0.85-1.43; P = 0.47) or no exposure with clinical indication (RR = 1.17, 95% CI = 0.95-1.42; P = 0.13). The evidence shows no increased risk of congenital malformations and argues against a substantial cardiac teratogenic effect of SNRIs.
Collapse
Affiliation(s)
- Zhuo-Qi Lou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xue Zhang
- Department of Infectious Diseases, the Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yin Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kent ME, Hu B, Eggleston TM, Squires RS, Zimmerman KA, Weiss RM, Roghair RD, Lin F, Cornell RA, Haskell SE. Hypersensitivity of Zebrafish htr2b Mutant Embryos to Sertraline Indicates a Role for Serotonin Signaling in Cardiac Development. J Cardiovasc Pharmacol 2022; 80:261-269. [PMID: 35904815 PMCID: PMC9354722 DOI: 10.1097/fjc.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT Selective serotonin reuptake inhibitors (SSRIs) are antidepressants prescribed in 10% of pregnancies in the United States. Maternal use of SSRIs has been linked to an elevated rate of congenital heart defects, but the exact mechanism of pathogenesis is unknown. Previously, we have shown a decrease in cardiomyocyte proliferation, left ventricle size, and reduced cardiac expression of the serotonin receptor 5-HT 2B in offspring of mice exposed to the SSRI sertraline during pregnancy, relative to offspring of untreated mice. These results suggest that disruption of serotonin signaling leads to heart defects. Supporting this conclusion, we show here that zebrafish embryos exposed to sertraline develop with a smaller ventricle, reduced cardiomyocyte number, and lower cardiac expression of htr2b relative to untreated embryos. Moreover, zebrafish embryos homozygous for a nonsense mutation of htr2b ( htr2bsa16649 ) were sensitized to sertraline treatment relative to wild-type embryos. Specifically, the ventricle area was reduced in the homozygous htr2b mutants treated with sertraline compared with wild-type embryos treated with sertraline and homozygous htr2b mutants treated with vehicle control. Whereas long-term effects on left ventricle shortening fraction and stroke volume were observed by echocardiography in adult mice exposed to sertraline in utero, echocardiograms of adult zebrafish exposed to sertraline as embryos were normal. These results implicate the 5-HT 2B receptor functions in heart development and suggest zebrafish are a relevant animal model that can be used to investigate the connection between maternal SSRI use and elevated risk of congenital heart defects.
Collapse
Affiliation(s)
| | - Bo Hu
- Anatomy and Cell Biology; and
| | | | | | - Kathy A. Zimmerman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | | | | | | |
Collapse
|
6
|
Ahmed SH, El Ghareeb AEWA, El-Rahman HAA, Almaaty AHA. Impact of maternal desvenlafaxine exposure on brain development in pregnant albino rats and their fetuses. J Biochem Mol Toxicol 2022; 36:e23062. [PMID: 35363936 DOI: 10.1002/jbt.23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Depression during pregnancy adversely affects fetal development. Desvenlafaxine drug is used for the treatment of gestational depression. In light of the well-established role of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in regulating neurogenesis and neural survival, the role of S100b in nerve cell energetic metabolism, differentiation of neurons and glial cells, an aberrant increase in NGF, BDNF and S100b expression in the fetal brain may contribute to desvenlafaxine cognitive disorders by altering brain development. This study is trying to determine the effect of desvenlafaxine on brain development. Thirty timed pregnant rats (from the 5th to the 20th day) were divided into three groups: control, low dose (5.14 mg/kg/day) and high dose (10.28 mg/kg/day) of desvenlafaxine where all animals received the corresponding doses by gavage. Maternal and fetal brain samples were fixed for histological, immunohistochemical (IHC) study of NGF and evaluated for BDNF and S100b genes expression. Desvenlafaxine induced some of the histopathological alterations in maternal and fetal rat brains. Moreover, IHC analysis of maternal and fetal rat brains showed that groups treated with desvenlafaxine demonstrated a significant increase of NGF protein immunoreactivity compared with that in the controls. Gene expression results revealed upregulation of messenger RNA BDNF and S100B expression. According to developmental changes in the brain, desvenlafaxine affects neonatal growth during pregnancy, which may lead to delay of brain development. So, it is essential to survey the roles of antidepressant drugs on neonatal development during pregnancy.
