1
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
2
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
McGregor L, Acajjaoui S, Desfosses A, Saïdi M, Bacia-Verloop M, Schwarz JJ, Juyoux P, von Velsen J, Bowler MW, McCarthy AA, Kandiah E, Gutsche I, Soler-Lopez M. The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination. Nat Commun 2023; 14:8248. [PMID: 38086790 PMCID: PMC10716376 DOI: 10.1038/s41467-023-43865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid β-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-β (Aβ) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aβ toxicity, a hallmark of AD.
Collapse
Affiliation(s)
- Lindsay McGregor
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Jennifer J Schwarz
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Pauline Juyoux
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France.
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France.
| |
Collapse
|
4
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
5
|
McGregor L, Soler-López M. Structural basis of bioenergetic protein complexes in Alzheimer's disease pathogenesis. Curr Opin Struct Biol 2023; 80:102573. [DOI: 10.1016/j.sbi.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
6
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. miRNAs and Stem Cells as Promising Diagnostic and Therapeutic Targets for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S203-S225. [PMID: 37212107 PMCID: PMC10473110 DOI: 10.3233/jad-221298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-β peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-β protein precursor, stimulating the non-amyloidogenic pathway for amyloid-β protein precursor processing resulting in amyloid-β reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.
Collapse
Affiliation(s)
- Emad M. Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherif A. Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neurosci Rep 2021; 12:25-44. [PMID: 34918006 PMCID: PMC8669318 DOI: 10.1016/j.ibneur.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS-associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules which could have similar functions. The interaction between the modules and bottleneck-hubs provides the functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting partners could provide a further understanding of their role in the pathophysiology of ALS. Amyotrophic Lateral Sclerosis protein-protein interaction network (ALS-PPIN) followed a hierarchical scale-free nature. We identified 17 bottleneck-hubs in the ALS-PPIN. Among bottleneck-hubs we found CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the ALS-PPIN. CDC5L is the effective communicator with all five modules in the ALS-PPIN and followed by SNW1 and TP53. Modules are highly associated with various disease classes like neoplasms, nervous systems and others.
Collapse
Key Words
- ALS
- ALS, Amyotrophic Lateral Sclerosis
- ALS-PPIN
- ALS-PPIN, Amyotrophic Lateral Sclerosis Protein-Protein Interaction Network
- ALSoD, Amyotrophic Lateral Sclerosis online database
- BC, Betweenness centrality
- Bn-H, Bottleneck-hub
- Bottleneck-hubs
- CDC5L
- CDC5L, Cell division cycle5-likeprotein
- FUS, Fused in sarcoma
- MCODE, Molecular Complex Detection
- MND, Motor neuron disease
- SMA, Spinal muscular atrophy
- SMN, Survival of motor neuron
- SNW1
- SNW1, SNW domain-containing protein 1
- SOD1
- SOD1, Superoxide dismutase
- TP53
- TP53, Tumor protein p53
- VCP
- VCP, Valosin containing protein
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| |
Collapse
|
8
|
Ge Q, Wang J, Li J, Li J. Identification, characterization, and functional analysis of Toll and ECSIT in Exopalaemon carinicauda. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103926. [PMID: 33238179 DOI: 10.1016/j.dci.2020.103926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Toll and evolutionary conserved signaling intermediate in Toll pathways (ECSIT) are two essential molecules in Toll/Toll-like receptor (TLR)-mediated signaling pathway. In this study, Toll and ECSIT (named as EcToll and EcECSIT) were identified for the first time from Exopalaemon carinicauda. EcToll mRNA transcripts were high expressed in hemocytes and gill, and EcECSIT was mainly expressed in gill. The expression levels of EcToll and EcECSIT in gills both responded rapidly to Vibrio parahaemolyticus and WSSV stimulations and three types of antimicrobial peptide (AMP) genes were significantly up-regulated by challenge with V. parahaemolyticus. Knockdown of EcToll or EcECSIT increased the sensitivity of E. carinicauda to V. parahaemolyticus challenge and double knockdown of both EcToll and EcECSIT significantly suppressed the bacterial clearance ability of E. carinicauda in vivo. Furthermore, suppressing EcToll restrained the upregulation of EcECSIT and AMPs and suppressing EcECSIT impaired expression of AMPs by V. parahaemolyticus injection, which indicated that EcToll restricted V. parahaemolyticus infection through activating EcECSIT to induce AMPs. This study provides valuable information about the function of Toll-ECSIT pathway in the innate immunity in crustacean.
