1
|
Wang R, Zhang S, Qi H, Wang L, Wang Y, Sun L. Calcium Homeostasis Is Involved in the Modulation of Gene Expression by MSL2 in Imbalanced Genomes. Cells 2024; 13:1923. [PMID: 39594671 PMCID: PMC11593054 DOI: 10.3390/cells13221923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Aneuploidy is highly detrimental to organisms due to genomic imbalance. However, the influence of parental unbalanced genome conditions on gene expression of their offspring remains unclear, particularly in animals. To further explore the molecular regulatory mechanisms, we firstly analyzed the expression patterns of aneuploid Drosophila offspring from different parents with unbalanced genomes via reciprocal crosses and studied the potential functions of male-specific lethal 2 (MSL2) in this process. The results showed that the ectopic expression of MSL2 in aneuploidy resulted in gene expression patterns closer to those of diploidy, including MSL2 target genes, maternal genes, mitochondrial genes, and transposable elements. In addition, it was also found that ERp60, the key target gene of MSL2, played a crucial role in regulating endoplasmic reticulum (ER) Ca2+ homeostasis through its interaction with the STIM1 protein. When it was overexpressed, ER Ca2+ levels and the survival of aneuploid females were significantly increased. Furthermore, we observed upregulated ER Ca2+ levels identified in aneuploid brains, which suggested that Ca2+ homeostasis may be involved in the regulation mediated by MSL2 in aneuploid genomes.
Collapse
Affiliation(s)
- Ruixue Wang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuai Zhang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Haizhu Qi
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Zhang J, Liu H, Xu W, Wan X, Zhu K. Comparative analysis of chloroplast genome of Lonicera japonica cv. Damaohua. Open Life Sci 2024; 19:20220984. [PMID: 39533983 PMCID: PMC11554557 DOI: 10.1515/biol-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lonicera japonica is a well-known medicinal plant, and the Damaohua cultivar is one of the oldest known honeysuckle cultivars in China. The 155,151 bp chloroplast genome of this cultivar was obtained through Illumina sequencing. The genome includes a pair of inverted repeats (IRa and IRb; 23,789 bp each), a large single-copy region (88,924 bp), and a small single-copy (SSC) region (18,649 bp). In total, 127 unique genes were identified: 80 protein-coding, 39 tRNA, and 8 rRNA genes. Only ycf3 contained two introns. Eighty-nine large repetitive sequences and 54 simple sequence repeats were detected. Fifty potential RNA editing sites were predicted. Adaptive evolution analysis revealed that infA, matK, petB, petD, rbcL, rpl16, rpl2, rps3, ycf1, and ycf2 were positively selected, possibly reflecting the specific environmental adaptations of this cultivar. Sequence alignment and analysis revealed several candidate fragments for Lonicera species identification, such as the intergenic regions rpoB-petN, rbcL-accD, and psaA-ycf3. The IR region boundary and phylogenetic analysis revealed that the L. japonica cv. Damaohua chloroplast genome was most closely related to the L. japonica genome, but there were five distinct differences between the two. There are four sites with high variability between L. japonica and L. japonica cv. Damaohua with nucleotide variability (Pi) greater than 0.002, including rps2-rpoC2, atpB-rbcL, ycf1, and ycf1-trnN GUU. The differences between L. japonica and L. japonica cv. Damaohua were further confirmed by the single nucleotide polymorphism sites between these two species. Therefore, this study revealed that the chloroplast genome can serve as a universal super barcode for plant identification, which can identify differences and help distinguish Lonicera japonica from related species. An understanding of Lonicera japonica cv. Damaohua chloroplast genomics and a comparative analysis of Lonicera species will provide a scientific basis for breeding, species identification, systematic evolution analysis, and chloroplast genetic engineering research on medicinal honeysuckle plants.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Huichun Liu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Wenting Xu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| |
Collapse
|
3
|
Miho H, Atallah M, Trapero C, Koubouris G, Valverde P. Parental Effect on Agronomic and Olive Oil Traits in Olive Progenies from Reciprocal Crosses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2467. [PMID: 39273951 PMCID: PMC11396948 DOI: 10.3390/plants13172467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Olive growing is undergoing a transition from traditional cultivation systems to a more technological model characterized by increased mechanization and a higher density of plants per hectare. This shift implies the use of less vigorous varieties that can adapt to the new system. Most traditional varieties are highly vigorous, and breeding programs can provide solutions to this challenge. This study investigates the parental effect on different agronomic and olive oil characteristics and its role in breeding programs. The objectives were to evaluate and characterize different agronomic and olive oil traits in the progenies from 'Arbosana' × 'Sikitita' cross and its reciprocal cross 'Sikitita' × 'Arbosana'. The results showed a high variability of the characters evaluated in the progenitors of the reciprocal crosses. The highest coefficients of variation were observed in traits related to ripening index, phenolic compounds, polyunsaturated fatty acids, and Δ5-avenasterol, with phenolic content exhibiting the greatest variability. No statistically significant maternal effect was detected for any of the evaluated traits, although a slight positive maternal effect was systematically observed in the mean values of the evaluated traits. These results suggest that the maternal effect on olive is quite subtle, although due to a slight tendency of the maternal effect in the descriptive analyses, future studies are suggested to understand in depth the possible maternal effect on olive breeding.
