1
|
Li R, Zhao R, Yang M, Zhang X, Lin J. Membrane microdomains: Structural and signaling platforms for establishing membrane polarity. PLANT PHYSIOLOGY 2023; 193:2260-2277. [PMID: 37549378 DOI: 10.1093/plphys/kiad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.
Collapse
Affiliation(s)
- Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Mei Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Fischer AAM, Schatz L, Baaske J, Römer W, Weber W, Thuenauer R. Real-time monitoring of cell surface protein arrival with split luciferases. Traffic 2023; 24:453-462. [PMID: 37403269 DOI: 10.1111/tra.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Larissa Schatz
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
| | - Julia Baaske
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
3
|
Karcini A, Lazar IM. The SKBR3 cell-membrane proteome reveals telltales of aberrant cancer cell proliferation and targets for precision medicine applications. Sci Rep 2022; 12:10847. [PMID: 35760832 PMCID: PMC9237123 DOI: 10.1038/s41598-022-14418-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
The plasma membrane proteome resides at the interface between the extra- and intra-cellular environment and through its various roles in signal transduction, immune recognition, nutrient transport, and cell-cell/cell-matrix interactions plays an absolutely critical role in determining the fate of a cell. Our work was aimed at exploring the cell-membrane proteome of a HER2+ breast-cancer cell line (SKBR3) to identify triggers responsible for uncontrolled cell proliferation and intrinsic resources that enable detection and therapeutic interventions. To mimic environmental conditions that enable cancer cells to evolve adaptation/survival traits, cell culture was performed under serum-rich and serum-deprived conditions. Proteomic analysis enabled the identification of ~ 2000 cell-membrane proteins. Classification into proteins with receptor/enzymatic activity, CD antigens, transporters, and cell adhesion/junction proteins uncovered overlapping roles in processes that drive cell growth, apoptosis, differentiation, immune response, adhesion and migration, as well as alternate pathways for proliferation. The large number of tumor markers (> 50) and putative drug targets (> 100) exposed a vast potential for yet unexplored detection and targeting opportunities, whereas the presence of 15 antigen immunological markers enabled an assessment of epithelial, mesenchymal or stemness characteristics. Serum-starved cells displayed altered processes related to mitochondrial OXPHOS/ATP synthesis, protein folding and localization, while serum-treated cells exhibited attributes that support tissue invasion and metastasis. Altogether, our findings advance the understanding of the biological triggers that sustain aberrant cancer cell proliferation, survival and development of resistance to therapeutic drugs, and reveal vast innate opportunities for guiding immunological profiling and precision medicine applications aimed at target selection or drug discovery.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.
| |
Collapse
|
4
|
Haindrich AC, Ernst V, Naguleswaran A, Oliveres QF, Roditi I, Rentsch D. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. J Biol Chem 2021; 296:100566. [PMID: 33745971 PMCID: PMC8094907 DOI: 10.1016/j.jbc.2021.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.
Collapse
Affiliation(s)
| | - Viona Ernst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol 2019; 10:6. [PMID: 30728775 PMCID: PMC6351496 DOI: 10.3389/fphar.2019.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023] Open
Abstract
TRPV4 is a non-selective cation channel that tunes the function of different tissues including the vascular endothelium, lung, chondrocytes, and neurons. GSK1016790A is the selective and potent agonist of TRPV4 and a pharmacological tool that is used to study the TRPV4 physiological function in vitro and in vivo. It remains unknown how the sensitivity of TRPV4 to this agonist is regulated. The spatial and temporal dynamics of receptors are the major determinants of cellular responses to stimuli. Membrane translocation has been shown to control the response of several members of the transient receptor potential (TRP) family of ion channels to different stimuli. Here, we show that TRPV4 stimulation with GSK1016790A caused an increase in [Ca2+]i that is stable for a few minutes. Single molecule analysis of TRPV4 channels showed that the density of TRPV4 at the plasma membrane is controlled through two modes of membrane trafficking, complete, and partial vesicular fusion. Further, we show that the density of TRPV4 at the plasma membrane decreased within 20 min, as they translocate to the recycling endosomes and that the surface density is dependent on the release of calcium from the intracellular stores and is controlled via a PI3K, PKC, and RhoA signaling pathway.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Peter Keov
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,Molecular Pharmacology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - William G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Austin Lai
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Parisa Vahidi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Karin Ejendal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Xu J, Bernstein AM, Wong A, Lu XH, Khoja S, Yang XW, Davies DL, Micevych P, Sofroniew MV, Khakh BS. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. J Neurosci 2016; 36:8902-20. [PMID: 27559172 PMCID: PMC4995303 DOI: 10.1523/jneurosci.1496-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.
Collapse
Affiliation(s)
- Ji Xu
- Departments of Physiology and
| | - Alexander M Bernstein
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Angela Wong
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095
| | - Sheraz Khoja
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California 90095, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, and
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Paul Micevych
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Michael V Sofroniew
- Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Baljit S Khakh
- Departments of Physiology and Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
7
|
Li C, Ma W, Yin S, Liang X, Shu X, Pei D, Egan TM, Huang J, Pan A, Li Z. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3. Traffic 2016; 17:500-14. [DOI: 10.1111/tra.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Caiyue Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Shikui Yin
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xin Liang
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Terrance M. Egan
- Pharmacological and Physiological Science, School of Medicine; Saint Louis University; St. Louis MO USA
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| |
Collapse
|
8
|
Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016; 99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2mr1015-477r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 12/17/2022] Open
Abstract
Chemokines modulate immune responses through their ability to orchestrate the migration of target cells. Chemokines directly induce cell migration through a distinct set of 7 transmembrane domain G protein-coupled receptors but are also recognized by a small subfamily of atypical chemokine receptors, characterized by their inability to support chemotactic activity. Atypical chemokine receptors are now emerging as crucial regulatory components of chemokine networks in a wide range of physiologic and pathologic contexts. Although a new nomenclature has been approved recently to reflect their functional distinction from their conventional counterparts, a systematic view of this subfamily is still missing. This review discusses their biochemical and immunologic properties to identify potential unifying themes in this emerging family.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
9
|
Wang L, Li H, Lv X, Chen T, Li R, Xue Y, Jiang J, Jin B, Baluška F, Šamaj J, Wang X, Lin J. Spatiotemporal Dynamics of the BRI1 Receptor and its Regulation by Membrane Microdomains in Living Arabidopsis Cells. MOLECULAR PLANT 2015; 8:1334-49. [PMID: 25896454 DOI: 10.1016/j.molp.2015.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 05/22/2023]
Abstract
The major brassinosteroid (BR) receptor of Arabidopsis BRASSINOSTEROID INSENSITIVE1 (BRI1) plays fundamental roles in BR signaling, but the molecular mechanisms underlying the effects of BR on BRI1 internalization and assembly state remain unclear. Here, we applied variable angle total internal reflection fluorescence microscopy and fluorescence cross-correlation spectroscopy to analyze the dynamics of GFP-tagged BRI1. We found that, in response to BR, the degree of co-localization of BRI1-GFP with AtFlot1-mCherry increased, and especially BR stimulated the membrane microdomain-associated pathway of BRI1 internalization. We also verified these observations in endocytosis-defective chc2-1 mutants and the AtFlot1 amiRNA 15-5 lines. Furthermore, examination of the phosphorylation status of bri1-EMS-suppressor 1 and measurement of BR-responsive gene expression revealed that membrane microdomains affect BR signaling. These results suggest that BR promotes the partitioning of BRI1 into functional membrane microdomains to activate BR signaling.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hong Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xueqin Lv
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yiqun Xue
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jianjun Jiang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Department of Cell Biology, Palacky University Olomouc, Olomouc 78371, Czech Republic
| | - Xuelu Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A. Trafficking of ThermoTRP Channels. MEMBRANES 2014; 4:525-64. [PMID: 25257900 PMCID: PMC4194048 DOI: 10.3390/membranes4030525] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
ThermoTRP channels (thermoTRPs) define a subfamily of the transient receptor potential (TRP) channels that are activated by changes in the environmental temperature, from noxious cold to injurious heat. Acting as integrators of several stimuli and signalling pathways, dysfunction of these channels contributes to several pathological states. The surface expression of thermoTRPs is controlled by both, the constitutive and regulated vesicular trafficking. Modulation of receptor surface density during pathological processes is nowadays considered as an interesting therapeutic approach for management of diseases, such as chronic pain, in which an increased trafficking is associated with the pathological state. This review will focus on the recent advances trafficking of the thermoTRP channels, TRPV1, TRPV2, TRPV4, TRPM3, TRPM8 and TRPA1, into/from the plasma membrane. Particularly, regulated membrane insertion of thermoTRPs channels contributes to a fine tuning of final channel activity, and indeed, it has resulted in the development of novel therapeutic approaches with successful clinical results such as disruption of SNARE-dependent exocytosis by botulinum toxin or botulinomimetic peptides.