Collapse
Affiliation(s)
- Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jiajia Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia‐Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler‐Lopez M. Assembly of The Mitochondrial Complex I Assembly Complex Suggests a Regulatory Role for Deflavination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Matthew Jessop
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Romain Bouverot
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Samira Acajjaoui
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Melissa Saïdi
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Anaïs Chretien
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Maria Bacia‐Verloop
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Luca Signor
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Philippe J. Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS CEA, Université Grenoble Alpes 71 avenue des Martyrs 38042 Grenoble France
| | - Adrien Favier
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Eve Borel Meneroud
- Grenoble Institut des Neurosciences (GIN) Centre Inserm U1216 Equipe Neuropathologies et Dysfonctions Synaptiques Université Grenoble Alpes 31 Chemin Fortuné Ferrini 38700 La Tronche France
| | - Michael Hons
- European Molecular Biology Laboratory (EMBL) Grenoble Outstation 71 avenue des Martyrs 38042 Grenoble France
| | - Darren J. Hart
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Eaazhisai Kandiah
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Alain Buisson
- Grenoble Institut des Neurosciences (GIN) Centre Inserm U1216 Equipe Neuropathologies et Dysfonctions Synaptiques Université Grenoble Alpes 31 Chemin Fortuné Ferrini 38700 La Tronche France
| | - Gordon Leonard
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Irina Gutsche
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Montserrat Soler‐Lopez
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| |
Collapse
|
10
|
Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M. Assembly of The Mitochondrial Complex I Assembly Complex Suggests a Regulatory Role for Deflavination. Angew Chem Int Ed Engl 2021; 60:4689-4697. [PMID: 33320993 PMCID: PMC7986633 DOI: 10.1002/anie.202011548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 01/01/2023]
Abstract
Fatty acid β‐oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear. Here we show that ECSIT functions as the bridging node of the MCIA core complex. Furthermore, cryo‐electron microscopy together with biochemical and biophysical experiments reveal that the C‐terminal domain of ECSIT directly binds to the vestigial dehydrogenase domain of the FAO enzyme ACAD9 and induces its deflavination, switching ACAD9 from its role in FAO to an MCIA factor. These findings provide the structural basis for the MCIA complex architecture and suggest a unique molecular mechanism for coordinating the regulation of the FAO and OXPHOS pathways to ensure an efficient energy production.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Matthew Jessop
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Anaïs Chretien
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Luca Signor
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Philippe J Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Adrien Favier
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Eve Borel Meneroud
- Grenoble Institut des Neurosciences (GIN), Centre Inserm U1216, Equipe Neuropathologies et Dysfonctions Synaptiques, Université Grenoble Alpes, 31 Chemin Fortuné Ferrini, 38700, La Tronche, France
| | - Michael Hons
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Alain Buisson
- Grenoble Institut des Neurosciences (GIN), Centre Inserm U1216, Equipe Neuropathologies et Dysfonctions Synaptiques, Université Grenoble Alpes, 31 Chemin Fortuné Ferrini, 38700, La Tronche, France
| | - Gordon Leonard
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| |