Collapse
Affiliation(s)
- Hristofor Miho
- Agronomy Department, University of Cordoba (UCO), 14005 Cordoba, Spain
| | - Mihad Atallah
- Agronomy Department, University of Cordoba (UCO), 14005 Cordoba, Spain
- Santa Cruz Ingeniería S.L., 41018 Sevilla, Spain
| | - Carlos Trapero
- Agronomy Department, University of Cordoba (UCO), 14005 Cordoba, Spain
| | - Georgios Koubouris
- Hellenic Agricultural Organization ELGO-DIMITRA, Institute for Olive Tree Subtropical Crops and Viticulture, 73134 Chania, Greece
| | - Pedro Valverde
- Agronomy Department, University of Cordoba (UCO), 14005 Cordoba, Spain
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| |
Collapse
|
4
|
Maryenti T, Koshimizu S, Onda N, Ishii T, Yano K, Okamoto T. Wheat Cybrid Plants, OryzaWheat, Regenerated from Wheat-Rice Hybrid Zygotes via in Vitro Fertilization System Possess Wheat-Rice Hybrid Mitochondria. PLANT & CELL PHYSIOLOGY 2024; 65:1344-1357. [PMID: 39107984 PMCID: PMC11369819 DOI: 10.1093/pcp/pcae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Hybridization generates biodiversity, and wide hybridization plays a pivotal role in enhancing and broadening the useful attributes of crops. The hybridization barrier between wheat and rice, the two most important cereals, was recently overcome by in vitro production of allopolyploid wheat-rice hybrid zygotes, which can develop and grow into mature plants. In the study, genomic sequences and compositions of the possible hybrid plants were investigated through short- and long-read sequencing analyses and fluorescence in situ hybridization (FISH)-based visualization. The possible hybrid possessed whole wheat nuclear and cytoplasmic DNAs and rice mitochondrial (mt) DNA, along with variable retention rates of rice mtDNA ranging from 11% to 47%. The rice mtDNA retained in the wheat cybrid, termed Oryzawheat, can be transmitted across generations. In addition to mitochondrial hybridization, translocation of rice chromosome 1 into wheat chromosome 6A was detected in a F1 hybrid individual. OryzaWheat can provide a new horizon for utilizing inter-subfamily genetic resources among wheat and rice belonging to different subfamilies, Pooideae and Ehrhartoideae, respectively.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Shizuka Koshimizu
- Bioinformation and DDBJ Center, National Institute of Genetics, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Nonoka Onda
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori 680-001, Japan
| | - Kentaro Yano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- WellGreen-i Co. Ltd., Kanagawa 215-0007, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
5
|
Hwang EM, Jeong KS, Yoo SY, Kim J, Choe S, Kim JY. Development of a diagnostic variable number tandem repeat marker and dual TaqMan genotyping assay to distinguish Lophophora species. Int J Legal Med 2024:10.1007/s00414-024-03318-9. [PMID: 39190119 DOI: 10.1007/s00414-024-03318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The Lophophora genus of the Cactaceae family includes Lophophora diffusa and Lophophora williamsii, which has traditionally been used as a natural analgesic; however, its use is now under strict regulation worldwide as it contains mescaline, a unique psychotropic agent. Recently, non-medical and illegal distribution and abuse of L. williamsii have increased worldwide; thus, effective species identification methods are urgently needed. Here, we identified a new variable number tandem repeat (VNTR) marker in the trnL intron region to identify and characterize species in forensic analyses. The VNTR marker has a unique structure of tandem repeats, each with 13 nucleotides; one repeat unit was found in L. williamsii and two in L. diffusa. Phylogenetic and length polymorphism analyses confirmed that this novel VNTR marker could distinguish between Lophophora species. Furthermore, our newly developed TaqMan genotyping assay utilizes two probes; the color and position of dots on the discrimination plot differ according to the tandem repeat count within the VNTR marker. The limits of detection of the assay were 0.000063 ng (LW-VNTR probe-1) and 0.000066 ng (LW-VNTR probe-2), indicating high sensitivity. Moreover, when crime scene samples of 16 presumed L. williamsii species were analyzed, the results coincided with those of gas chromatography-mass spectrometry, confirming the applicability of our marker for Lophophora species identification. Thus, the tandem repeats within the trnL intron region can be exploited as a VNTR marker to identify L. williamsii and L. diffusa. Our dual TaqMan genotyping assay based on a novel marker demonstrates potential for forensic applications.