Collapse
Affiliation(s)
| | - Sakthikumar Mathivanan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Christoph Jakob Wolf
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| |
Collapse
|
11
|
Whitcup SM, Turkel CC, DeGryse RE, Brin MF. Development of onabotulinumtoxinA for chronic migraine. Ann N Y Acad Sci 2014; 1329:67-80. [DOI: 10.1111/nyas.12488] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - Mitchell F. Brin
- Allergan, Inc Irvine California
- Department of Neurology University of California Irvine California
| |
Collapse
|
12
|
Possidonio ACB, Soares CP, Portilho DM, Midlej V, Benchimol M, Butler-Browne G, Costa ML, Mermelstein C. Differences in the expression and distribution of flotillin-2 in chick, mice and human muscle cells. PLoS One 2014; 9:e103990. [PMID: 25105415 PMCID: PMC4126691 DOI: 10.1371/journal.pone.0103990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.
Collapse
Affiliation(s)
- Ana Claudia Batista Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Pontes Soares
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Laboratório de Ultraestrutura Celular, Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | | | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
van Meel E, Klumperman J. TGN exit of the cation-independent mannose 6-phosphate receptor does not require acid hydrolase binding. CELLULAR LOGISTICS 2014; 4:e954441. [PMID: 25610721 DOI: 10.4161/21592780.2014.954441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/07/2014] [Indexed: 12/23/2022]
Abstract
The cation-independent mannose 6-phosphate (Man-6-P) receptor (CI-MPR) binds newly synthesized, Man-6-P-containing lysosomal acid hydrolases in the trans-Golgi network (TGN) for clathrin-mediated transport to endosomes. It has remained unresolved, however, whether acid hydrolase binding is required for exit of the CI-MPR from the TGN. To address this question we used a B cell line derived from a Mucolipidosis type II (MLII)/I-cell disease patient. In MLII patients, acid hydrolases do not acquire the Man-6-P recognition marker and as a consequence do not bind to the CI-MPR. This causes secretion of the majority of the acid hydrolases and a decreased lysosomal activity resulting in typical inclusion bodies. In agreement herewith, ultrastructural analysis of the MLII patient derived B cells showed numerous inclusion bodies with undigested material, which we defined as autolysosomes. By quantitative immuno-electron microscopy we then studied the distribution of the CI-MPR in these cells. We found that the level of co-localization of TGN-localized CI-MPR and clathrin was similar in MLII and control B cells. Moreover, the CI-MPR was readily found in endosomes of MLII cells and the TGN-to-early endosome ratio of CI-MPR labeling was unaltered. These data show that there is no block in TGN exit of the CI-MPR in the absence of Man-6-P-modified acid hydrolases. Notably, late endosomes and inclusion bodies in MLII B cells contained increased levels of the CI-MPR, which likely reflects the reduced degradative capacity of these compartments.
Collapse
Affiliation(s)
- Eline van Meel
- Department of Cell Biology; University Medical Center Utrecht ; Utrecht, The Netherlands
| | - Judith Klumperman
- Department of Cell Biology; University Medical Center Utrecht ; Utrecht, The Netherlands
| |
Collapse
|
14
|
Xu J, Chai H, Ehinger K, Egan TM, Srinivasan R, Frick M, Khakh BS. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. ACTA ACUST UNITED AC 2014; 144:81-104. [PMID: 24935743 PMCID: PMC4076521 DOI: 10.1085/jgp.201411169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A P2X4 receptor labeled with the pH-sensitive GFP superecliptic pHluorin represents a useful probe to investigate P2X4 receptor distribution, trafficking, and up-regulation. P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hua Chai
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Terrance M Egan
- Department of Pharmacological and Physiological Science and The Center for Excellence in Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63130 Department of Pharmacological and Physiological Science and The Center for Excellence in Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63130
| | - Rahul Srinivasan
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, 89081 Ulm, Germany
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
15
|
Burstein R, Zhang X, Levy D, Aoki KR, Brin MF. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. Cephalalgia 2014; 34:853-69. [PMID: 24694964 PMCID: PMC4167963 DOI: 10.1177/0333102414527648] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Meningeal and other trigeminal nociceptors are thought to play important roles in the initiation of migraine headache. Currently, the only approved peripherally administered chronic migraine prophylactic drug is onabotulinumtoxinA. The purpose of this study was to determine how botulinum neurotoxin type A (BoNT-A) affects naïve and sensitized meningeal nociceptors. Material and methods Using electrophysiological techniques, we identified 43 C- and 36 Aδ-meningeal nociceptors, and measured their spontaneous and evoked firing before and after BoNT-A administration to intracranial dura and extracranial suture-receptive fields. Results As a rule, BoNT-A inhibited C- but not Aδ-meningeal nociceptors. When applied to nonsensitized C-units, BoNT-A inhibited responses to mechanical stimulation of the dura with suprathreshold forces. When applied to sensitized units, BoNT-A reversed mechanical hypersensitivity. When applied before sensitization, BoNT-A prevented development of mechanical hypersensitivity. When applied extracranially to suture branches of intracranial meningeal nociceptors, BoNT-A inhibited the mechanical responsiveness of the suture branch but not dural axon. In contrast, BoNT-A did not inhibit C-unit responses to mechanical stimulation of the dura with threshold forces, or their spontaneous activity. Discussion The study provides evidence for the ability of BoNT-A to inhibit mechanical nociception in peripheral trigeminovascular neurons. These findings suggest that BoNT-A interferes with neuronal surface expression of high-threshold mechanosensitive ion channels linked preferentially to mechanical pain by preventing their fusion into the nerve terminal membrane.
