1
|
Son Y, Park HJ, Jeong YJ, Choi HD, Kim N, Lee HJ. Long-term radiofrequency electromagnetic fields exposure attenuates cognitive dysfunction in 5×FAD mice by regulating microglial function. Neural Regen Res 2023; 18:2497-2503. [PMID: 37282482 DOI: 10.4103/1673-5374.371379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5×FAD mice with severe late-stage Alzheimer's disease reduced both amyloid-β deposition and glial activation, including microglia. To examine whether this therapeutic effect is due to the regulation of activated microglia, we analyzed microglial gene expression profiles and the existence of microglia in the brain in this study. 5×FAD mice at the age of 1.5 months were assigned to sham- and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months. We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/amyloid-beta metabolism in brain tissue. We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-β deposition. The expression levels of Iba1 (pan-microglial marker) and colony-stimulating factor 1 receptor (CSF1R; regulates microglial proliferation) in the hippocampus in 5×FAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group. Subsequently, we analyzed the expression levels of genes related to microgliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a CSF1R inhibitor (PLX3397)-treated group. Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis (Csf1r, CD68, and Ccl6) and pro-inflammatory cytokine interleukin-1β. Notably, the expression levels of genes related to microglial function, including Trem2, Fcgr1a, Ctss, and Spi1, were decreased after long-term radiofrequency electromagnetic field exposure, which was also observed in response to microglial suppression by PLX3397. These results showed that radiofrequency electromagnetic fields ameliorated amyloid-β pathology and cognitive impairment by suppressing amyloid-β deposition-induced microgliosis and their key regulator, CSF1R.
Collapse
Affiliation(s)
- Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hye-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ye Ji Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyung-Do Choi
- Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, Electronics and Telecommunications Research Institute, Daejon, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
2
|
Zhi W, Yong Z, Ma L, He S, Guo Z, Zhao X, Hu X, Wang L. 900 MHz electromagnetic field exposure relieved AD-like symptoms on APP/PS1 mice: A potential non-invasive strategy for AD treatment. Biochem Biophys Res Commun 2023; 658:97-106. [PMID: 37030070 DOI: 10.1016/j.bbrc.2023.03.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Evidence shows that microwaves radiation may have various biological effects on central nervous system. Role of electromagnetic fields in neurodegenerative diseases, especially AD, has been widely studied, but results of these studies are inconsistent. Therefore, the above effects were verified again and the mechanism was preliminarily discussed. METHODS Amyloid precursor protein (APP/PS1) and WT mice were exposed to long-term microwave radiation for 270 days (900 MHz, SAR: 0.25-1.055 W/kg, 2 h/day, alternately), and related indices were assessed at 90, 180 and 270 days. Cognition was evaluated by Morris water maze, Y maze and new object recognition tests. Congo red staining, immunohistochemistry and ELISA were used to analyze Aβ plaques, Aβ40 and Aβ42 content. Differentially expressed proteins in hippocampus between microwave-exposed and unexposed AD mice were identified by proteomics. RESULTS Spatial and working memory was improved in AD mice after long-term 900 MHz microwave exposure compared with after sham exposure. Microwave radiation (900 MHz) for 180 or 270 days did not induce Aβ plaque formation in WT mice but inhibited Aβ accumulation in the cerebral cortex and hippocampus in 2- and 5-month-old APP/PS1 mice. This effect mainly occurred in the late stage of the disease and may have been attributed to downregulation of apolipoprotein family member and SNCA expression and excitatory/inhibitory neurotransmitter rebalance in the hippocampus. CONCLUSIONS The present results indicated that long-term microwave radiation can retard AD development and exert a beneficial effect against AD, suggesting that 900 MHz microwave exposure may be a potential therapy for AD.