Collapse
Affiliation(s)
- Eun-Mi Hwang
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Kyu-Sik Jeong
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Seong Yeon Yoo
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Jihyun Kim
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul, 08036, Republic of Korea
| | - Sanggil Choe
- Forensic Toxicology Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Joo-Young Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea.
| |
Collapse
|
6
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Matthews PJ, Hossain MA, Sookchaloem D, Nguyen VD, Wong SY, Joling J, Schranz ME, Bakker FT, Tabuchi E, Ahmed I, Hay A. Chloroplast capture and range extension after hybridization in taro ( Colocasia esculenta). Ecol Evol 2024; 14:e70082. [PMID: 39206463 PMCID: PMC11349486 DOI: 10.1002/ece3.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Complete chloroplast genomes of 17 samples from six species of Colocasia (Araceae) were sequenced, assembled, and aligned together with two previously reported complete genome sequences from taro (Colocasia esculenta). Analysis provides a well-supported phylogenetic tree for taro and closely-related wild Colocasia species in Southeast Asia. Two chloroplast lineages (CI and CII) form a well-defined haplotype group and are found in cultivated taros known as var. esculenta (dasheen, CI), var. antiquorum (eddoe, CII), and in a widespread, commensal wild form known as var. aquatilis (CI). A third lineage (CIII) is also found in wild taros known as var. aquatilis and in the wild species C. lihengiae, C. formosana, and C. spongifolia. We suggest three different scenarios to explain the grouping of CIII wild taros (C. esculenta) with other wild Colocasia species. Chloroplast lineages CI and CIII in C. esculenta and an unknown parent species may be involved in an as yet undated history of hybridization, chloroplast capture, and range extension. Substantial taxonomic revision may be needed for C. esculenta after further studies of morphological and genetic diversity within the crop, in wild populations, and in closely related wild species. The results also point to the Bengal delta as a region of key interest for future research on the origins of tropical wetland taros.
Collapse
Affiliation(s)
- P. J. Matthews
- Department of Cross‐Field ResearchNational Museum of EthnologySuitaJapan
| | - M. A. Hossain
- Department of Genetics and Plant BreedingBangladesh Agricultural UniversityMymensinghBangladesh
| | - D. Sookchaloem
- Department of Forest BiologyKasetsart UniversityBangkokThailand
| | - V. D. Nguyen
- Institute for Ecology and Biological Resources & Graduate University of Science and TechnologyHanoiVietnam
| | - S. Y. Wong
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia SarawakSamarahanSarawakMalaysia
| | - J. Joling
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia SarawakSamarahanSarawakMalaysia
| | - M. E. Schranz
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - F. T. Bakker
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - E. Tabuchi
- Department of Cross‐Field ResearchNational Museum of EthnologySuitaJapan
| | - I. Ahmed
- Alpha Genomics Private LimitedIslamabadPakistan
- Microbiological Analysis Team, Group for BiometrologyKorea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea
| | - A. Hay
- Jardín Botánico de la Paz y FloraBitacoValle del CaucaColombia
| |
Collapse
|
8
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
9
|
Rose JP, Kriebel R, Sytsma KJ, Drew BT. Phylogenomic perspectives on speciation and reproductive isolation in a North American biodiversity hotspot: an example using California sages (Salvia subgenus Audibertia: Lamiaceae). ANNALS OF BOTANY 2024; 134:295-310. [PMID: 38733329 PMCID: PMC11232522 DOI: 10.1093/aob/mcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIMS The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
10
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
11
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
12
|
Nishimura Y. Plastid Nucleoids: Insights into Their Shape and Dynamics. PLANT & CELL PHYSIOLOGY 2024; 65:551-559. [PMID: 37542434 DOI: 10.1093/pcp/pcad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/07/2023]
Abstract
Chloroplasts/plastids are unique organelles found in plant cells and some algae and are responsible for performing essential functions such as photosynthesis. The plastid genome, consisting of circular and linear DNA molecules, is packaged and organized into specialized structures called nucleoids. The composition and dynamics of these nucleoids have been the subject of intense research, as they are critical for proper plastid functions and development. In this mini-review, recent advances in understanding the organization and regulation of plastid nucleoids are overviewed, with a focus on the various proteins and factors that regulate the shape and dynamics of nucleoids, including DNA-binding proteins and membrane anchorage proteins. The dynamic nature of nucleoid organization, which is influenced by a variety of developmental cues and the cell cycle, is also examined.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
13
|
Shahbazi M, Majka J, Kubíková D, Zwierzykowski Z, Glombik M, Wendel JF, Sharbrough J, Hartmann S, Szecówka M, Doležel J, Bartoš J, Kopecký D, Kneřová J. Cytonuclear interplay in auto- and allopolyploids: a multifaceted perspective from the Festuca-Lolium complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1102-1118. [PMID: 38323852 DOI: 10.1111/tpj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.