Collapse
Affiliation(s)
- Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - XiChun Zhang
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - Dan Levy
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | | | - Mitchell F Brin
- Allergan Inc., Irvine, CA, USA University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Khan AA, Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med 2013; 34:669-82. [PMID: 23506900 DOI: 10.1016/j.mam.2012.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Heme is critical for a variety of cellular processes, but excess intracellular heme may result in oxidative stress and membrane injury. Feline leukemia virus subgroup C receptor (FLVCR1), a member of the SLC49 family of four paralogous genes, is a cell surface heme exporter, essential for erythropoiesis and systemic iron homeostasis. Disruption of FLVCR1 function blocks development of erythroid progenitors, likely due to heme toxicity. Mutations of SLC49A1 encoding FLVCR1 are noted in patients with a rare neurodegenerative disorder: posterior column ataxia with retinitis pigmentosa. FLVCR2 is highly homologous to FLVCR1 and may function as a cellular heme importer. Mutations of SLC49A2 encoding FLVCR2 are observed in Fowler syndrome, a rare proliferative vascular disorder of the brain. The functions of the remaining members of the SLC49 family, MFSD7 and DIRC2 (encoded by the SLC49A3 and SLC49A4 genes), are unknown, although the latter is implicated in hereditary renal carcinomas. SLC48A1 (heme responsive gene-1, HRG-1), the sole member of the SLC48 family, is associated with the endosome and appears to transport heme from the endosome into the cytosol.
Collapse
Affiliation(s)
- Anwar A Khan
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | | |
Collapse
|
17
|
Gnanasekaran A, Sundukova M, Hullugundi S, Birsa N, Bianchini G, Hsueh YP, Nistri A, Fabbretti E. Calcium/calmodulin-dependent serine protein kinase (CASK) is a new intracellular modulator of P2X3 receptors. J Neurochem 2013; 126:102-12. [PMID: 23600800 DOI: 10.1111/jnc.12272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
Abstract
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of painful stimuli and are modulated by extracellular algogenic substances, via changes in the receptor phosphorylation state. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in interacting and controlling P2X3 receptor expression and function in mouse trigeminal ganglia. Most ganglion neurons in situ or in culture co-expressed P2X3 and CASK. CASK was immunoprecipitated with P2X3 receptors from trigeminal ganglia and from P2X3/CASK-cotransfected human embryonic kidney (HEK) cells. Recombinant P2X3/CASK expression in HEK cells increased serine phosphorylation of P2X3 receptors, typically associated with receptor upregulation. CASK deletion mutants also enhanced P2X3 subunit expression. After silencing CASK, cell surface P2X3 receptor expression was decreased, which is consistent with depressed P2X3 currents. The reduction in P2X3 expression levels was reversed by the proteasomal inhibitor MG-132. Moreover, neuronal CASK/P2X3 interaction was up-regulated by nerve growth factor (NGF) signaling and down-regulated by P2X3 agonist-induced desensitization. These data suggest a novel interaction between CASK and P2X3 receptors with positive outcome for receptor stability and function. As CASK-mediated control of P2X3 receptors was dependent on the receptor activation state, CASK represents an intracellular gateway to regulate purinergic nociceptive signaling.
Collapse
Affiliation(s)
- Aswini Gnanasekaran
- Neuroscience Department, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stokes L. Rab5 regulates internalisation of P2X4 receptors and potentiation by ivermectin. Purinergic Signal 2012; 9:113-21. [PMID: 23086000 DOI: 10.1007/s11302-012-9336-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 01/21/2023] Open
Abstract
The P2X4 receptor is an ATP-gated ion channel expressed in neurons, endothelia and immune cells. Plasma membrane expression of P2X4 is regulated by dynamin-dependent endocytosis, and this study identifies a Rab5-dependent pathway of receptor internalisation. Expression of Rab5 constructs altered the distribution of P2X4 in HEK-293 cells, and both constitutive internalisation and agonist-induced desensitisation of P2X4 were increased by co-expression of wild-type Rab5 or constitutively active Rab5 (Q79L). Expression of inactive dynamin K44A and Rab5 S34N constructs abolished agonist-induced desensitisation, suggesting internalisation as the underlying mechanism. Blocking P2X4 internalisation in this way also abolished potentiation of ATP-induced currents by the allosteric modulator ivermectin. This suggests that the dynamin-Rab5 internalisation pathway is essential for the ivermectin potentiation effect. In agreement with this hypothesis, the co-expression of wild-type dynamin, wild-type Rab5 or active Rab5 (Q79L) could increase the potentiation of the ATP-induced P2X4 response by ivermectin. These findings highlight Rab5 GTPase as a key regulator of P2X4 receptor cell surface expression and internalisation.
Collapse
Affiliation(s)
- Leanne Stokes
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Omholt SW. From sequence to consequence and back. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:75-82. [PMID: 23022209 DOI: 10.1016/j.pbiomolbio.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/16/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
The genotype-phenotype relation is at the core of theoretical biology. It is argued why a mathematically based explanatory structure of this relation is in principle possible, and why it has to embrace both sequence to consequence and consequence to sequence phenomena. It is suggested that the primary role of DNA in the chain of causality is that its presence allows a living system to induce perturbations of its own dynamics as a function of its own system state or phenome, i.e. it capacitates living systems to self-transcend beyond those morphogenetic limits that exist for non-living open physical systems in general. Dynamic models bridging genotypes with phenotypic variation in a causally cohesive way are shown to provide explanations of genetic phenomena that go well beyond the explanatory domains of statistically oriented genetics theory construction. A theory originally proposed by Rupert Riedl, which implies that the morphospace that is reachable by the standing genetic variation in a population is quite restricted due to systemic constraints, is shown to provide a foundation for a mathematical conceptualization of numerous evolutionary phenomena associated with the phenotypic consequence to sequence relation. The paper may be considered a call to arms to mathematicians and the mathematically inclined to rise to the challenge of developing new formalisms capable of dealing with the deep defining characteristics of living systems.
Collapse
Affiliation(s)
- Stig W Omholt
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
20
|
Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 2012; 130:82-94. [PMID: 22425600 DOI: 10.1016/j.mod.2012.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.
Collapse
|
21
|
Toulme E, Khakh BS. Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK. J Biol Chem 2012; 287:14734-48. [PMID: 22393055 DOI: 10.1074/jbc.m111.329334] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATP-gated ionotropic P2X4 receptors are up-regulated in activated microglia and are critical for the development of neuropathic pain, a microglia-associated disorder. However, the nature of how plasma membrane P2X4 receptors are regulated in microglia is not fully understood. We used single-molecule imaging to track quantum dot-labeled P2X4 receptors to explore P2X4 receptor mobility in the processes of resting and activated microglia. We find that plasma membrane P2X4 receptor lateral mobility in resting microglial processes is largely random, consisting of mobile and slowly mobile receptors. Moreover, lateral mobility is P2X subunit- and cell-specific, increased in an ATP activation and calcium-dependent manner, and enhanced in activated microglia by the p38 MAPK pathway that selectively regulates slowly mobile receptors. Thus, our data indicate that P2X4 receptors are dynamically regulated mobile ATP sensors, sampling more of the plasma membrane in response to ATP and during the activated state of microglia that is associated with nervous system dysfunction.