Collapse
|
11
|
Lee DG, Kim M, Son SJ, Hong CH, Shin H. Dementia key gene identification with multi-layered SNP-gene-disease network. Bioinformatics 2020; 36:i831-i839. [PMID: 33381851 DOI: 10.1093/bioinformatics/btaa814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recently, various approaches for diagnosing and treating dementia have received significant attention, especially in identifying key genes that are crucial for dementia. If the mutations of such key genes could be tracked, it would be possible to predict the time of onset of dementia and significantly aid in developing drugs to treat dementia. However, gene finding involves tremendous cost, time and effort. To alleviate these problems, research on utilizing computational biology to decrease the search space of candidate genes is actively conducted. In this study, we propose a framework in which diseases, genes and single-nucleotide polymorphisms are represented by a layered network, and key genes are predicted by a machine learning algorithm. The algorithm utilizes a network-based semi-supervised learning model that can be applied to layered data structures. RESULTS The proposed method was applied to a dataset extracted from public databases related to diseases and genes with data collected from 186 patients. A portion of key genes obtained using the proposed method was verified in silico through PubMed literature, and the remaining genes were left as possible candidate genes. AVAILABILITY AND IMPLEMENTATION The code for the framework will be available at http://www.alphaminers.net/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Department of Artificial Intelligence, Department of Industrial Engineering
| | - Myungjun Kim
- Department of Artificial Intelligence, Department of Industrial Engineering
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyunjung Shin
- Department of Artificial Intelligence, Department of Industrial Engineering
| |
Collapse
|
12
|
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020; 25:E5789. [PMID: 33302541 PMCID: PMC7764106 DOI: 10.3390/molecules25245789] [Citation(s) in RCA: 1078] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a disorder that causes degeneration of the cells in the brain and it is the main cause of dementia, which is characterized by a decline in thinking and independence in personal daily activities. AD is considered a multifactorial disease: two main hypotheses were proposed as a cause for AD, cholinergic and amyloid hypotheses. Additionally, several risk factors such as increasing age, genetic factors, head injuries, vascular diseases, infections, and environmental factors play a role in the disease. Currently, there are only two classes of approved drugs to treat AD, including inhibitors to cholinesterase enzyme and antagonists to N-methyl d-aspartate (NMDA), which are effective only in treating the symptoms of AD, but do not cure or prevent the disease. Nowadays, the research is focusing on understanding AD pathology by targeting several mechanisms, such as abnormal tau protein metabolism, β-amyloid, inflammatory response, and cholinergic and free radical damage, aiming to develop successful treatments that are capable of stopping or modifying the course of AD. This review discusses currently available drugs and future theories for the development of new therapies for AD, such as disease-modifying therapeutics (DMT), chaperones, and natural compounds.
Collapse
Affiliation(s)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| |
Collapse
|
13
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
14
|
Timmons JA, Volmar C, Crossland H, Phillips BE, Sood S, Janczura KJ, Törmäkangas T, Kujala UM, Kraus WE, Atherton PJ, Wahlestedt C. Longevity-related molecular pathways are subject to midlife "switch" in humans. Aging Cell 2019; 18:e12970. [PMID: 31168962 PMCID: PMC6612641 DOI: 10.1111/acel.12970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.