Collapse
|
3
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
4
|
Spandole-Dinu S, Catrina AM, Voinea OC, Andone A, Radu S, Haidoiu C, Călborean O, Popescu DM, Suhăianu V, Baltag O, Tuță L, Roșu G. Pilot Study of the Long-Term Effects of Radiofrequency Electromagnetic Radiation Exposure on the Mouse Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3025. [PMID: 36833719 PMCID: PMC9961585 DOI: 10.3390/ijerph20043025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The increasing radiofrequency (RF) electromagnetic radiation pollution resulting from the development and use of technologies utilizing RF has sparked debate about the possible biological effects of said radiation. Of particular concern is the potential impact on the brain, due to the close proximity of communication devices to the head. The main aim of this study was to examine the effects of long-term exposure to RF on the brains of mice in a real-life scenario simulation compared to a laboratory setting. The animals were exposed continuously for 16 weeks to RF using a household Wi-Fi router and a laboratory device with a frequency of 2.45 GHz, and were compared to a sham-exposed group. Before and after exposure, the mice underwent behavioral tests (open-field test and Y-maze); at the end of the exposure period, the brain was harvested for histopathological analysis and assessment of DNA methylation levels. Long-term exposure of mice to 2.45 GHz RF radiation increased their locomotor activity, yet did not cause significant structural or morphological changes in their brains. Global DNA methylation was lower in exposed mice compared to sham mice. Further research is needed to understand the mechanisms behind these effects and to understand the potential effects of RF radiation on brain function.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Ana-Maria Catrina
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Oana Cristina Voinea
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
- Pathology Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Andone
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Speranța Radu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Cerasela Haidoiu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Călborean
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Diana Mihaela Popescu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Vladimir Suhăianu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Baltag
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Leontin Tuță
- Center of Excellence in Communications and Information Technology, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| | - Georgiana Roșu
- Department of Military Systems and Equipment, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| |
Collapse
|
5
|
Bok J, Ha J, Ahn BJ, Jang Y. Disease-Modifying Effects of Non-Invasive Electroceuticals on β-Amyloid Plaques and Tau Tangles for Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010679. [PMID: 36614120 PMCID: PMC9821138 DOI: 10.3390/ijms24010679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer's disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on β-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD.
Collapse
Affiliation(s)
- Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Juchan Ha
- Department of Biomedical Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
- Correspondence: ; Tel.: +82-2-2220-0655
| |
Collapse
|
6
|
Rui G, Liu LY, Guo L, Xue YZ, Lai PP, Gao P, Xing JL, Li J, Ding GR. Effects of 5.8 GHz microwave on hippocampal synaptic plasticity of rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2247-2259. [PMID: 34293966 DOI: 10.1080/09603123.2021.1952165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE 5.8 GHz spectrum is gaining more attention in wireless technology. To explore the potential hazards, we investigated the effect of exposure to 5.8 GHz microwave on learning and memory ability of rats. Methods: Morris Water maze (MWM), Novel object recognition (NOR) and Fear conditioning test (FCT) were used to evaluate the ability of spatial and non-spatial memory of rats. The hippocampal morphology, the level of brain injury factors in serum and the mitochondrial membrane potential of hippocampal neurons was examined to evaluate the damage of hippocampal neurons. The density of dendritic spines, the ultrastructure of synapses and the level of PSD95, Synaptophysin, p-CREB and CREB were detected to evaluate the hippocampal synaptic plasticity. RESULTS Compared with Sham group, there was no significant difference in the performance of ethology (in MWM, NOR, FCT) in Microwave 2 h group or Microwave 4 h group. The hippocampal morphology, the serum level of brain injury factors and the content of mitochondrial JC-1 monomer in Microwave 2 h group or Microwave 4 h group did not change obviously, compared with Sham group. The density of dendritic spines, the ultrastructure of synapse and the level of PSD95, Synaptophysin, p-CREB and CREB in hippocampus in Microwave 2 h group or Microwave 4 h group did not significantly change, compared with Sham group. CONCLUSION Under this experimental condition, exposure to 5.8 GHz microwave could not affect the hippocampal synaptic plasticity of rats.