Collapse
Affiliation(s)
- Estelle Toulme
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Neuronal P2X2 receptors are mobile ATP sensors that explore the plasma membrane when activated. J Neurosci 2012; 31:16716-30. [PMID: 22090499 DOI: 10.1523/jneurosci.3362-11.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ATP-gated ionotropic P2X2 receptors are widely expressed in neurons. Although the electrophysiological properties of P2X2 receptors have been extensively studied, little is known about the plasma membrane lateral mobility of P2X2 receptors or whether receptor mobility is regulated by ATP. Here we used single-molecule imaging with simultaneous whole-cell voltage-clamp recordings to track quantum dot-labeled P2X2 receptors in the dendrites of rat hippocampal neurons to explore P2X2 receptor mobility and its regulation. We find that plasma membrane P2X2 receptor lateral mobility in dendrites is heterogeneous but mostly Brownian in nature, consisting of mobile and slowly mobile receptor pools. Moreover, lateral mobility is P2X2 subunit and cell specific, is increased in an activation-dependent manner, and is regulated by cytosolic VILIP1, a calcium binding protein. Our data provide the first direct measures of P2X receptor mobility and show that P2X2 receptors are mobile ATP sensors, sampling more of the dendritic plasma membrane in response to ATP.
Collapse
|
23
|
Kohl T, Lörinczi E, Pardo LA, Stühmer W. Rapid internalization of the oncogenic K+ channel K(V)10.1. PLoS One 2011; 6:e26329. [PMID: 22022602 PMCID: PMC3192180 DOI: 10.1371/journal.pone.0026329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022] Open
Abstract
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells.
Collapse
Affiliation(s)
- Tobias Kohl
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Eva Lörinczi
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Luis A. Pardo
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Walter Stühmer
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| |
Collapse
|
24
|
Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. Rab5a regulates surface expression of FcεRI and functional activation in mast cells. Biol Pharm Bull 2011; 34:760-3. [PMID: 21532169 DOI: 10.1248/bpb.34.760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface expression levels of high-affinity immunoglobulin E (IgE) receptors (FcεRI) on mast cells are regulated by constitutive internalization from the plasma membrane, which is thought to be an important determinant of FcεRI-mediated signaling potential. However, molecular mechanism of FcεRI trafficking has remained poorly understood. Rab proteins are small guanosine 5'-triphosphatases (GTPases) involved in the regulation of membrane traffic. In particular, Rab5 has been shown to regulate transport in the early endocytic pathway, whereas it is not known whether the FcεRI surface expression levels are regulated by Rab5. In this study, we investigated the role of individual Rab5 isoforms in mast cells by small interfering RNA knockdown method. Our results demonstrate that Rab5a knockdown enhanced FcεRI-dependent mast cell activation and upregulated FcεRI surface expression in its steady state. In contrast, Rab5c knockdown caused suppression of the activation. These findings revealed modulatory and individual roles of Rab5 isoforms in mast cell functions.
Collapse
Affiliation(s)
- Natsuko Kageyama-Yahara
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | | | | | | |
Collapse
|
25
|
Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays 2011; 33:870-9. [PMID: 21913212 PMCID: PMC3258547 DOI: 10.1002/bies.201100100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When cells are starved of their substrate, many nutrient transporters are induced. These undergo rapid endocytosis and redirection of their intracellular trafficking when their substrate becomes available again. The discovery that some of these transporters also act as receptors, or transceptors, suggests that at least part of the sophisticated controls governing the trafficking of these proteins has to do with their signaling function rather than with control of transport. In yeast, the general amino acid permease Gap1 mediates signaling to the protein kinase A pathway. Its endocytic internalization and intracellular trafficking are subject to amino acid control. Other nutrient transceptors controlling this signal transduction pathway appear to be subject to similar trafficking regulation. Transporters with complex regulatory control have also been suggested to function as transceptors in other organisms. Hence, precise regulation of intracellular trafficking in nutrient transporters may be related to the need for tight control of nutrient-induced signaling.
Collapse
Affiliation(s)
- Johan Kriel
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, K. U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
26
|
D'Amico A, Soragna A, Di Cairano E, Panzeri N, Anzai N, Vellea Sacchi F, Perego C. The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes. Traffic 2010; 11:1455-70. [PMID: 20727120 DOI: 10.1111/j.1600-0854.2010.01110.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glutamate transporter excitatory amino acid carrier (EAAC1/EAAT3) mediates the absorption of dicarboxylic amino acids in epithelial cells as well as the uptake of glutamate from the synaptic cleft. Its cell-surface density is regulated by interaction with accessory proteins which remain to be identified. We detected a consensus sequence for interaction with post-synaptic density-95/Discs large/Zonula occludens (PDZ) proteins (-SQF) and a tyrosine-based internalization signal (-YVNG-) in the C-terminus of EAAC1, and investigated their role in the transporter localization. We demonstrated that PDZ interactions are required for the efficient delivery to and the retention in the plasma membrane of EAAC1 and we identified PDZK1/NHERF3 (Na+/H+-exchanger regulatory factor 3) as a novel EAAC1 interacting protein. Expression of PDZK1 in Madin-Darby canine kidney (MDCK) cells tethered EAAC1 to filopodia and increased its surface activity. Removal of the PDZ-target motif promoted the EAAC1 binding to α-adaptin and clathrin and the transporter internalization in endocytic/degradative compartments. This defect was largely prevented by hypertonic treatment or overexpression of the dominant-negative µ2-W421A-subunit of AP-2 clathrin-adaptor. The rate of transporter endocytosis was attenuated following tyrosine mutagenesis in the internalization signal, thus indicating that this motif can regulate the transporter endocytosis. We suggest that EAAC1 density is controlled by balanced interactions with PDZK1 and adaptor protein 2 (AP2): the former promotes the transporter expression at the cell surface, and the latter mediates its constitutive endocytosis.
Collapse
Affiliation(s)
- Anna D'Amico
- Department of Molecular Sciences Applied to Biosystems, Laboratory of Cellular Physiology, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In the past 20 years, an extra layer of information processing, in addition to that provided by neurons, has been proposed for the CNS. Neuronally evoked increases of the intracellular calcium concentration in astrocytes have been suggested to trigger exocytotic release of the 'gliotransmitters' glutamate, ATP and D-serine. These are proposed to modulate neuronal excitability and transmitter release, and to have a role in diseases as diverse as stroke, epilepsy, schizophrenia, Alzheimer's disease and HIV infection. However, there is intense controversy about whether astrocytes can exocytose transmitters in vivo. Resolving this issue would considerably advance our understanding of brain function.