Collapse
Affiliation(s)
- James A. Timmons
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- Scion HouseStirling University Innovation ParkStirlingUK
| | - Claude‐Henry Volmar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Hannah Crossland
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- School of Medicine, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | | | - Sanjana Sood
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
| | - Karolina J. Janczura
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Timo Törmäkangas
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | | | | | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| |
Collapse
|
15
|
|
16
|
Wu W, Liang X, Xie G, Chen L, Liu W, Luo G, Zhang P, Yu L, Zheng X, Ji H, Zhang C, Yi W. Synthesis and Evaluation of Novel Ligustrazine Derivatives as Multi-Targeted Inhibitors for the Treatment of Alzheimer's Disease. Molecules 2018; 23:molecules23102540. [PMID: 30301153 PMCID: PMC6222487 DOI: 10.3390/molecules23102540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
A series of novel ligustrazine derivatives 8a–r were designed, synthesized, and evaluated as multi-targeted inhibitors for anti-Alzheimer’s disease (AD) drug discovery. The results showed that most of them exhibited a potent ability to inhibit both ChEs, with a high selectivity towards AChE. In particular, compounds 8q and 8r had the greatest inhibitory abilities for AChE, with IC50 values of 1.39 and 0.25 nM, respectively, and the highest selectivity towards AChE (for 8q, IC50 BuChE/IC50 AChE = 2.91 × 106; for 8r, IC50 BuChE/IC50 AChE = 1.32 × 107). Of note, 8q and 8r also presented potent inhibitory activities against Aβ aggregation, with IC50 values of 17.36 µM and 49.14 µM, respectively. Further cellular experiments demonstrated that the potent compounds 8q and 8r had no obvious cytotoxicity in either HepG2 cells or SH-SY5Y cells, even at a high concentration of 500 μM. Besides, a combined Lineweaver-Burk plot and molecular docking study revealed that these compounds might act as mixed-type inhibitors to exhibit such effects via selectively targeting both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChEs. Taken together, these results suggested that further development of these compounds should be of great interest.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xintong Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Guoquan Xie
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Langdi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Weixiong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Guolin Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Peiquan Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Lihong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xuehua Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Chao Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
17
|
Zachariou M, Minadakis G, Oulas A, Afxenti S, Spyrou GM. Integrating multi-source information on a single network to detect disease-related clusters of molecular mechanisms. J Proteomics 2018; 188:15-29. [PMID: 29545169 DOI: 10.1016/j.jprot.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
The abundance of available information for each disease from multiple sources (e.g. as genetic, regulatory, metabolic, and protein-protein interaction) constitutes both an advantage and a challenge in identifying disease-specific underlying mechanisms. Integration of multi-source data is a rising topic and a great challenge in precision medicine and is crucial in enhancing disease understanding, identifying meaningful clusters of molecular mechanisms and increasing precision and personalisation towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The overall aim of this work was to develop a novel network-based integration methodology with the following characteristics: (i) maximise the number of data sources, (ii) utilise holistic approaches to integrate these sources (iii) be simple, flexible and extendable, (iv) be conclusive. Here, we present the case of Alzheimer's disease as a paradigm for illustrating our novel approach. SIGNIFICANCE In this work we present an integration methodology, which aggregates a large number of the available data sources and types by exploiting the holistic nature of network approaches. It is simple, flexible and extendable generating solid conclusions regarding the molecular mechanisms that underlie the input data. We have illustrated the strength of our proposed methodology using Alzheimer's disease as a paradigm. This method is expected to serve as a stepping-stone for further development of integration methods of multi-source omic-data and to contribute to progress towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The output of this methodology may act as a reference map of implicated pathways in the disease under investigation, where pathways related to additional omics data from any kind of experiment may be projected. This will increase the precision in the understanding of the disease and may contribute to personalised approaches for patients with different disease-related pathway profile, leading to a more precise, personalised and ideally preventive management of the disease.
Collapse
Affiliation(s)
- Margarita Zachariou
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - George Minadakis
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - Anastasis Oulas
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - Sotiroula Afxenti
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - George M Spyrou
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus.