Collapse
Affiliation(s)
- Mehrdad Shahbazi
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Denisa Kubíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Zbigniew Zwierzykowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Marek Glombik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, Iowa, USA
| | - Joel Sharbrough
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, 87801, USA
| | - Stephan Hartmann
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Am Gereuth 4, 85354, Freising, Germany
| | - Marek Szecówka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jana Kneřová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| |
Collapse
|
14
|
Postel Z, Van Rossum F, Godé C, Schmitt E, Touzet P. Paternal leakage of plastids rescues inter-lineage hybrids in Silene nutans. ANNALS OF BOTANY 2024; 133:427-434. [PMID: 38141228 PMCID: PMC11006537 DOI: 10.1093/aob/mcad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Organelle genomes are usually maternally inherited in angiosperms. However, biparental inheritance has been observed, especially in hybrids resulting from crosses between divergent genetic lineages. When it concerns the plastid genome, this exceptional mode of inheritance might rescue inter-lineage hybrids suffering from plastid-nuclear incompatibilities. Genetically differentiated lineages of Silene nutans exhibit strong postzygotic isolation owing to plastid-nuclear incompatibilities, highlighted by inter-lineage hybrid chlorosis and mortality. Surviving hybrids can exhibit variegated leaves, which might indicate paternal leakage of the plastid genome. We tested whether the surviving hybrids inherited the paternal plastid genome and survived thanks to paternal leakage. METHODS We characterized the leaf phenotype (fully green, variegated or white) of 504 surviving inter-lineage hybrids obtained from a reciprocal cross experiment among populations of four genetic lineages (W1, W2, W3 and E1) of S. nutans from Western Europe and genotyped 560 leaf samples (both green and white leaves for variegated hybrids) using six lineage-specific plastid single nucleotide polymorphisms. KEY RESULTS A high proportion of the surviving hybrids (≤98 %) inherited the paternal plastid genome, indicating paternal leakage. The level of paternal leakage depended on cross type and cross direction. The E1 and W2 lineages as maternal lineages led to the highest hybrid mortality and to the highest paternal leakage from W1 and W3 lineages in the few surviving hybrids. This was consistent with E1 and W2 lineages, which contained the most divergent plastid genomes. When W3 was the mother, more hybrids survived, and no paternal leakage was detected. CONCLUSIONS By providing a plastid genome potentially more compatible with the hybrid nuclear background, paternal leakage has the potential to rescue inter-lineage hybrids from plastid-nuclear incompatibilities. This phenomenon might slow down the speciation process, provided hybrid survival and reproduction can occur in the wild.