Collapse
|
28
|
Toulme E, Garcia A, Samways D, Egan TM, Carson MJ, Khakh BS. P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin. ACTA ACUST UNITED AC 2010; 135:333-53. [PMID: 20231374 PMCID: PMC2847917 DOI: 10.1085/jgp.200910336] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the properties and regulation of P2X receptors in immortalized C8-B4 cells of cerebellar microglial origin. Resting C8-B4 cells expressed virtually no functional P2X receptors, but largely increased functional expression of P2X4 receptors within 2–6 h of entering the activated state. Using real-time polymerase chain reaction, we found that P2X4 transcripts were increased during the activated state by 2.4-fold, but this increase was not reflected by a parallel increase in total P2X4 proteins. In resting C8-B4 cells, P2X4 subunits were mainly localized within intracellular compartments, including lysosomes. We found that cell surface P2X4 receptor levels increased by ∼3.5-fold during the activated state. This change was accompanied by a decrease in the lysosomal pool of P2X4 proteins. We next exploited our findings with C8-B4 cells to investigate the mechanism by which antidepressants reduce P2X4 responses. We found little evidence to suggest that several antidepressants were antagonists of P2X4 receptors in C8-B4 cells. However, we found that moderate concentrations of the same antidepressants reduced P2X4 responses in activated microglia by affecting lysosomal function, which indirectly reduced cell surface P2X4 levels. In summary, our data suggest that activated C8-B4 cells express P2X4 receptors when the membrane insertion of these proteins by lysosomal secretion exceeds their removal, and that antidepressants indirectly reduce P2X4 responses by interfering with lysosomal trafficking.
Collapse
Affiliation(s)
- Estelle Toulme
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Eric S. Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maurice J. Chacron
- Department of Physiology, Center for Nonlinear Dynamics, McGill University, Montreal, Canada
- Department of Physics, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
30
|
Markham MR, McAnelly ML, Stoddard PK, Zakon HH. Circadian and social cues regulate ion channel trafficking. PLoS Biol 2009; 7:e1000203. [PMID: 19787026 PMCID: PMC2741594 DOI: 10.1371/journal.pbio.1000203] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/13/2009] [Indexed: 12/25/2022] Open
Abstract
Electric fish strengthen their communication signals nightly and during social encounters by rapidly trafficking ion channels into cell membranes, demonstrating a direct relationship between environmental stimuli, channel trafficking, and behavior. Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time. Excitable cells, such as neurons and muscle cells, control behavior by generating action potentials, electrical signals that propagate along the cell membrane. Action potentials are generated when the cell allows charged molecules (ions) such as sodium and potassium to move across the membrane through specialized proteins called ion channels. By changing the number of ion channels in the plasma membrane, excitable cells can rapidly remodel their functional characteristics, potentially causing changes in behavior. To gain an understanding of how environmental events cause the remodeling of excitable cell membranes and the resulting behavioral adaptations, we studied the electric communication/navigation signals of an electric fish, Sternopygus macrurus. High amplitude signals facilitate communication and electrolocation, but are energetically costly and more detectable by those predators that can detect electrical signals. We found that Sternopygus increase signal amplitude at night, when they are active, and increase signal amplitude rapidly during social encounters. Electrocytes, the cells that produce the signal, rapidly boost the signal amplitude when they allow more sodium to cross the cell membrane, thereby generating larger action potentials. To increase sodium currents during the action potential, electrocytes rapidly insert additional sodium channels into the cell membrane in response to hormones released into circulation by the pituitary. By adding new ion channels to the electrocyte membrane only during periods of activity or social encounters and removing these channels during inactive periods, these animals can save energy and reduce predation risks associated with communication.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology, Patterson Laboratory, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | | | |
Collapse
|
31
|
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:727-39. [PMID: 19686370 DOI: 10.1111/j.1744-7909.2009.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
32
|
Padovano V, Massari S, Mazzucchelli S, Pietrini G. PKC induces internalization and retention of the EAAC1 glutamate transporter in recycling endosomes of MDCK cells. Am J Physiol Cell Physiol 2009; 297:C835-44. [PMID: 19605734 DOI: 10.1152/ajpcell.00212.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here we show that stimulation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) treatment induces a time-dependent decrease in glutamate transport activity due to relocalization of the excitatory amino acid carrier 1 (EAAC1) glutamate transporter from the apical surface of polarized epithelial Madin-Darby canine kidney (MDCK) cells to intracellular compartments. The PKC-induced internalization of EAAC1 is negatively regulated by the calcineurin inhibitor cyclosporine A and by the expression of a dominant-negative mutant of the endocytic protein dynamin 1, a well-known target of the phosphatase activity of calcineurin. Using 32P-metabolic labeling experiments, we found unchanged levels of phosphorylated EAAC1, indicating that EAAC1 relocalization does not depend on PKC and calcineurin modification of the transporter, while we found that a target of these modifications was the serine778 residue of dynamin, a calcineurin substrate that in its dephosphorylated form activates the endocytic functions of dynamin. These data suggest that PMA stimulates endogenous dynamin and that this activation is required to mediate internalization of EAAC1 in MDCK cells. By immunofluorescence experiments with endosomal markers we demonstrated that internalized EAAC1 accumulates in endosomes also containing the basolateral betaine-GABA transporter BGT1 and activated PKCalpha. The sustained activation of PKC was required to maintain the transporters in the endosomal compartment, while a posttreatment with a PKC-specific inhibitor induced the recycling of the transporters to their appropriate surfaces. Taken together, our data indicate that PKC activity regulates EAAC1 surface density in MDCK cells by inducing its internalization and retention in PKCalpha-labeled recycling endosomes common to apical and basolateral proteins.
Collapse
Affiliation(s)
- Valeria Padovano
- Department of Pharmacology, School of Medicine, Università degli Studi di Milano and Institute of Neuroscience-CNR, Milan, Italy
| | | | | | | |
Collapse
|
33
|
Vacca F, Giustizieri M, Ciotti MT, Mercuri NB, Volonté C. Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor. J Neurochem 2009; 109:1031-41. [PMID: 19519775 DOI: 10.1111/j.1471-4159.2009.06029.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X(3) subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X(3)-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X(3) receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X(3) receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X(3) receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.
Collapse
Affiliation(s)
- Fabrizio Vacca
- Laboratory of Cellular Neurobiology, Santa Lucia Foundation, Rome, Italy.
| | | | | | | | | |
Collapse
|
34
|
Borroni EM, Buracchi C, Savino B, Pasqualini F, Russo RC, Nebuloni M, Bonecchi R, Mantovani A, Locati M. Role of the chemokine scavenger receptor D6 in balancing inflammation and immune activation. Methods Enzymol 2009; 460:231-43. [PMID: 19446728 DOI: 10.1016/s0076-6879(09)05211-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chemokines play a major role in the induction of inflammatory reactions and development of an appropriate immune response by coordinating leukocyte recruitment. The appropriate control of the chemokine system involves several chemokine decoy receptors, with distinct specificity and tissue distribution, defined as nonactivating chemokine receptors able to bind the ligands and target them to degradation. The best-characterized representative of these receptors is D6, which is located on lymphatic endothelium and controls most inflammatory CC chemokines. Here we will discuss the expression and regulation of D6 during challenge with the pathogen, and its role in dampening inflammation in tissues and draining lymph nodes and in the organization of a protective immune response.