Collapse
Affiliation(s)
- Gang Rui
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Li-Yuan Liu
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ling Guo
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi-Zhe Xue
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pan-Pan Lai
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peng Gao
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun-Ling Xing
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gui-Rong Ding
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Jeong YJ, Son Y, Park HJ, Oh SJ, Choi JY, Ko YG, Lee HJ. Therapeutic Effects of Aripiprazole in the 5xFAD Alzheimer's Disease Mouse Model. Int J Mol Sci 2021; 22:9374. [PMID: 34502282 PMCID: PMC8431331 DOI: 10.3390/ijms22179374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
Global aging has led to growing health concerns posed by Alzheimer's disease (AD), the most common type of dementia. Aripiprazole is an atypical FDA-approved anti-psychotic drug with potential against AD. To investigate its therapeutic effects on AD pathology, we administered aripiprazole to 5xFAD AD model mice and examined beta-amyloid (βA)-induced AD-like phenotypes, including βA production, neuroinflammation, and cerebral glucose metabolism. Aripiprazole administration significantly decreased βA accumulation in the brains of 5xFAD AD mice. Aripiprazole significantly modified amyloid precursor protein processing, including carboxyl-terminal fragment β and βA, a disintegrin and metalloproteinase domain-containing protein 10, and beta-site APP cleaving enzyme 1, as determined by Western blotting. Neuroinflammation, as evidenced by ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein upregulation was dramatically inhibited, and the neuron cell layer of the hippocampal CA1 region was preserved following aripiprazole administration. In 18F-fluorodeoxyglucose positron emission tomography, after receiving aripiprazole, 5xFAD mice showed a significant increase in glucose uptake in the striatum, thalamus, and hippocampus compared to vehicle-treated AD mice. Thus, aripiprazole effectively alleviated βA lesions and prevented the decline of cerebral glucose metabolism in 5xFAD AD mice, suggesting its potential for βA metabolic modification and highlighting its therapeutic effect over AD progression.
Collapse
Affiliation(s)
- Ye Ji Jeong
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
- Division of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Yeonghoon Son
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| | - Hye-Jin Park
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.J.O.); (J.Y.C.)
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.J.O.); (J.Y.C.)
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hae-June Lee
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| |
Collapse
|
8
|
Perez FP, Maloney B, Chopra N, Morisaki JJ, Lahiri DK. Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep 2021; 11:621. [PMID: 33436686 PMCID: PMC7804462 DOI: 10.1038/s41598-020-77808-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-β (Aβ) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aβ levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aβ levels (Aβ40 and Aβ42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aβ40 (p = 001) and Aβ42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aβ levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aβ40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aβ precursor protein-α (sAPPα) levels, suggesting the decrease in Aβ did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aβ deposition.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Maloney
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA
| | - Nipun Chopra
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA
| | - Jorge J Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Maldonado-Moreles A, Cordova-Fraga T, Bonilla-Jaime H, Lopez-Camacho PY, Basurto-Islas G. Low frequency vortex magnetic field reduces amyloid β aggregation, increase cell viability and protect from amyloid β toxicity. Electromagn Biol Med 2021; 40:191-200. [PMID: 33043710 DOI: 10.1080/15368378.2020.1830288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023]
Abstract
Plaques formed by abnormal accumulation of amyloid β-peptide (Aβ) lead to onset of Alzheimer's disease (AD). Pharmacological treatments do not reduce Aβ aggregation neither restore learning and memory. Noninvasive techniques have emerged as an alternative to treat AD, such as stimulation with electromagnetic fields (EMF) that decrease Aβ deposition and reverses cognitive impairment in AD mice, even though some studies showed side effects on parallel magnetic fields stimulation. As a new approach of magnetic field (MF) stimulation, vortex magnetic fields (VMF) have been tested inducing a random movement of charged biomolecules in cells, promoting cell viability and apparently safer than parallel magnetic fields. In this study we demonstrate the effect of VMF on Aβ aggregation. The experimental strategy includes, i) design and construction of a coil capable to induce VMF, ii) evaluation of VMF stimulation on Aβ peptide induced-fibrils-formation, iii) evaluation of VMF stimulation on SH-SY5Y neuroblastoma cell line in the presence of Aβ peptide. We demonstrated for the first time that Aβ aggregation exposed to VMF during 24 h decreased ~ 86% of Aβ fibril formation compared to control. Likewise, VMF stimulation reduced Aβ fibrils-cytotoxicity and increase SH-SY5Y cell viability. These data establish the basis for future investigation that involve VMF as inhibitor of Aβ-pathology and indicate the therapeutic potential of VMF for AD treatment.