Collapse
Affiliation(s)
- Sarah H Ahmed
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| | | | | | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
7
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Thompson WA, Shvartsburd Z, Vijayan MM. The antidepressant venlafaxine perturbs cardiac development and function in larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106041. [PMID: 34856460 DOI: 10.1016/j.aquatox.2021.106041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a highly prescribed antidepressant and is detected at µg/L concentrations in waterways receiving municipal wastewater effluents. We previously showed that early-life venlafaxine exposure disrupted the normal development of the nervous system and reduces larval activity in zebrafish (Danio rerio). However, it is unclear whether the reduced swimming activity may be associated with impaired cardiac function. Here we tested the hypothesis that zygotic exposure to venlafaxine impacts the development and function of the larval zebrafish heart. Venlafaxine (0, 1 or 10 ng) was administered by microinjection into freshly fertilized zebrafish embryos (1-4 cell stage) to assess heart development and function during early-life stages. Venlafaxine deposition in the zygote led to precocious development of the embryo heart, including the timing of the first heartbeat, increased heart size, and a higher heart rate at 24- and 48-hours post-fertilization (hpf). Also, waterborne exposure to environmental levels of this antidepressant during early development increased the heart rate at 48 hpf of zebrafish larvae mimicking the zygotic deposition. The venlafaxine-induced higher heart rate in the embryos was abolished in the presence of NAN-190, an antagonist of the 5HT1A receptor. Also, heart rate dropped below control levels in the 10 ng, but not 1 ng venlafaxine group at 72 and 96 hpf. An acute stressor reduced the venlafaxine-induced heart rate at 48 hpf but did not affect the already reduced heart rate at 72 and 96 hpf in the 10 ng venlafaxine group. Our results suggest that the higher heart rate in the venlafaxine group may be due to an enhanced serotonin stimulation of the 5HT1A receptor. Taken together, early-life venlafaxine exposure disrupts cardiac development and has the potential to compromise the cardiovascular performance of larval zebrafish.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Zachary Shvartsburd
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
9
|
Mao J, Kinkade JA, Bivens NJ, Roberts RM, Rosenfeld CS. Placental Changes in the serotonin transporter (Slc6a4) knockout mouse suggest a role for serotonin in controlling nutrient acquisition. Placenta 2021; 115:158-168. [PMID: 34649169 PMCID: PMC8585720 DOI: 10.1016/j.placenta.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The mouse placenta accumulates and possibly produces serotonin (5-hydroxytryptamine; 5-HT) in parietal trophoblast giant cells (pTGC) located at the interface between the placenta and maternal deciduum. However, the roles of 5-HT in placental function are unclear. This lack of information is unfortunate, given that selective serotonin-reuptake inhibitors are commonly used to combat depression in pregnant women. The high affinity 5-HT transporter SLC6A4 (also known as SERT) is the target of such drugs and likely controls much of 5-HT uptake into pTGC and other placental cells. We hypothesized that ablation of the Slc6a4 gene would result in morphological changes correlated with placental gene expression changes, especially for those involved in nutrient acquisition and metabolism, and thereby, provide insights into 5-HT placental function. METHODS Placentas were collected at embryonic age (E) 12.5 from Slc6a4 knockout (KO) and wild-type (WT) conceptuses. Histological analyses, RNAseq, qPCR, and integrative correlation analyses were performed. RESULTS Slc6a4 KO placentas had a considerable increased pTGC to spongiotrophoblast area ratio relative to WT placentas and significantly elevated expression of genes associated with intestinal functions, including nutrient sensing, uptake, and catabolism, and blood clotting. Integrative correlation analyses revealed upregulation of many of these genes was correlated with pTGC layer expansion. One other key gene was dopa decarboxylase (Ddc), which catalyzes conversion of L-5-hydroxytryptophan to 5-HT. DISCUSSION Our studies possibly suggest a new paradigm relating to how 5-HT operates in the placenta, namely as a factor regulating metabolic functions and blood coagulation. We further suggest that pTGC might be functional analogs of enterochromaffin 5-HT-positive cells of the intestinal mucosa, which regulate similar activities within the gut. Further work, including proteomics and metabolomic studies, are needed to buttress our hypothesis.