Collapse
Affiliation(s)
- Elena M Borroni
- Laboratory of Leukocyte Biology, Department of Translational Medicine, University of Milan, IRCCS Istituto Clinico Humanitas, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. MOLECULAR PLANT 2008; 1:990-1006. [PMID: 19825598 DOI: 10.1093/mp/ssn059] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We demonstrate that putative SCAR complex subunits BRK1 and SCAR1 are localized to the plasma membrane at sites of cell growth and wall deposition in expanding cells of leaves and roots. BRK1 localization is SCAR-dependent, providing further evidence of an association between these proteins in vivo. Consistent with plasma membrane localization of SCAR complex subunits, cortical F-actin accumulation in root tip cells is reduced in brk1 mutants. Moreover, mutations disrupting the SCAR or ARP2/3 complex reduce the growth rate of roots and their ability to penetrate semi-solid medium, suggesting reduced rigidity. Cell walls of mutant roots exhibit abnormal structure and composition at intercellular junctions where BRK1 and SCAR1 are enriched in the adjacent plasma membrane. Taken together, our results suggest that SCAR and ARP2/3 complex-dependent actin polymerization promotes processes at the plasma membrane that are important for normal growth and wall assembly.
Collapse
Affiliation(s)
- Julia Dyachok
- University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bonecchi R, Borroni EM, Anselmo A, Doni A, Savino B, Mirolo M, Fabbri M, Jala VR, Haribabu B, Mantovani A, Locati M. Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood 2008; 112:493-503. [PMID: 18480427 DOI: 10.1182/blood-2007-08-108316] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decoy receptor D6 plays a nonredundant role in the control of inflammatory processes through scavenging of inflammatory chemokines. However it remains unclear how it is regulated. Here we show that D6 scavenging activity relies on unique trafficking properties. Under resting conditions, D6 constitutively recycled through both a rapid wortmannin (WM)-sensitive and a slower brefeldin A (BFA)-sensitive pathway, maintaining low levels of surface expression that required both Rab4 and Rab11 activities. In contrast to "conventional" chemokine receptors that are down-regulated by cognate ligands, chemokine engagement induced a dose-dependent BFA-sensitive Rab11-dependent D6 re-distribution to the cell membrane and a corresponding increase in chemokine degradation rate. Thus, the energy-expensive constitutive D6 cycling through Rab11 vesicles allows a rapid, ligand concentration-dependent increase of chemokine scavenging activity by receptor redistribution to the plasma membrane. D6 is not regulated at a transcriptional level in a variety of cellular contexts, thus ligand-dependent optimization of its scavenger performance represents a rapid and unique mechanism allowing D6 to control inflammation.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas, Istituti di ricovero e cura a carattere scientifico (IRCCS), Rozzano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Plant endosomes are highly dynamic organelles that are involved in the constitutive recycling of plasma membrane cargo and the trafficking of polarized plasma membrane proteins such as auxin carriers. In addition, recent studies have shown that surface receptors such as the plant defense-related FLS2 receptor and the brassinosteroid receptor BRI1 appear to signal from endosomes upon ligand binding and internalization. In yeast and mammals, endosomes are also known to recycle vacuolar cargo receptors back to the trans Golgi network and sort membrane proteins for degradation in the vacuole/lysosome. Some of these sorting mechanisms are mediated by the retromer and endosomal sorting complex required for transport (ESCRT) complexes. Plants contain orthologs of all major retromer and ESCRT complex subunits, but they have also evolved variations in endosomal functions connected to plant-specific features such as the diversity of vacuolar transport pathways. This review focuses on recent studies in plants dealing with the regulation of endosomal recycling functions, architecture and formation of multivesicular bodies, ligand-mediated endocytosis and receptor signaling from endosomes as well as novel endosomal markers and the function of endosomes in the transport and processing of soluble vacuolar proteins.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
38
|
Jarvis MF, Khakh BS. ATP-gated P2X cation-channels. Neuropharmacology 2008; 56:208-15. [PMID: 18657557 DOI: 10.1016/j.neuropharm.2008.06.067] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 12/20/2022]
Abstract
P2X receptors are ATP-gated cation channels with important roles in diverse pathophysiological processes. Substantial progress has been made in the last few years with the discovery of both subunit selective antagonists and modulators. The purpose of this brief review is to summarize the advances in the pharmacology of P2X receptors, with key properties presented in an easy to access format. Ligand-gated ion channels consist of three families in mammals; the ionotropic glutamate receptors, the Cys-loop receptors (for GABA, ACh, glycine and serotonin) and the P2X receptors for ATP. The first two of these are considered in articles accompanying this Special Issue. Here we consider the pharmacological properties of P2X receptors. We do not present a detailed discussion of P2X receptor physiological roles or structure-function studies. Moreover, the pharmacological basis for discriminating between the main subtypes of P2X receptor and their nomenclature has been published by the Nomenclature Committee of the International Union of Pharmacology (NC-IUPHAR) P2X Receptor Subcommittee, and so these aspects are not revisited here. Instead in this brief article we seek to present a summary of the pharmacology of recombinant homomeric and heteromeric P2X receptors, with particular emphasis on new antagonists. In this article we have tried to present as much information as possible in two tables in the hope this will be useful as a day-to-day resource, and also because an excellent and detailed review has recently been published.
Collapse
Affiliation(s)
- Michael F Jarvis
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | |
Collapse
|
39
|
Murrell-Lagnado RD, Qureshi OS. Assembly and trafficking of P2X purinergic receptors (Review). Mol Membr Biol 2008; 25:321-31. [PMID: 18446618 DOI: 10.1080/09687680802050385] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P2X receptors are cation selective ion channels gated by the binding of extracellular ATP. Seven subtypes have been identified and they have widespread and overlapping distributions throughout the body. They form homo- and heterotrimeric complexes that differ in their functional properties and subcellular localization. They form part of larger signalling complexes, interacting with unrelated ion channels and other membrane and cytosolic proteins. Up- or down-regulation of their expression is associated with several disease states. This review aims to summarize recent work on the assembly and trafficking of this family of receptors.