| |
Collapse
|
18
|
Wen H, Ma H, Cai Q, Lin S, Lei X, He B, Wu S, Wang Z, Gao Y, Liu W, Liu W, Tao Q, Long Z, Yan M, Li D, Kelley KW, Yang Y, Huang H, Liu Q. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med 2018; 24:154-164. [PMID: 29291352 DOI: 10.1038/nm.4456] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/10/2017] [Indexed: 02/05/2023]
Abstract
Hemophagocytic syndrome (HPS) is a fatal hyperinflammatory disease with a poorly understood mechanism that occurs most frequently in extranodal natural killer/T cell lymphoma (ENKTL). Through exome sequencing of ENKTL tumor-normal samples, we have identified a hotspot mutation (c.419T>C) in the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT) gene, encoding a V140A variant of ECSIT. ECSIT-V140A activated NF-κB more potently than the wild-type protein owing to its increased affinity for the S100A8 and S100A9 heterodimer, which promotes NADPH oxidase activity. ECSIT-T419C knock-in mice showed higher peritoneal NADPH oxidase activity than mice with wild-type ECSIT in response to LPS. ECSIT-T419C-transfected ENKTL cell lines produced tumor necrosis factor (TNF)-α and interferon (IFN)-γ, which induced macrophage activation and massive cytokine secretion in cell culture and mouse xenografts. In individuals with ENKTL, ECSIT-V140A was associated with activation of NF-κB, higher HPS incidence, and poor prognosis. The immunosuppressive drug thalidomide prevented NF-κB from binding to the promoters of its target genes (including TNF and IFNG), and combination treatment with thalidomide and dexamethasone extended survival of mice engrafted with ECSIT-T419C-transfected ENKTL cells. We added thalidomide to the conventional dexamethasone-containing therapy regimen for two patients with HPS who expressed ECSIT-V140A, and we observed reversal of their HPS and disease-free survival for longer than 3 years. These findings provide mechanistic insights and a potential therapeutic strategy for ENKTL-associated HPS.
Collapse
Affiliation(s)
- Haijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huajuan Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qichun Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sijin Wu
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wensheng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiping Liu
- Department of Pathology, West-China Hospital of Sichuan University, Chengdu, China
| | - Qian Tao
- State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Zijie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dali Li
- Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of Agricultural, Consumer and Environmental Science (ACES) and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huiqiang Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Lymphoma Center, Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Molecular Docking and PLIF Studies of Novel Tacrine-Naphtoquinone Hybrids Based on Multi-Target-Directed Ligand Approach for Alzheimer’s Disease. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.65048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med Chem 2017. [PMID: 28632395 DOI: 10.4155/fmc-2017-0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. MATERIALS & METHODS A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation. RESULTS Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Aβ42 and tau antiaggregating and antioxidant activities. CONCLUSION Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
Collapse
|
21
|
Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granié C, SanCristobal M, Sarry J, Vignoles F, Gondret F, Monget P, Tosser-Klopp G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics 2017; 49:67-80. [DOI: 10.1152/physiolgenomics.00069.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes ( DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins ( IL5, IL24), TNF-associated receptor ( TNFR1), and cytochrome-c oxidase ( COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.
Collapse
Affiliation(s)
- Elena Terenina
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Stephane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Danielle Monniaux
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Vignoles
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Gondret
- INRA, UMR1348 Pegase, Saint‐Gilles, France; and
- AgroCampus-Ouest, UMR1348 Pegase, Saint‐Gilles, France
| | - Philippe Monget
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | |
Collapse
|
22
|
|
23
|
Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases. Front Mol Biosci 2016; 3:43. [PMID: 27597947 PMCID: PMC4992684 DOI: 10.3389/fmolb.2016.00043] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Serena Pantalone
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | | |
Collapse
|
24
|
Boulebd H, Ismaili L, Bartolini M, Bouraiou A, Andrisano V, Martin H, Bonet A, Moraleda I, Iriepa I, Chioua M, Belfaitah A, Marco-Contelles J. Imidazopyranotacrines as Non-Hepatotoxic, Selective Acetylcholinesterase Inhibitors, and Antioxidant Agents for Alzheimer's Disease Therapy. Molecules 2016; 21:400. [PMID: 27023499 PMCID: PMC6273229 DOI: 10.3390/molecules21040400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Herein we describe the synthesis and in vitro biological evaluation of thirteen new, racemic, diversely functionalized imidazo pyranotacrines as non-hepatotoxic, multipotent tacrine analogues. Among these compounds, 1-(5-amino-2-methyl-4-(1-methyl-1H-imidazol-2-yl)-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinolin-3-yl)ethan-1-one (4) is non-hepatotoxic (cell viability assay on HepG2 cells), a selective but moderately potent EeAChE inhibitor (IC50 = 38.7 ± 1.7 μM), and a very potent antioxidant agent on the basis of the ORAC test (2.31 ± 0.29 μmol·Trolox/μmol compound).