Collapse
Affiliation(s)
- Alejandro Maldonado-Moreles
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana , Ciudad de México, México
| | | | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Lab de Psicobiología, Universidad Autónoma Metropolitana Iztapalapa , Ciudad de México, México
| | - Perla Y Lopez-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa , Ciudad de México, México
| | | |
Collapse
|
10
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
11
|
Bouji M, Lecomte A, Gamez C, Blazy K, Villégier AS. Impact of Cerebral Radiofrequency Exposures on Oxidative Stress and Corticosterone in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2020; 73:467-476. [PMID: 31796670 DOI: 10.3233/jad-190593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia. Several studies suggested that mobile phone radiofrequency electromagnetic field (RF-EMF) exposures modified AD memory deficits in rodent models. OBJECTIVE Here we aimed to test the hypothesis that RF-EMF exposure may modify memory through corticosterone and oxidative stress in the Samaritan rat model of AD. METHODS Long-Evans male rats received intracerebroventricular infusion with ferrous sulphate, amyloid-beta 1-42 peptide, and buthionine-sufloximine (AD rats) or with vehicle (control rats). To mimic cell phone use, RF-EMF were exposed to the head for 1 month (5 days/week, in restraint). To look for hazard thresholds, high brain averaged specific absorption rates (BASAR) were tested: 1.5 W/Kg (15 min), 6 W/Kg (15 min), and 6 W/Kg (45 min). The sham group was in restraint for 45 min. Endpoints were spatial memory in the radial maze, plasmatic corticosterone, heme oxygenase-1 (HO1), and amyloid plaques. RESULTS Results indicated similar corticosterone levels but impaired memory performances and increased cerebral staining of thioflavine and of HO1 in the sham AD rats compared to the controls. A correlative increase of cortical HO1 staining was the only effect of RF-EMF in control rats. In AD rats, RF-EMF exposures induced a correlative increase of hippocampal HO1 staining and reduced corticosterone. DISCUSSION According to our data, neither AD nor control rats showed modified memory after RF-EMF exposures. Unlike control rats, AD rats showed higher hippocampal oxidative stress and reduced corticosterone with the higher BASAR. This data suggests more fragility related to neurodegenerative disease toward RF-EMF exposures.
Collapse
Affiliation(s)
- Marc Bouji
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France
| | - Anthony Lecomte
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Christelle Gamez
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Kelly Blazy
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Anne-Sophie Villégier
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| |
Collapse
|
12
|
Jeong YJ, Son Y, Choi HD, Kim N, Lee YS, Ko YG, Lee HJ. Behavioral changes and gene profile alterations after chronic 1,950-MHz radiofrequency exposure: An observation in C57BL/6 mice. Brain Behav 2020; 10:e01815. [PMID: 32856797 PMCID: PMC7667305 DOI: 10.1002/brb3.1815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Due to public concerns about deleterious biological consequences of radiofrequency electromagnetic fields (RF-EMF), the potential effects of RF-EMF on the central nervous system have received wide consideration. METHODS Here, two groups of C57BL/6 mice, aged 2 and 12 months, were exposed to 1,950-MHz RF-EMF at a specific absorption rate of 5.0 W/kg for chronic periods (2 hr/day and 5 days/week for 8 months). Behavioral changes were then assessed in the mice at 10 months (sham- or RF-10M) and 20 months (sham- or RF-20M), on the open-field test, the Y-maze test, and an object recognition memory task, while biological effects were analyzed via microarray gene profiling of the hippocampus. RESULTS Open-field test results showed a decrease in the time duration spent at the center while there was a decrease in enhanced memory shown by the Y-maze test and the novel object recognition test in the RF-20M mice, compared to sham-exposed mice, but no significant changes in the RF-10M group. Based on a 2-fold change cutoff, the microarray data revealed that 15 genes, which are listed as being involved in neurogenesis on Gene Ontology, were altered in both groups. Quantitative real-time PCR for validation showed increased expression of Epha8 and Wnt6 in the hippocampi of RF-20M group mice, although 13 additional genes showed no significant changes following RF-EMF exposure. CONCLUSION Therefore, cognitive enhancement following chronic exposure for 8 months to RF-EMF from middle age may be associated with increases in neurogenesis-related signals in the hippocampus of C57BL/6 mice.