Collapse
Affiliation(s)
- Zoé Postel
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium
- Service général de l’Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie Bruxelles, rue A. Lavallée 1, BE-1080 Brussels, Belgium
| | - Cécile Godé
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
| | - Eric Schmitt
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
| | - Pascal Touzet
- Univ Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
15
|
Zhou S, Ma K, Mower JP, Liu Y, Zhou R. Leaf variegation caused by plastome structural variation: an example from Dianella tasmanica. HORTICULTURE RESEARCH 2024; 11:uhae009. [PMID: 38464478 PMCID: PMC10923649 DOI: 10.1093/hr/uhae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Variegated plants often exhibit plastomic heteroplasmy due to single-nucleotide mutations or small insertions/deletions in their albino sectors. Here, however, we identified a plastome structural variation in albino sectors of the variegated plant Dianella tasmanica (Asphodelaceae), a perennial herbaceous plant widely cultivated as an ornamental in tropical Asia. This structural variation, caused by intermolecular recombination mediated by an 11-bp inverted repeat flanking a 92-bp segment in the large single-copy region (LSC), generates a giant plastome (228 878 bp) with the largest inverted repeat of 105 226 bp and the smallest LSC of 92 bp known in land plants. It also generates an ~7-kb deletion on the boundary of the LSC, which eliminates three protein coding genes (psbA, matK, and rps16) and one tRNA gene (trnK). Albino sectors exhibit dramatic changes in expression of many plastid genes, including negligible expression of psbA, matK, and rps16, reduced expression of photosynthesis-related genes, and increased expression of genes related to the translational apparatus. Microscopic and ultrastructure observations showed that albino tissues were present in both green and albino sectors of the variegated individuals, and chloroplasts were poorly developed in the mesophyll cells of the albino tissues of the variegated individuals. These poorly developed chloroplasts likely carry the large and rearranged plastome, which is likely responsible for the loss of photosynthesis and albinism in the leaf margins. Considering that short repeats are relatively common in plant plastomes and that photosynthesis is not necessary for albino sectors, structural variation of this kind may not be rare in the plastomes of variegated plants.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kainan Ma
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Lu G, Li Q. Complete mitochondrial genome of Syzygium samarangense reveals genomic recombination, gene transfer, and RNA editing events. FRONTIERS IN PLANT SCIENCE 2024; 14:1301164. [PMID: 38264024 PMCID: PMC10803518 DOI: 10.3389/fpls.2023.1301164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Wax apple (Syzygium samarangense) is a commercial fruit that belongs to one of the most species-rich tree genera in the world. We report here the first complete S. samarangense mitogenome obtained using a hybrid assembly strategy. The mitogenome was a 530,242 bp circular molecule encoding 61 unique genes accounting for 7.99% of the full-length genome. Additionally, 167 simple sequence repeats, 19 tandem repeats, and 529 pairs of interspersed repeats were identified. Long read mapping and Sanger sequencing revealed the involvement of two forward repeats (35,843 bp and 22,925 bp) in mediating recombination. Thirteen homologous fragments in the chloroplast genome were identified, accounting for 1.53% of the mitogenome, and the longest fragment was 2,432 bp. An evolutionary analysis showed that S. samarangense underwent multiple genomic reorganization events and lost at least four protein-coding genes (PCGs) (rps2, rps7, rps11, and rps19). A total of 591 RNA editing sites were predicted in 37 PCGs, of which nad1-2, nad4L-2, and rps10-2 led to the gain of new start codons, while atp6-1156, ccmFC-1315 and rps10-331 created new stop codons. This study reveals the genetic features of the S. samarangense mitogenome and provides a scientific basis for further studies of traits with an epistatic basis and for germplasm identification.
Collapse
Affiliation(s)
- Guilong Lu
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qing Li
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
17
|
Nicolia A, Scotti N, D'Agostino N, Festa G, Sannino L, Aufiero G, Arimura SI, Cardi T. Mitochondrial DNA editing in potato through mitoTALEN and mitoTALECD: molecular characterization and stability of editing events. PLANT METHODS 2024; 20:4. [PMID: 38183104 PMCID: PMC10768376 DOI: 10.1186/s13007-023-01124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The aim of this study was to evaluate and characterize the mutations induced by two TALE-based approaches, double-strand break (DSB) induction by the FokI nuclease (mitoTALEN) and targeted base editing by the DddA cytidine deaminase (mitoTALECD), to edit, for the first time, the mitochondrial genome of potato, a vegetatively propagated crop. The two methods were used to knock out the same mitochondrial target sequence (orf125). RESULTS Targeted chondriome deletions of different sizes (236-1066 bp) were induced by mitoTALEN due to DSB repair through ectopic homologous recombination of short direct repeats (11-12 bp) present in the target region. Furthermore, in one case, the induced DSB and subsequent repair resulted in the amplification of an already present substoichiometric molecule showing a 4288 bp deletion spanning the target sequence. With the mitoTALECD approach, both nonsense and missense mutations could be induced by base substitution. The deletions and single nucleotide mutations were either homoplasmic or heteroplasmic. The former were stably inherited in vegetative offspring. CONCLUSIONS Both editing approaches allowed us to obtain plants with precisely modified mitochondrial genomes at high frequency. The use of the same plant genotype and mtDNA region allowed us to compare the two methods for efficiency, accuracy, type of modifications induced and stability after vegetative propagation.