Collapse
Affiliation(s)
- Houssem Boulebd
- Equipe de Synthèse de Molécules à Objectif Thérapeutique, Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique (PHYSYNOR), Université des frères Mentouri, Campus de Chaabat-Ersas, Constantine 25000, Algeria.
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique, Neurosciences Intégratives et Cliniques EA 481, UFR SMP, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, 19, rue Ambroise Paré, F-Besançon 25000, France.
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy.
| | - Abdelmalek Bouraiou
- Equipe de Synthèse de Molécules à Objectif Thérapeutique, Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique (PHYSYNOR), Université des frères Mentouri, Campus de Chaabat-Ersas, Constantine 25000, Algeria.
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy.
| | - Helene Martin
- Laboratoire de Toxicologie Cellulaire, EA 4267, Univ. Bourgogne Franche-Comté, 19, rue Ambroise Paré, Besançon Cedex 25030, France.
| | - Alexandre Bonet
- Laboratoire de Toxicologie Cellulaire, EA 4267, Univ. Bourgogne Franche-Comté, 19, rue Ambroise Paré, Besançon Cedex 25030, France.
| | - Ignacio Moraleda
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Barcelona, Km. 33.5, Alcalá de Henares 28817, Spain.
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Barcelona, Km. 33.5, Alcalá de Henares 28817, Spain.
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain.
| | - Ali Belfaitah
- Equipe de Synthèse de Molécules à Objectif Thérapeutique, Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique (PHYSYNOR), Université des frères Mentouri, Campus de Chaabat-Ersas, Constantine 25000, Algeria.
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
25
|
Herrando-Grabulosa M, Mulet R, Pujol A, Mas JM, Navarro X, Aloy P, Coma M, Casas C. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS One 2016; 11:e0147626. [PMID: 26807587 PMCID: PMC4726541 DOI: 10.1371/journal.pone.0147626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.
Collapse
Affiliation(s)
- Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Roger Mulet
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
| | - Albert Pujol
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | | | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Mireia Coma
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
- * E-mail: (CC); (MC)
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
- * E-mail: (CC); (MC)
| |
Collapse
|
26
|
Zanzoni A. A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease. Methods Mol Biol 2016; 1303:435-446. [PMID: 26235083 DOI: 10.1007/978-1-4939-2627-5_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Laboratoire TAGC/INSERM UMR_S1090, Parc Scientifique de Luminy, Case 928, 163, Avenue de Luminy, Marseille cedex 9, 13288, France,
| |
Collapse
|
27
|
Illouz T, Okun E. No ECSIT-stential evidence for a link with Alzheimer's disease yet (retrospective on DOI 10.1002/bies.201100193). Bioessays 2014; 37:5. [DOI: 10.1002/bies.201400179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomer Illouz
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center; Bar Ilan University; Ramat Gan Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
28
|
Wi SM, Moon G, Kim J, Kim ST, Shim JH, Chun E, Lee KY. TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB. J Biol Chem 2014; 289:35205-14. [PMID: 25371197 DOI: 10.1074/jbc.m114.597187] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-β, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSIT(KD) THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1(KD) or TRAF6(KD) THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.