Collapse
Affiliation(s)
- Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, 65211, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Animal Sciences, University of Missouri, Columbia, MO, 65211, USA; Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Rosenfeld CS. Transcriptomics and Other Omics Approaches to Investigate Effects of Xenobiotics on the Placenta. Front Cell Dev Biol 2021; 9:723656. [PMID: 34631709 PMCID: PMC8497882 DOI: 10.3389/fcell.2021.723656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
The conceptus is most vulnerable to developmental perturbation during its early stages when the events that create functional organ systems are being launched. As the placenta is in direct contact with maternal tissues, it readily encounters any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and waste, the placenta possesses a tightly regulated endocrine system that is, of itself, vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other environmental toxicants. To determine whether extrinsic factors affect placental function, transcriptomics and other omics approaches have become more widely used. In casting a wide net with such approaches, they have provided mechanistic insights into placental physiological and pathological responses and how placental responses may impact the fetus, especially the developing brain through the placenta-brain axis. This review will discuss how such omics technologies have been utilized to understand effects of EDCs, including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking, and air pollution on placental gene expression, DNA methylation, and metabolomic profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic regulators of placental function. Thus, the evidence to date that xenobiotics affect placental miR expression patterns will also be explored. Such omics approaches with mouse and human placenta will assuredly provide key biomarkers that may be used as barometers of exposure and can be targeted by early mitigation approaches to prevent later diseases, in particular neurobehavioral disorders, originating due to placental dysfunction.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, United States.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol Reprod 2021; 102:532-538. [PMID: 31711155 DOI: 10.1093/biolre/ioz204] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
The placenta is a transient organ but essential for the survival of all mammalian species by allowing for the exchanges of gasses, nutrients, and waste between maternal and fetal placenta. In rodents and humans with a hemochorial placenta, fetal placenta cells are susceptible to pharmaceutical agents and other compounds, as they are bathed directly in maternal blood. The placenta of mice and humans produce high concentrations of serotonin (5-HT) that can induce autocrine and paracrine effects within this organ. Placental 5-HT is the primary source of this neurotransmitter for fetal brain development. Increasing number of pregnant women at risk of depression are being treated with selective serotonin-reuptake inhibitors (SSRIs) that bind to serotonin transporters (SERT), which prevents 5-HT binding and cellular internalization, allowing for accumulation of extracellular 5-HT available to bind to 5-HT(2A) receptor (5-HT(2A)R). In vitro and in vivo findings with SSRI or pharmacological blockage of the 5-HT(2A)R reveal disruptions of 5-HT signaling within the placenta can affect cell proliferation, division, and invasion. In SERT knockout mice, numerous apoptotic trophoblast cells are observed, as well as extensive pathological changes within the junctional zone. Collective data suggest a fine equilibrium in 5-HT signaling is essential for maintaining normal placental structure and function. Deficiencies in placental 5-HT may also result in neurobehavioral abnormalities. Evidence supporting 5-HT production and signaling within the placenta will be reviewed. We will consider whether placental hyposerotonemia or hyperserotonemia results in similar pathophysiological changes in the placenta and other organs. Lastly, open ended questions and future directions will be explored.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA.,Biomedical Sciences, University of Missouri, Columbia, MO USA.,MU Informatics Institute, University of Missouri, Columbia, MO USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO USA.,Genetics Area Program, University of Missouri, Columbia, MO USA