Collapse
Affiliation(s)
- Alessandro Nicolia
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Giovanna Festa
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Gaetano Aufiero
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy.
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy.
| |
Collapse
|
18
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
19
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
20
|
Fu QL, Mo ZQ, Xiang XG, Milne RI, Jacquemyn H, Burgess KS, Sun YN, Yan H, Qiu L, Yang BY, Tan SL. Plastome phylogenomics and morphological traits analyses provide new insights into the phylogenetic position, species delimitation and speciation of Triplostegia (Caprifoliaceae). BMC PLANT BIOLOGY 2023; 23:645. [PMID: 38097946 PMCID: PMC10722739 DOI: 10.1186/s12870-023-04663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.
Collapse
Affiliation(s)
- Qing-Li Fu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001, Leuven, Belgium
| | - Kevin S Burgess
- College of Letters and Sciences, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Ya-Nan Sun
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hua Yan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Li Qiu
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Bo-Yun Yang
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shao-Lin Tan
- Jiangxi Province Key Laboratory of Plant Resources, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
21
|
Hamza H, Villa S, Torre S, Marchesini A, Benabderrahim MA, Rejili M, Sebastiani F. Whole mitochondrial and chloroplast genome sequencing of Tunisian date palm cultivars: diversity and evolutionary relationships. BMC Genomics 2023; 24:772. [PMID: 38093186 PMCID: PMC10720229 DOI: 10.1186/s12864-023-09872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Date palm (Phoenix dactylifera L.) is the most widespread crop in arid and semi-arid regions and has great traditional and socioeconomic importance, with its fruit well-known for its high nutritional and health value. However, the genetic variation of date palm cultivars is often neglected. The advent of high-throughput sequencing has made possible the resequencing of whole organelle (mitochondria and chloroplast) genomes to explore the genetic diversity and phylogenetic relationships of cultivated plants with unprecedented detail. RESULTS Whole organelle genomes of 171 Tunisian accessions (135 females and 36 males) were sequenced. Targeted bioinformatics pipelines were used to identify date palm haplotypes and genome variants, aiming to provide variant annotation and investigate patterns of evolutionary relationship. Our results revealed the existence of unique haplotypes, identified by 45 chloroplastic and 156 mitochondrial SNPs. Estimation of the effect of these SNPs on genes functions was predicted in silico. CONCLUSIONS The results of this study have important implications, in the light of ongoing environmental changes, for the conservation and sustainable use of the genetic resources of date palm cultivars in Tunisia, where monoculture threatens biodiversity leading to genetic erosion. These data will be useful for breeding and genetic improvement programs of the date palm through selective cross-breeding.
Collapse
Affiliation(s)
- Hammadi Hamza
- Arid and Oases Cropping Laboratory, Arid Regions Institute, Route du Djorf, Medenine, 4119, Tunisia.
| | - Sara Villa
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Alexis Marchesini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Marconi 2, Porano, Terni, 05010, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy
| | | | - Mokhtar Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Gabes, 6072, Tunisia
- Department of Biology, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy.
| |
Collapse
|
22
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
23
|
Vontzou N, Pei Y, Mueller JC, Reifová R, Ruiz-Ruano FJ, Schlebusch SA, Suh A. Songbird germline-restricted chromosome as a potential arena of genetic conflicts. Curr Opin Genet Dev 2023; 83:102113. [PMID: 37734346 DOI: 10.1016/j.gde.2023.102113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Genetic conflicts can arise between components of the genome with different inheritance strategies. The germline-restricted chromosome (GRC) of songbirds shows unusual mitotic and meiotic transmission compared with the rest of the genome. It is excluded from somatic cells and maintained only in the germline. It is usually present in one copy in the male germline and eliminated during spermatogenesis, while in the female germline, it usually occurs in two copies and behaves as a regular chromosome. Here, we review what is known about the GRC's evolutionary history, genetic content, and expression and discuss how it may be involved in different types of genetic conflicts. Finally, we interrogate the potential role of the GRC in songbird germline development, highlighting several unsolved mysteries.