Collapse
Affiliation(s)
- Sae Mi Wi
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Gyuyoung Moon
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Juhong Kim
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Seong-Tae Kim
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Jae-Hyuck Shim
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Eunyoung Chun
- the Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ki-Young Lee
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea,
| |
Collapse
|
29
|
Mi Wi S, Park J, Shim JH, Chun E, Lee KY. Ubiquitination of ECSIT is crucial for the activation of p65/p50 NF-κBs in Toll-like receptor 4 signaling. Mol Biol Cell 2014; 26:151-60. [PMID: 25355951 PMCID: PMC4279226 DOI: 10.1091/mbc.e14-08-1277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The localization of ECSIT into the nucleus is specifically accompanied by p65/p50 NF-κB in a TLR4-dependent manner. p65 NF-κB specifically interacts with the ubiquitinated ECSIT on the Lys-372 residue, thereby regulating NF-κB activity, NF-κB–dependent gene expression, and production of proinflammatory cytokines. Recent evidence shows that evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) interacts with tumor necrosis factor receptor–associated factor 6 (TRAF6), is ubiquitinated, and contributes to bactericidal activity during Toll-like receptor (TLR) signaling. Here we report a new regulatory role for ECSIT in TLR4 signaling. On TLR4 stimulation, endogenous ECSIT formed a molecular complex with p65/p50 NF-κB proteins. Our biochemical studies showed that ECSIT specifically interacted with p65/p50 NF-κB proteins, which colocalized in the nucleus. Of interest, these effects were critically dependent on ubiquitination of the ECSIT lysine (K) 372 residue. K372A mutant ECSIT did not interact with p65/p50 NF-κB proteins and markedly attenuated nuclear colocalization. In addition, ECSIT-knockdown THP-1 cells could not activate NF-κB DNA-binding activities of p65 and p50, production of proinflammatory cytokines, or NF-κB–dependent gene expression in response to TLR4 stimulation. However, these activities were markedly restored by expressing the wild-type ECSIT protein but not the K372A mutant ECSIT protein. These data strongly suggest that the ubiquitination of ECSIT might have a role in the regulation of NF-κB activity in TLR4 signaling.
Collapse
Affiliation(s)
- Sae Mi Wi
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jeongho Park
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jae-Hyuck Shim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Ki-Young Lee
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| |
Collapse
|
30
|
Deng H, Lv L, Li Y, Zhang C, Meng F, Pu Y, Xiao J, Qian L, Zhao W, Liu Q, Zhang D, Wang Y, Zhang H, He Y, Zhu J. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway. Mol Cancer 2014; 13:234. [PMID: 25311867 PMCID: PMC4200202 DOI: 10.1186/1476-4598-13-234] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022] Open
Abstract
Background Chemoresistance is a major obstacle to the curative cancer chemotherapy and presents one of the most formidable challenges in both research and management of cancer. Results From the detailed studies of a multi-chemosensitive (5637) versus a chemoresistant (H-bc) bladder cancer cell lines, we showed that miR-193a-3p [GenBank: NR_029710.1] promotes the multi-chemoresistance of bladder cancer cells. We further demonstrated that lysyl oxidase-like 4 (LOXL4) gene [GenBank: NM_032211.6] is a direct target of miR-193a-3p and executes the former’s impact on bladder cancer chemoresistance. The Oxidative Stress pathway activity is drastically affected by a forced reversal of miR-193a-3p or LOXL4 levels in cell and may act at the downstream of LOXL4 gene to relay the miR-193a-3p’s impact on the multi-chemoresistance in both cultured cells and the tumor xenografts in nude mice. Conclusions In addition to a new mechanistic insight, our results provide a set of the essential genes in this newly identified miR-193a-3p/LOXL4/Oxidative Stress axis as the diagnostic targets for a guided anti-bladder cancer chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-234) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei 230031, Anhui, China.