| |
Collapse
|
12
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Kolding L, Pedersen LH, Petersen OB, Uldbjerg N, Sandager P. Sertraline use during pregnancy and effect on fetal cardiac function. J Matern Fetal Neonatal Med 2019; 34:3631-3638. [PMID: 31718339 DOI: 10.1080/14767058.2019.1688297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objectives: The objective of this study was to evaluate the fetal cardiac function in human pregnancies exposed to sertraline (a selective serotonin reuptake inhibitor) compared to unexposed pregnancies.Method: We included 44 women in gestational week 25 + 0 days to week 26 + 6 days. Fifteen women used sertraline (50-150 mg per day), and 29 women used no daily medication. We assessed fetal cardiac function by Myocardial Performance Index (MPI), E/A ratios and by tricuspid and mitral annular plane systolic excursion (TAPSE and MAPSE) measured by 2D M-mode and by 4D eSTIC M-mode.Results: There were no differences between the sertraline exposed and the unexposed. The mean difference of MPI was 0.03 (95% CI -0.08-0.03), of tricuspid and mitral E/A ratios 0.00 (95% CI -0.03-0.05) and 0.03 (95% CI -0.07-0.01), respectively. The mean difference of TAPSE, by 2D and eSTIC, was 0.07 mm (95% CI -0.56-0.41) and 0.10 mm (95% CI -0.55-0.34). Mean difference of MAPSE, by 2D and eSTIC was 0.16 mm (95% CI -0.22-0.53) and 0.24 mm (95% CI -0.16-0.65), respectively. Serum levels of sertraline in exposed participants ranged from 33-266, median 92 nmol/L.Conclusions: We found no significant differences in fetal cardiac function, assessed by TAPSE, MAPSE, MPI and E/A ratios, in pregnancies exposed to sertraline compared to the unexposed.
Collapse
Affiliation(s)
- Line Kolding
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Henning Pedersen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Olav Bjørn Petersen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre for Fetal Diagnostics, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Puk Sandager
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark.,Centre for Fetal Diagnostics, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Perinatal exposure to venlafaxine leads to lower anxiety and depression-like behavior in the adult rat offspring. Behav Pharmacol 2019; 29:445-452. [PMID: 29561291 DOI: 10.1097/fbp.0000000000000393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Depression during pregnancy and in the post-partum period is a growing health issue. Venlafaxine, a representative of serotonin and noradrenaline reuptake inhibitors, is used to treat a wide spectrum of mood disorders. However, the limited number of prenatal and perinatal studies raises the question about the long-term consequences of venlafaxine therapy. The aim of this study was to investigate the effect of venlafaxine exposure during pregnancy and lactation on anxiety-like and depression-like behaviors, as well as adrenocortical hormone concentrations in the adult rat offspring. For this purpose, rat dams were treated orally with venlafaxine from day 15 of gestation to postnatal day 20 at doses of 7.5, 37.5, and 75 mg/kg. Administration of venlafaxine during gestation and lactation affected anxiety-like and depression-like behaviors in adult rat offspring of both sexes. The animals exposed through their mothers to venlafaxine, particularly at the lowest and middle doses, were less anxious and less depressive in several relevant behavioral tests, which can be considered a deviation from the normal state. At clinically relevant doses, venlafaxine did not alter circulating level of corticosterone and aldosterone in the adult offspring. In general, the consequences of venlafaxine were dose dependent and more apparent in females. Together, these results suggest that prenatal and early postnatal exposure to venlafaxine may interfere with functional development of the brain, though not necessarily in a negative way.