Collapse
Affiliation(s)
- Niki Vontzou
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Yifan Pei
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany; Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Jakob C Mueller
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francisco J Ruiz-Ruano
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany. https://twitter.com/@fjruizruano
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexander Suh
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany; Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Feng M, Kong H, Lin M, Zhang R, Gong W. The complete plastid genome provides insight into maternal plastid inheritance mode of the living fossil plant Ginkgo biloba. PLANT DIVERSITY 2023; 45:752-756. [PMID: 38197005 PMCID: PMC10772217 DOI: 10.1016/j.pld.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 01/11/2024]
Abstract
In the current research, we focus on uniparental inheritance of chloroplast genome of the living fossil plant, Ginkgo biloba L., one of the gymnosperms, using genomic data.•Our results provide strong genomic evidence to support plastid maternal inheritance mode of G. biloba, which is different from most other gymnosperms.•The combination of manually genetic crosses and genomic data is proved to be an efficient way to investigate the inheritance mode of chloroplasts genome in land plants.•The current research also provides a case study for further research of plastid inheritance in gymnosperms using genomic techniques, which will contribute to a better understanding of cytologically uniparental inheritance mode and evolutionary mechanism of plastids in both gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Mengxue Feng
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Meixiu Lin
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China
| | - Rongjing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China
| | - Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China
| |
Collapse
|
25
|
Yang T, Aishan S, Zhu J, Qin Y, Liu J, Liu H, Tie J, Wang J, Qin R. Chloroplast Genomes and Phylogenetic Analysis of Three Carthamus (Asteraceae) Species. Int J Mol Sci 2023; 24:15634. [PMID: 37958617 PMCID: PMC10648744 DOI: 10.3390/ijms242115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The genus Carthamus Linnaeus, which belongs to the tribe Cardueae in the Asteraceae family, originated in the Mediterranean region and consists of approximately 20 species worldwide. Understanding the phylogeny of the Carthamus is crucial for the cultivation of C. tinctorius. Although chloroplast genomes are widely used for species identification and evolutionary studies, there have been limited investigations on the chloroplast genomes of Carthamus species. In this study, we assembled the chloroplast genomes of C. persicus, C. tinctorius × C. persicus, and C. lanatus and combined them with the five chloroplast genomes of C. tinctorius for comparative genomic analysis. The sizes of the chloroplast genomes of C. lanatus, C. persicus, and C. tinctorius × C. persicus were 152,602 bp, 153,177 bp, and 153,177 bp, respectively. Comparative analysis showed that the chloroplast genome structures of the four Carthamus species were highly conserved. Additionally, the phylogenomic analysis demonstrated that the plastid genome and angiosperms353 dataset significantly improved the phylogenetic support of Carthamus species. This analysis supported Carthamus as a monophyletic taxon and its internal division into the sect. Carthamus and sect. Atractylis. The Carthamus was closely related to Carduncellus, Femeniasia, Phonus, and Centaurea. In conclusion, this study not only expands our understanding of the cp genomes of Carthamus species but also provides support for more comprehensive phylogenetic studies of Carthamus.
Collapse
Affiliation(s)
- Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiale Zhu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jun Tie
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Jiangqing Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| |
Collapse
|
26
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
27
|
Nakazato I, Okuno M, Itoh T, Tsutsumi N, Arimura SI. Characterization and development of a plastid genome base editor, ptpTALECD. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1151-1162. [PMID: 37265080 DOI: 10.1111/tpj.16311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Japan, 67, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
28
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
30
|
Munasinghe M, Ågren JA. When and why are mitochondria paternally inherited? Curr Opin Genet Dev 2023; 80:102053. [PMID: 37245242 DOI: 10.1016/j.gde.2023.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA. https://twitter.com/@ManishaMuna
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden; Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
31
|
Postel Z, Mauri T, Lensink MF, Touzet P. What is the potential impact of genetic divergence of plastid ribosomal genes between Silene nutans lineages in hybrids? An in silico approach using the 3D structure of the plastid ribosome. FRONTIERS IN PLANT SCIENCE 2023; 14:1167478. [PMID: 37223795 PMCID: PMC10201985 DOI: 10.3389/fpls.2023.1167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Introduction Following the integration of cyanobacteria into the eukaryotic cells, many genes were transferred from the plastid to the nucleus. As a result, plastid complexes are encoded both by plastid and nuclear genes. Tight co-adaptation is required between these genes as plastid and nuclear genomes differ in several characteristics, such as mutation rate and inheritance patterns. Among these are complexes from the plastid ribosome, composed of two main subunits: a large and a small one, both composed of nuclear and plastid gene products. This complex has been identified as a potential candidate for sheltering plastid-nuclear incompatibilities in a Caryophyllaceae species, Silene nutans. This species is composed of four genetically differentiated lineages, which exhibit hybrid breakdown when interlineage crosses are conducted. As this complex is composed of numerous interacting plastid-nuclear gene pairs, in the present study, the goal was to reduce the number of gene pairs that could induce such incompatibilities. Method We used the previously published 3D structure of the spinach ribosome to further elucidate which of the potential gene pairs might disrupt plastid-nuclear interactions within this complex. After modeling the impact of the identified mutations on the 3D structure, we further focused on one strongly mutated plastid-nuclear gene pair: rps11-rps21. We used the centrality measure of the mutated residues to further understand if the modified interactions and associated modified centralities might be correlated with hybrid breakdown. Results and discussion This study highlights that lineage-specific mutations in essential plastid and nuclear genes might disrupt plastid-nuclear protein interactions of the plastid ribosome and that reproductive isolation correlates with changes in residue centrality values. Because of this, the plastid ribosome might be involved in hybrid breakdown in this system.