Collapse
|
40
|
Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372-91. [PMID: 18489705 DOI: 10.1111/j.1600-0854.2008.00766.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Département de Biologie Cellulaire, Laboratoire Trafic Intracellulaire des Protéines dans la Levure, Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 6 et 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
41
|
Woodard GE, Salido GM, Rosado JA. Enhanced exocytotic-like insertion of Orai1 into the plasma membrane upon intracellular Ca2+ store depletion. Am J Physiol Cell Physiol 2008; 294:C1323-31. [PMID: 18400989 DOI: 10.1152/ajpcell.00071.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ca+ release-activated Ca2+ (CRAC) channels are activated when free Ca2+ concentration in the intracellular stores is substantially reduced and mediate sustained Ca2+ entry. Recent studies have identified Orai1 as a CRAC channel subunit. Here we demonstrate that passive Ca2+ store depletion using the inhibitor of the sarcoendoplasmic reticulum Ca2+-ATPase, thapsigargin (TG), enhances the surface expression of Orai1, a process that depends on rises in cytosolic free Ca2+ concentration, as demonstrated in cells loaded with dimethyl BAPTA, an intracellular Ca2+ chelator that prevented TG-evoked cytosolic free Ca2+ concentration elevation. Similar results were observed with a low concentration of carbachol. Cleavage of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor, synaptosomal-assiciated protein-25 (SNAP-25), with botulinum neurotoxin A impaired TG-induced increase in the surface expression of Orai1. In addition, SNAP-25 cleaving by botulinum neurotoxin A reduces the maintenance but not the initial stages of store-operated Ca2+ entry. In aggregate, these findings demonstrate that store depletion enhances Orai1 plasma membrane expression in an exocytotic manner that involves SNAP-25, a process that contributes to store-dependent Ca2+ entry.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
42
|
Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol 2008; 87:211-26. [PMID: 18237819 DOI: 10.1016/j.ejcb.2007.12.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 11/24/2022] Open
Abstract
The reggie/flotillin proteins oligomerize and associate into clusters which form scaffolds for membrane microdomains. Besides their localization at the plasma membrane, the reggies/flotillins reside at various intracellular compartments; however, the trafficking pathways used by reggie-1/flotillin-2 remain unclear. Here, we show that trafficking of reggie-1/flotillin-2 is BFA sensitive and that deletion mutants of reggie-1/flotillin-2 accumulate in the Golgi complex in HeLa, Jurkat and PC12 cells, suggesting Golgi-dependent trafficking of reggie-1/flotillin-2. Using total internal reflection fluorescence microscopy, we observed fast cycling of reggie-1/flotillin-2-positive vesicles at the plasma membrane, which engaged in transient interactions with the plasma membrane only. Reggie-1/flotillin-2 cycling was independent of clathrin, but was inhibited by cholesterol depletion and microtubule disruption. Cycling of reggie-1/flotillin-2 was negatively correlated with cell-cell contact formation but was stimulated by serum, epidermal growth factor and by cholesterol loading mediated by low density lipoproteins. However, reggie-1/flotillin-2 was neither involved in endocytosis of the epidermal growth factor itself nor in endocytosis of GPI-GFPs or the GPI-anchored cellular prion protein (PrP(c)). Reggie-2/flotillin-1 and stomatin-1 also exhibited cycling at the plasma membrane similar to reggie-1/flotillin-2, but these vesicles and microdomains only partially co-localized with reggie-2/flotillin-1. Thus, regulated vesicular cycling might be a general feature of SPFH protein-dependent trafficking.
Collapse
|
43
|
González MI, Susarla BTS, Fournier KM, Sheldon AL, Robinson MB. Constitutive endocytosis and recycling of the neuronal glutamate transporter, excitatory amino acid carrier 1. J Neurochem 2007; 103:1917-31. [PMID: 17868307 DOI: 10.1111/j.1471-4159.2007.04881.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has a diverse array of physiologic and metabolic functions. There is evidence that there is a relatively large intracellular pool of EAAC1 both in vivo and in vitro, that EAAC1 cycles on and off the plasma membrane, and that EAAC1 cell surface expression can be rapidly regulated by intracellular signals. Despite the possible relevance of EAAC1 trafficking to both physiologic and pathologic processes, the cellular machinery involved has not been defined. In the present study, we found that agents that disrupt clathrin-dependent endocytosis or plasma membrane cholesterol increased steady-state levels of biotinylated EAAC1 in C6 glioma cells and primary neuronal cultures. Acute depletion of cholesterol increased the V(max) for EAAC1-mediated activity and had no effect on Na(+)-dependent glycine transport in the same system. These agents also impaired endocytosis as measured using a reversible biotinylating reagent. Co-expression with dominant-negative variants of dynamin or the clathrin adaptor, epidermal growth factor receptor pathway substrate clone 15, increased the steady-state levels of biotinylated myc-EAAC1. EAAC1 immunoreactivity was found in a subcellular fraction enriched in early endosome antigen 1 (EEA1) isolated by differential centrifugation and partially co-localized with EEA1. Co-expression of a dominant-negative variant of Rab11 (Rab11 S25N) reduced steady-state levels of biotinylated myc-EAAC1 and slowed constitutive delivery of myc-EAAC1 to the plasma membrane. Together, these observations suggest that EAAC1 is constitutively internalized via a clathrin- and dynamin-dependent pathway into early endosomes and that EAAC1 is trafficked back to the cell surface via the endocytic recycling compartment in a Rab11-dependent mechanism. As one defines the machinery required for constitutive trafficking of EAAC1, it may be possible to determine how intracellular signals regulate EAAC1 cell surface expression.
Collapse
Affiliation(s)
- Marco I González
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
44
|
González MI, Krizman-Genda E, Robinson MB. Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J Biol Chem 2007; 282:29855-65. [PMID: 17715130 DOI: 10.1074/jbc.m704738200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The sodium-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has been implicated in the regulation of excitatory signaling and prevention of cell death in the nervous system. There is evidence that EAAC1 constitutively cycles on and off the plasma membrane and that under steady state conditions up to 80% of the transporter is intracellular. As is observed with other neurotransmitter transporters, the activity of EAAC1 is regulated by a variety of molecules, and some of these effects are associated with redistribution of EAAC1 on and off the plasma membrane. In the present study we tested the hypothesis that a structural component of lipid rafts, caveolin-1 (Cav-1), may participate in EAAC1 trafficking. Using C6 glioma cells as a model system, co-expression of Cav-1 S80E (a dominant-negative variant) or small interfering RNA-mediated knock-down of caveolin-1 reduced cell surface expression of myc epitope-tagged EAAC1 or endogenous EAAC1, respectively. Cav-1 S80E slowed the constitutive delivery and endocytosis of myc-EAAC1. In primary cultures derived from caveolin-1 knock-out mice, a similar reduction in delivery and internalization of endogenous EAAC1 was observed. We also found that caveolin-1, caveolin-2, or Cav-1 S80E formed immunoprecipitable complexes with EAAC1 in C6 glioma and/or transfected HEK cells. Together, these data provide strong evidence that caveolin-1 contributes to the trafficking of EAAC1 on and off the plasma membrane and that these effects are associated with formation of EAAC1-caveolin complexes.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | |
Collapse
|
45
|
Vieten A, Sauer M, Brewer PB, Friml J. Molecular and cellular aspects of auxin-transport-mediated development. TRENDS IN PLANT SCIENCE 2007; 12:160-8. [PMID: 17369077 DOI: 10.1016/j.tplants.2007.03.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/06/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin is frequently observed to be asymmetrically distributed across adjacent cells during crucial stages of growth and development. These auxin gradients depend on polar transport and regulate a wide variety of processes, including embryogenesis, organogenesis, vascular tissue differentiation, root meristem maintenance and tropic growth. Auxin can mediate such a perplexing array of developmental processes by acting as a general trigger for the change in developmental program in cells where it accumulates and by providing vectorial information to the tissues by its polar intercellular flow. In recent years, a wealth of molecular data on the mechanism of auxin transport and its regulation has been generated, providing significant insights into the action of this versatile coordinative signal.