Collapse
|
15
|
Hudon Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin-estrogen interactions: What can we learn from pregnancy? Biochimie 2019; 161:88-108. [PMID: 30946949 DOI: 10.1016/j.biochi.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
We have reviewed the scientific literature related to four diseases in which to serotonin (5-HT) is involved in the etiology, herein named 5-HT-linked diseases, and whose prevalence is influenced by estrogenic status: depression, migraine, irritable bowel syndrome and eating disorders. These diseases all have in common a sex-dimorphic prevalence, with women more frequently affected than men. The co-occurrence between these 5-HT-linked diseases suggests that they have common physiopathological mechanisms. In most 5-HT-linked diseases (except for anorexia nervosa and irritable bowel syndrome), a decrease in the serotonergic tone is observed and estrogens are thought to contribute to the improvement of symptoms by stimulating the serotonergic system. Human pregnancy is characterized by a unique 5-HT and estrogen synthesis by the placenta. Pregnancy-specific disorders, such as hyperemesis gravidarum, gestational diabetes mellitus and pre-eclampsia, are associated with a hyperserotonergic state and decreased estrogen levels. Fetal programming of 5-HT-linked diseases is a complex phenomenon that involves notably fetal-sex differences, which suggest the implication of sex steroids. From a mechanistic point of view, we hypothesize that estrogens regulate the serotonergic system, resulting in a protective effect against 5-HT-linked diseases, but that, in turn, 5-HT affects estrogen synthesis in an attempt to retrieve homeostasis. These two processes (5-HT and estrogen biosynthesis) are crucial for successful pregnancy outcomes, and thus, a disruption of this 5-HT-estrogen relationship may explain pregnancy-specific pathologies or pregnancy complications associated with 5-HT-linked diseases.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
16
|
Benevent J, Araujo M, Hurault-Delarue C, Montastruc JL, Sommet A, Lacroix I, Damase-Michel C. Pharmacoepidemiology in pregnancy. Therapie 2019; 74:289-300. [PMID: 30797568 DOI: 10.1016/j.therap.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Taking a medication is usually a challenge for a pregnant woman as the beneficial drug effect on the mother has to be considered regarding its potential adverse effects, not only for her but also for her unborn child. As medication use is common in pregnant women, by chance or necessity, it gives the opportunity to evaluate the consequences of prenatal drug exposure in real life through pharmacoepidemiological studies. This paper provides an overview of data sources, study designs and data analysis methods that can be used for pregnancy medication safety studies. In the future, the implementation of responsive international networks may be the keystones of drug evaluation in pregnancy.
Collapse
Affiliation(s)
- Justine Benevent
- Laboratoire de pharmacologie médicale et clinique, faculté de médecine de Toulouse, 31000 Toulouse, France; Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France; Inserm UMR 1027, faculté de médecine de Toulouse, 31000 Toulouse, France.
| | - Mélanie Araujo
- Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France
| | - Caroline Hurault-Delarue
- Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France
| | - Jean-Louis Montastruc
- Laboratoire de pharmacologie médicale et clinique, faculté de médecine de Toulouse, 31000 Toulouse, France; Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France
| | - Agnès Sommet
- Laboratoire de pharmacologie médicale et clinique, faculté de médecine de Toulouse, 31000 Toulouse, France; Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France
| | - Isabelle Lacroix
- Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France
| | - Christine Damase-Michel
- Laboratoire de pharmacologie médicale et clinique, faculté de médecine de Toulouse, 31000 Toulouse, France; Service de pharmacologie médicale et clinique, centre Midi-Pyrénées de pharmacovigilance, pharmacoépidémiologie et d'informations sur le médicament, pharmacopôle, centre hospitalier universitaire de Toulouse, 31000 Toulouse, France; Inserm UMR 1027, faculté de médecine de Toulouse, 31000 Toulouse, France
| |
Collapse
|
17
|
Clabault H, Cohen M, Vaillancourt C, Sanderson JT. Effects of selective serotonin-reuptake inhibitors (SSRIs) in JEG-3 and HIPEC cell models of the extravillous trophoblast. Placenta 2018; 72-73:62-73. [PMID: 30501883 DOI: 10.1016/j.placenta.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Between 2 and 10% of pregnant women are treated with selective serotonin-reuptake inhibitors (SSRIs) for depression. The extravillous trophoblasts (evTBs), which migrate and invade maternal tissues, are crucial for embryo implantation and remodeling of maternal spiral arteries. Poor migration/invasion of evTBs can cause serious pregnancy complications, yet the effects of SSRIs on these processes has never been studied. To determine the effects of five SSRIs (fluoxetine, norfluoxetine, citalopram, sertraline and venlafaxine) on migration/invasion, we used JEG-3 and HIPEC cells as evTB models. METHODS Cells were treated with increasing concentrations (0.03-10 μM) of SSRIs. Cell proliferation was monitored using an impedance-based system and cell cycle by flow cytometry. Migration was determined using a scratch test, and metalloproteinase (MMP) activities, by zymography. Invasion markers were determined by RT-qPCR. RESULTS Fluoxetine and sertraline (10 μM) significantly decreased cell proliferation by 94% and by 100%, respectively, in JEG-3 cells, and by 58.6% and 100%, respectively, in HIPEC cells. Norfluoxetine increased MMP-9 activity in JEG-3 cells by 2.0% at 0.03 μM and by 43.9% at 3 μM, but decreased MMP-9 activity in HIPEC cells by 63.7% at 3 μM. Sertraline at 0.03 μM increased mRNA level of TIMP-1 in JEG-3 cells by 36% and that of ADAM-10 by 85% and 115% at 0.3 and 3 μM, respectively. In HIPEC cells, venlafaxine at 0.03 and 0.3 μM, increased ADAM-10 mRNA levels by 156% and 167%, respectively. DISCUSSION This study shows that SSRIs may affect evTBs homeostasis at therapeutic levels and provides guidance for future research.