Collapse
Affiliation(s)
- Ye Ji Jeong
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Division of Life Sciences, Korea University, Seoul, Korea
| | - Yeonghoon Son
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Korea
| | - Hyung-Do Choi
- Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, ETRI, Daejon, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Hae-June Lee
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
13
|
Ahmad RHMA, Fakhoury M, Lawand N. Electromagnetic Field: A Potential Innovative Treatment for Alzheimer’s Disease. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216666200408103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reem Habib Mohamed Ali Ahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| |
Collapse
|
14
|
Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30693-30710. [PMID: 31463749 DOI: 10.1007/s11356-019-06278-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, PO Box 11172, Ras Al Khaimah, UAE.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions-Jeddah, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P. O. Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia
| | - Satheesha B Nayak
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, 576104, India
| | - P Gopalakrishna Bhat
- Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
15
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
16
|
Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul) 2019; 27:265-275. [PMID: 30481957 PMCID: PMC6513191 DOI: 10.4062/biomolther.2018.152] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
17
|
Impact of Long-Term RF-EMF on Oxidative Stress and Neuroinflammation in Aging Brains of C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19072103. [PMID: 30029554 PMCID: PMC6073444 DOI: 10.3390/ijms19072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
The expansion of mobile phone use has raised questions regarding the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on oxidative stress and brain inflammation. Despite accumulative exposure of humans to radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, their long-term effects on oxidative stress and neuroinflammation in the aging brain have not been studied. In the present study, middle-aged C57BL/6 mice (aged 14 months) were exposed to 1950 MHz electromagnetic fields for 8 months (specific absorption rate (SAR) 5 W/kg, 2 h/day, 5 d/week). Compared with those in the young group, levels of protein (3-nitro-tyrosine) and lipid (4-hydroxy-2-nonenal) oxidative damage markers were significantly increased in the brains of aged mice. In addition, levels of markers for DNA damage (8-hydroxy-2'-deoxyguanosine, p53, p21, γH2AX, and Bax), apoptosis (cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP-1)), astrocyte (GFAP), and microglia (Iba-1) were significantly elevated in the brains of aged mice. However, long-term RF-EMF exposure did not change the levels of oxidative stress, DNA damage, apoptosis, astrocyte, or microglia markers in the aged mouse brains. Moreover, long-term RF-EMF exposure did not alter locomotor activity in aged mice. Therefore, these findings indicate that long-term exposure to RF-EMF did not influence age-induced oxidative stress or neuroinflammation in C57BL/6 mice.
Collapse
|
18
|
Ahmadi S, Alavi SS, Jadidi M, Ardjmand A. Exposure to GSM 900-MHz mobile radiation impaired inhibitory avoidance memory consolidation in rat: Involvements of opioidergic and nitrergic systems. Brain Res 2018; 1701:36-45. [PMID: 30030983 DOI: 10.1016/j.brainres.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
The use of mobile phones is increasing, and the main health concern is the possible deleterious effects of radiation on brain functioning. The present study aimed to examine the effects of exposure to a global system for mobile communication (GSM) with mobile phones on inhibitory avoidance (IA) memory performance as well as the involvement of endogenous opioids and nitric oxide (NO) in this task. Male Wistar rats, 10-12 weeks old, were used. The results showed that four weeks of mobile phone exposure impaired IA memory performance in rats. The results also revealed that post-training, but not pre-training, as well as pre-test intracerebroventricular (i.c.v.) injections of naloxone (0.4, 4 and 40 ng/rat), dose-dependently recovered the impairment of IA memory performance induced by GSM radiation. Additionally, the impairment of IA memory performance was completely recovered in the exposed animals with post-training treatment of naloxone (40 ng/rat) plus pre-test i.c.v. injections of L-arginine (100 and 200 nmol/rat). However, pre-test i.c.v. injections of L-NAME (10 and 20 nmol/rat), impaired IA memory performance in the animals receiving post-training naloxone (40 ng/rat). In the animals receiving post-training naloxone treatment, the impairment of IA memory performance due to pre-test i.c.v. injections of L-NAME was recovered by the pre-test co-administration of L-arginine. It was concluded that the recovery from impairment of IA memory in GSM-exposed animals with post-training naloxone treatment was the result of blockade of the opioidergic system in early memory consolidation as well as activation of the nitrergic system in the retrieval phase of memory.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Samaneh Sadat Alavi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Jadidi