Collapse
Affiliation(s)
- Anne Vieten
- Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 3, University Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
46
|
Bravo-Cordero JJ, Marrero-Diaz R, Megías D, Genís L, García-Grande A, García MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007; 26:1499-510. [PMID: 17332756 PMCID: PMC1829373 DOI: 10.1038/sj.emboj.7601606] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 01/24/2007] [Indexed: 11/09/2022] Open
Abstract
MT1-matrix metalloproteinase (MT1-MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1-MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1-MMP occurs during MDA-MB-231 adenocarcinoma cell migration into collagen type I three-dimensional matrices. Polarized trafficking of MT1-MMP is triggered by beta1 integrin-mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1-MMP within VSV-G/Rab8-positive vesicles, but not in Rab11/Tf/TfRc-positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1-MMP exocytic traffic, collagen degradation and invasion, whereas Rab8- but not Rab11-knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1-MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1-MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.
Collapse
Affiliation(s)
- Jose J Bravo-Cordero
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | - Raquel Marrero-Diaz
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | - Diego Megías
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | - Laura Genís
- Matrix metalloproteinases Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aranzazu García-Grande
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | - Maria A García
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | - Alicia G Arroyo
- Matrix metalloproteinases Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María C Montoya
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
47
|
Mahmutefendić H, Blagojević G, Kucić N, Lucin P. Constitutive internalization of murine MHC class I molecules. J Cell Physiol 2007; 210:445-55. [PMID: 17044074 DOI: 10.1002/jcp.20877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The total number of cell surface glycoprotein molecules at the plasma membrane results from a balance between their constitutive internalization and their egress to the cell surface from intracellular pools and/or biosynthetic pathway. Constitutive internalization is net result of constitutive endocytosis and endocytic recycling. In this study we have compared spontaneous internalization of murine major histocompatibility complex (MHC) class I molecules (K(d), D(d), full L(d), and empty L(d)) after depletion of their egress to the cell surface (Cycloheximide [CHX], brefeldin A [BFA]) and internalization after external binding of monoclonal antibody (mAb). MHC class I alleles differ regarding their cell surface stability, kinetics, and in the way of internalization and degradation. K(d) and D(d) molecules are more stable at the cell surface than L(d) molecules and, thus, constitutively internalized more slowly. Although the binding of mAbs to cell surface MHC class I molecules results in faster internalization than depletion of their egress, it is still slow and, thereby, can serve as a model for tracking of MHC class I endocytosis. Internalization of fully conformed MHC class I molecules (K(d), D(d), and L(d)) was neither inhibited by chlorpromazine (CP) (inhibitor of clathrin endocytosis), nor with filipin (inhibitor of lipid raft dependent endocytosis), indicating that fully conformed MHC class I molecules are internalized via the bulk pathway. In contrast, internalization of empty L(d) molecules was inhibited by filipin, indicating that non-conformed MHC class I molecules require intact cholesterol-rich membrane microdomains for their constitutive internalization. Thus, conformed and non-conformed MHC class I molecules use different endocytic pathways for constitutive internalization.
Collapse
Affiliation(s)
- Hana Mahmutefendić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | |
Collapse
|
48
|
Abstract
Transient receptor potential (TRP) channels are members of a relatively newly described family of cation channels that display a wide range of properties and mechanisms of activation. The exact physiological function and regulation of most of these channels have not yet been conclusively determined. Studies over the past decade have revealed important features of the channels that contribute to their function. These include homomeric interactions between TRP monomers, selective heteromeric interactions within members of the same subfamily, interactions of TRPs with accessory proteins and assembly into macromolecular signaling complexes, and regulation within functionally distinct cellular microdomains. Further, distinct constitutive and regulated vesicular trafficking mechanisms have a critical role not only in controlling the surface expression of TRP channels but also their activation in response to stimuli. A number of cellular components such as cytoskeletal and scaffolding proteins also contribute to TRP channel trafficking. Thus, mechanisms involved in the assembly and trafficking of TRP channels control their plasma membrane expression and critically impact their function and regulation.
Collapse
Affiliation(s)
- I S Ambudkar
- Secretory Physiology Section, NIH, Building 10, Room 1N-113, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Wegierski T, Hill K, Schaefer M, Walz G. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 2006; 25:5659-69. [PMID: 17110928 PMCID: PMC1698878 DOI: 10.1038/sj.emboj.7601429] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 10/19/2006] [Indexed: 12/28/2022] Open
Abstract
TRPV4 is a widely expressed member of the transient receptor potential (TRP) family that facilitates Ca(2+) entry into nonexcitable cells. TRPV4 is activated by several stimuli, but it is largely unknown how the activity of this channel is terminated. Here, we show that ubiquitination represents an important mechanism to control the presence of TRPV4 at the plasma membrane. Ubiquitination of TRPV4 is dramatically increased by the HECT (homologous to E6-AP carboxyl terminus)-family ubiquitin ligase AIP4 without inducing degradation of this channel. Instead, AIP4 promotes the endocytosis of TRPV4 and decreases its amount at the plasma membrane. Consequently, the basal activity of TRPV4 is reduced despite an overall increase in TRPV4 levels. This mode of regulation is not limited to TRPV4. TRPC4, another member of the TRP channel family, is also strongly ubiquitinated in the presence of AIP4, leading to the increased intracellular localization of TRPC4 and the reduction of its basal activity. However, ubiquitination of several other TRP channels is not affected by AIP4, demonstrating that AIP4-mediated regulation is a unique property of select TRP channels.
Collapse
Affiliation(s)
| | - Kerstin Hill
- Department of Pharmacology, Charite—Campus Benjamin Franklin, Thielallee, Berlin, Germany
| | - Michael Schaefer
- Department of Pharmacology, Charite—Campus Benjamin Franklin, Thielallee, Berlin, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, Freiburg 79106, Germany. Tel.: +49 761 270 3250; Fax: +49 761 270 3245; E-mail:
| |
Collapse
|
50
|
Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 2006; 103:16704-9. [PMID: 17075073 PMCID: PMC1636519 DOI: 10.1073/pnas.0608358103] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depletion of intracellular calcium (Ca(2+)) stores induces store-operated Ca(2+) (SOC) entry across the plasma membrane (PM). STIM1, a putative Ca(2+) sensor in the endoplasmic reticulum (ER), has been recently shown to be necessary for SOC channel activation. Here we show that STIM1 dynamically moves in tubulovesicular shape on the ER and its subcompartment in resting living cells, whereas, upon Ca(2+) store depletion, it is rapidly redistributed into discrete puncta that are located underneath, but not inserted into the PM. Normal constitutive movement of STIM1 is mediated through the coiled-coil and Ser/Thr-rich C-terminal domains in the cytoplasmic region of STIM1, whereas subsequent inducible puncta formation further requires the sterile alpha motif domain protruding into the ER lumen. Each of these three domains (coiled-coil, Ser/Thr-rich, and sterile alpha motif) was essential for activating SOC channels. Hence, our findings based on structure-function experiments suggest that constitutive dynamic movement of STIM1 in the ER and its subcompartment is obligatory for subsequent depletion-dependent redistribution of STIM1 into puncta underneath the PM and activation of SOC channels.
Collapse
Affiliation(s)
| | - Kenji Hayashi
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; and
| | - Yoko Fujii
- *Laboratory for Lymphocyte Differentiation and
| | - Akiko Mizushima
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; and
| | - Hiroshi Watarai
- Laboratory for Immune Regulation, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Wakamori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Takuro Numaga
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; and
| | | | - Tomohiro Kurosaki
- *Laboratory for Lymphocyte Differentiation and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|