Collapse
Affiliation(s)
- Hélène Clabault
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Marie Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, Université de Genève, 1 rue Michel Servet, 1205, Geneva, Switzerland
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
18
|
Kimmel MC, Cox E, Schiller C, Gettes E, Meltzer-Brody S. Pharmacologic Treatment of Perinatal Depression. Obstet Gynecol Clin North Am 2018; 45:419-440. [DOI: 10.1016/j.ogc.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Clabault H, Flipo D, Guibourdenche J, Fournier T, Sanderson JT, Vaillancourt C. Effects of selective serotonin-reuptake inhibitors (SSRIs) on human villous trophoblasts syncytialization. Toxicol Appl Pharmacol 2018; 349:8-20. [PMID: 29679653 DOI: 10.1016/j.taap.2018.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/27/2018] [Accepted: 04/14/2018] [Indexed: 12/19/2022]
Abstract
Selective serotonin-reuptake inhibitors (SSRIs) are the most commonly prescribed antidepressants during pregnancy. The human placenta is a highly specialized organ supporting normal growth and development of the fetus. Therefore, this study aims to analyze the effects of SSRIs on villous cytotrophoblasts cells, using BeWo cells and human placental trophoblast cells in primary culture. The SSRIs fluoxetine and its metabolite norfluoxetine, sertraline and venlafaxine did not affect BeWo cell proliferation and viability, nor the percentage of M30-positive (apoptotic) primary trophoblast cells. None of the SSRIs affected basal or forskolin-stimulated BeWo cell fusion, whereas sertraline and venlafaxine increased the fusion of primary villous trophoblasts. Sertraline and venlafaxine also modified human chorionic gonadotropin beta (β-hCG) secretion by BeWo cells, whereas none of the SSRIs affected β-hCG secretion in primary trophoblasts. Norfluoxetine increased CGB (chorionic gonadotropin beta) and GJA1 (gap junction protein alpha 1) levels of gene expression (biomarkers of syncytialization) in BeWo cells, whereas in primary trophoblasts none of the SSRIs tested affected the expression of these genes. This study shows that SSRIs affect villous trophoblast syncytialization in a structure- and concentration-dependent manner and suggests that certain SSRIs may compromise placental health. In addition, it highlights the importance of using primary trophoblast cells instead of "trophoblast -like" cell lines to assess the effects of medications on human villous trophoblast function.
Collapse
Affiliation(s)
- Hélène Clabault
- INRS-Institut Armand-Frappier, 531 blvd des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Denis Flipo
- BioMed Research Centre, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Jean Guibourdenche
- INSERM, UMR-S1139, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France; Service d'hormonologie Centre Hospitalier, Universitaire Cochin Broca Hôtel Dieu, Assistance Publique-Hôpital de Paris, Paris F-75014, France.