| |
Collapse
|
31
|
Nepovimova E, Uliassi E, Korabecny J, Peña-Altamira LE, Samez S, Pesaresi A, Garcia GE, Bartolini M, Andrisano V, Bergamini C, Fato R, Lamba D, Roberti M, Kuca K, Monti B, Bolognesi ML. Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. J Med Chem 2014; 57:8576-89. [DOI: 10.1021/jm5010804] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eugenie Nepovimova
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department
of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy
in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Jan Korabecny
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Luis Emiliano Peña-Altamira
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Sarah Samez
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri
1, I-34127 Trieste, Italy
| | - Alessandro Pesaresi
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Gregory E. Garcia
- Research
Division, U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts, Point Road, Aberdeen Proving
Ground, Maryland 21010-5400, United States
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Vincenza Andrisano
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, I-47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Romana Fato
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Doriano Lamba
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Kamil Kuca
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Barbara Monti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
32
|
Ding D, Chen XW, Kang LH, Jiang HS, Kang CJ. Role of evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) in the antibacterial immunity of Marsupenaeus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:246-254. [PMID: 24796866 DOI: 10.1016/j.dci.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
The Toll/Toll-like receptor (TLR) signaling pathway has an important role in the innate immunity of animals. Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein that functions as an adaptor protein for the Toll/TLR and bone morphogenetic protein signaling pathways. ECSIT is also a key component in the macrophage bactericidal activity of mammals. However, the function of ECSIT in crustaceans remains unclear. In this study, we cloned and identified a functional ECSIT homologue, MjECSIT 1, from kuruma shrimp Marsupenaeus japonicus. The complementary DNA of MjEcsit 1 is 1442 base pairs long, with an open reading frame of 1221 base pairs that encodes a 407-residue polypeptide. Transcripts of MjEcsit 1 are detected in hemocytes, gills, hepatopancreas, stomach, heart, intestines, testes, and ovaries. Such transcripts are upregulated by Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Vibrio anguillarum) injections. The knockdown of MjEcsit 1 by double-stranded RNA injection increases the sensitivity of M. japonicus to S. aureus challenge and weakens the bacterial clearance ability of M. japonicus in vivo. In addition, suppressing MjEcsit 1 restrains the upregulation of two anti-lipopolysaccharide factors by S. aureus injection. The results indicate that MjECSIT 1 is important in the antibacterial immunity of M. japonicus.
Collapse
Affiliation(s)
- Ding Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Xiao-Wei Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Li-Hua Kang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Hai-Shan Jiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Cui-Jie Kang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China.
| |
Collapse
|
33
|
Cloonan SM, Choi AMK. Mitochondria: sensors and mediators of innate immune receptor signaling. Curr Opin Microbiol 2013; 16:327-38. [PMID: 23757367 PMCID: PMC6010029 DOI: 10.1016/j.mib.2013.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022]
Abstract
By integrating stress signals with inputs from other cellular organelles, eukaryotic mitochondria are dynamic sensing systems that can confer substantial impact on innate immune signaling in both health and disease. This review highlights recently discovered elements of innate immune receptor signaling (TLR, RLR, NLR, and CLR) associated with mitochondrial function and discusses the role of mitochondria in the initiation and/or manifestation of inflammatory diseases and disorders. We also highlight the role of mitochondria as therapeutic targets for inflammatory disease.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
34
|
Tulpule K, Hohnholt MC, Dringen R. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 2013; 125:260-72. [PMID: 23356791 DOI: 10.1111/jnc.12170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
Formaldehyde is endogenously produced in the human body and brain levels of this compound are elevated in neurodegenerative conditions. Although the toxic potential of an excess of formaldehyde has been studied, little is known on the molecular mechanisms underlying its neurotoxicity as well as on the ability of neurons to metabolize formaldehyde. To address these topics, we have used cerebellar granule neuron cultures as model system. These cultures express mRNAs of various enzymes that are involved in formaldehyde metabolism and were remarkably resistant toward acute formaldehyde toxicity. Cerebellar granule neurons metabolized formaldehyde with a rate of around 200 nmol/(h × mg) which was accompanied by significant increases in the cellular and extracellular concentrations of formate. In addition, formaldehyde application significantly increased glucose consumption, almost doubled the rate of lactate release from viable neurons and strongly accelerated the export of the antioxidant glutathione. The latter process was completely prevented by inhibition of the known glutathione exporter multidrug resistance protein 1. These data indicate that cerebellar granule neurons are capable of metabolizing formaldehyde and that the neuronal glycolysis and glutathione export are severely affected by the presence of formaldehyde.
Collapse
Affiliation(s)
- Ketki Tulpule
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| | - Michaela C Hohnholt
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| |
Collapse
|
35
|
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|