- Department of Medical Physics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Foerster M, Thielens A, Joseph W, Eeftens M, Röösli M. A Prospective Cohort Study of Adolescents' Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077007. [PMID: 30044230 PMCID: PMC6108834 DOI: 10.1289/ehp2427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The potential impact of microwave radiofrequency electromagnetic fields (RF-EMF) emitted by wireless communication devices on neurocognitive functions of adolescents is controversial. In a previous analysis, we found changes in figural memory scores associated with a higher cumulative RF-EMF brain dose in adolescents. OBJECTIVE We aimed to follow-up our previous results using a new study population, dose estimation, and approach to controlling for confounding from media usage itself. METHODS RF-EMF brain dose for each participant was modeled. Multivariable linear regression models were fitted on verbal and figural memory score changes over 1 y and on estimated cumulative brain dose and RF-EMF related and unrelated media usage (n=669-676). Because of the hemispheric lateralization of memory, we conducted a laterality analysis for phone call ear preference. To control for the confounding of media use behaviors, a stratified analysis for different media usage groups was also conducted. RESULTS We found decreased figural memory scores in association with an interquartile range (IQR) increase in estimated cumulative RF-EMF brain dose scores: -0.22 (95% CI: -0.47, 0.03; IQR: 953 mJ/kg per day) in the whole sample, -0.39 (95% CI: -0.67, -0.10; IQR: 953 mJ/kg per day) in right-side users (n=532), and -0.26 (95% CI: -0.42, -0.10; IQR: 341 mJ/kg per day) when recorded network operator data were used for RF-EMF dose estimation (n=274). Media usage unrelated to RF-EMF did not show significant associations or consistent patterns, with the exception of consistent (nonsignificant) positive associations between data traffic duration and verbal memory. CONCLUSIONS Our findings for a cohort of Swiss adolescents require confirmation in other populations but suggest a potential adverse effect of RF-EMF brain dose on cognitive functions that involve brain regions mostly exposed during mobile phone use. https://doi.org/10.1289/EHP2427.
Collapse
Affiliation(s)
- Milena Foerster
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arno Thielens
- Department of Electrical Engineering and Computer Sciences, Berkeley Wireless Research Center, University of California Berkeley, Berkeley, California, USA
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Wout Joseph
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
- Department of Information Technology, Waves research group, Ghent University
| | - Marloes Eeftens
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Braun D, Feinstein DL. The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer's disease. Brain Res 2017; 1702:29-37. [PMID: 29274883 DOI: 10.1016/j.brainres.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Damage to noradrenergic neurons in the Locus coeruleus (LC) occurs contributes to neuropathology and behavioral deficits in Alzheimer's disease (AD); methods to reduce LC damage may therefore be of benefit. We previously showed that vindeburnol, a derivative of the plant alkaloid vincamine, reduced neuroinflammation, amyloid burden, and LC damage in a mouse model of AD; however, effects on behavior were not tested. We now tested the effects of vindeburnol on anxiety-like behavior in 5xFAD mice which develop robust amyloid burden at early ages. During novel object recognition testing, we observed that 5xFAD mice spent more time exploring than wildtype littermates, and that time was reduced by vindeburnol. Vindeburnol also reduced hyperlocomotion in the 5xFAD mice which may have contributed to their increased exploration times. In an open field test, vindeburnol normalized the increase of time spent in the center, and the decrease of time spent near the walls in 5xFAD mice. Vindeburnol reduced amyloid burden in the hippocampus and cortex, areas that contribute to regulation of anxiety-like behavior. In vitro, vindeburnol increased neuronal BDNF expression in a cAMP-dependent manner; and inhibited phosphodiesterase activity with an EC50 near 50 μM. These findings suggest that cAMP-mediated increases in neurotrophic factors contribute to beneficial effects of vindeburnol within the context of LC damage, which may be of value for treatment of some neuropsychiatric symptoms of AD.
Collapse
Affiliation(s)
- David Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60614, United States; Jesse Brown VA Medical Center, Chicago, IL 60614, United States.
| |
Collapse
|
21
|
Parsaei H, Faraz M, Mortazavi SMJ. A Multilayer Perceptron Neural Network–Based Model for Predicting Subjective Health Symptoms in People Living in the Vicinity of Mobile Phone Base Stations. ECOPSYCHOLOGY 2017. [DOI: 10.1089/eco.2017.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Parsaei
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Faraz
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. M. J. Mortazavi
- Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|