| | - Thierry Fournier
- INSERM, UMR-S1139, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France; Fondation PremUp, Paris F-75006, France.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 blvd des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531 blvd des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
20
|
Rock KD, Horman B, Phillips AL, McRitchie SL, Watson S, Deese-Spruill J, Jima D, Sumner S, Stapleton HM, Patisaul HB. EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 2018; 7:305-324. [PMID: 29351906 PMCID: PMC5817967 DOI: 10.1530/ec-17-0373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Allison L Phillips
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Watson
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jocelin Deese-Spruill
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dereje Jima
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research CenterNorth Carolina State University, Raleigh, North Carolina, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| | - Heather M Stapleton
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Heather B Patisaul
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
21
|
Benevent J, Montastruc F, Damase-Michel C. The importance of pharmacoepidemiology in pregnancy-implications for safety. Expert Opin Drug Saf 2017; 16:1181-1190. [PMID: 28777918 DOI: 10.1080/14740338.2017.1363177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Prescription of medications to pregnant women is usually a challenge as the drug benefit has to be considered regarding its potential adverse effects. As medication use is common in pregnant women, by chance or necessity, it gives the opportunity to evaluate the consequences of prenatal drug exposure in real life through pharmacoepidemiologic studies. Area covered: Data sources are numerous. Some of them have been created for the particular purpose of assessing medications during pregnancy. Augmented databases enable the study of delayed effects in late childhood and provide information on potential confounders. Each data source exhibits strengths and weaknesses. Several designs can be used to assess the safety of medications during pregnancy. Innovative designs have been developed in order to bypass major limits of classical methods. Expert opinion: An efficient system could follow up each pregnant woman, who had taken a medication, and consider her as a precious information for the knowledge of drug potential adverse actions against the child, who must be followed up to identify long term-effects. The diversity of data sources and approaches of pharmacoepidemiologic studies, the implementation of international networks as well as the improvement of adverse signal detection are the keystones of such an evaluation.
Collapse
Affiliation(s)
- Justine Benevent
- a Faculté de Médecine , Université Toulouse III, CRPV Midi-Pyrénées, CHU Toulouse, UMR INSERM 1027/CIC 1436 , Toulouse , France
| | - Francois Montastruc
- a Faculté de Médecine , Université Toulouse III, CRPV Midi-Pyrénées, CHU Toulouse, UMR INSERM 1027/CIC 1436 , Toulouse , France
| | - Christine Damase-Michel
- a Faculté de Médecine , Université Toulouse III, CRPV Midi-Pyrénées, CHU Toulouse, UMR INSERM 1027/CIC 1436 , Toulouse , France
| |
Collapse
|
22
|
Zhang TN, Gao SY, Shen ZQ, Li D, Liu CX, Lv HC, Zhang Y, Gong TT, Xu X, Ji C, Wu QJ. Use of selective serotonin-reuptake inhibitors in the first trimester and risk of cardiovascular-related malformations: a meta-analysis of cohort studies. Sci Rep 2017; 7:43085. [PMID: 28220881 PMCID: PMC5318893 DOI: 10.1038/srep43085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022] Open
Abstract
The relationship between selective serotonin-reuptake inhibitors (SSRIs) use during first trimester and cardiovascular-related malformations of infants is still uncertain. Therefore, we conducted this systematic review and meta-analysis to assess the aforementioned association. A systematic literature review identified studies for cohort studies about SSRIs use and cardiovascular-related malformations in PubMed and Web of Science. We summarized relative risk (RRs) and 95% confidence intervals (CIs) of cardiovascular-related malformations using random-effects model, and heterogeneity and publication-bias analyses were conducted. Eighteen studies met the inclusion criteria. Pregnant women who were exposed to SSRIs at any point during the first trimester had a statistically significant increased risk of infant cardiovascular-related malformations (RR = 1.26, 95%CI = 1.13-1.39), with moderate heterogeneity (I2 = 53.6). The corresponding RR of atrial septal defects (ASD), ventricular septal defects (VSD), ASD and/or VSD was 2.06 (95%CI = 1.40-3.03, I2 = 57.8), 1.15 (95%CI = 0.97-1.36; I2 = 30.3), and 1.27 (95%CI = 1.14-1.42; I2 = 40.0), respectively. No evidence of publication bias and significant heterogeneity between subgroups was detected by meta-regression analyses. In conclusion, SSRIs use of pregnant women during first trimester is associated with an increased risk of cardiovascular-related malformations of infants including septal defects. The safety of SSRIs use during first trimester should be discussed to pregnant women with depression.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shan-Yan Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zi-Qi Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Cai-Xia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hai-Chen Lv
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuan Zhang
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
23
|
Wise D. Letter to the editor: Comments on venlafaxine paper by Laurent et al. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2016; 106:1056-1058. [PMID: 27900842 DOI: 10.1002/bdra.23579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|