Collapse
Affiliation(s)
- Zoé Postel
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Théo Mauri
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
32
|
Glastad RC, Johnston IG. Mitochondrial network structure controls cell-to-cell mtDNA variability generated by cell divisions. PLoS Comput Biol 2023; 19:e1010953. [PMID: 36952562 PMCID: PMC10072490 DOI: 10.1371/journal.pcbi.1010953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in different cells, from cell-wide reticulated networks to fragmented individual organelles. These physical structures are known to influence the genetic makeup of mtDNA populations between cell divisions, but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use statistical and computational models of mtDNA content inside and outside the reticulated network to quantify how mitochondrial network structure can control the variances of inherited mtDNA copy number and mutant load. We assess the use of moment-based approximations to describe heteroplasmy variance and identify several cases where such an approach has shortcomings. We show that biased inclusion of one mtDNA type in the network can substantially increase heteroplasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Network structure also allows the generation of heteroplasmy variance while controlling copy number inheritance to sub-binomial levels, reconciling several observations from the experimental literature. Overall, different network structures and mtDNA arrangements within them can control the variances of key variables to suit a palette of different inheritance priorities.
Collapse
Affiliation(s)
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Yue Y, Li J, Sun X, Li Z, Jiang B. Polymorphism analysis of the chloroplast and mitochondrial genomes in soybean. BMC PLANT BIOLOGY 2023; 23:15. [PMID: 36611140 PMCID: PMC9825035 DOI: 10.1186/s12870-022-04028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soybean is an important protein- and oil-rich crop throughout the world. Much attention has been paid to its nuclear genome, which is bi-parentally inherited and associated with many important agronomical traits. However, less is known about the genomes of the semi-autonomous and essential organelles, chloroplasts and mitochondria, of soybean. RESULTS Here, through analyzing the polymorphisms of these organelles in 2580 soybean accessions including 107 wild soybeans, we found that the chloroplast genome is more variable than the mitochondrial genome in terms of variant density. Consistent with this, more haplotypes were found in the chloroplast genome (44 haplotypes) than the mitochondrial genome (30 haplotypes). These haplotypes were distributed extremely unevenly with the top two haplotypes (CT1 and CT2 for chloroplasts, MT1 and MT2 for mitochondria) accounting for nearly 70 and 18% of cultivated soybean accessions. Wild soybeans also exhibited more diversity in organelle genomes, harboring 32 chloroplast haplotypes and 19 mitochondrial haplotypes. However, only a small percentage of cultivated soybeans shared cytoplasm with wild soybeans. In particular, the two most frequent types of cytoplasm (CT1/MT1, CT2/MT2) were missing in wild soybeans, indicating that wild soybean cytoplasm has been poorly exploited during breeding. Consistent with the hypothesis that soybean originated in China, we found that China harbors the highest cytoplasmic diversity in the world. The geographical distributions of CT1-CT3 and MT1-MT3 in Northeast China were not significantly different from those in Middle and South China. Two mitochondrial polymorphism sites, p.457333 (T > C) and p.457550 (G > A), were found to be heterozygous in most soybeans, and heterozygosity appeared to be associated with the domestication of cultivated soybeans from wild soybeans, the improvement of landraces to generate elite cultivated soybeans, and the geographic adaptation of soybean. CONCLUSIONS The haplotypes of thousands of soybean cultivars should be helpful in evaluating the impact of cytoplasm on soybean performance and in breeding cultivars with the desired cytoplasm. Mitochondrial heterozygosity might be related to soybean adaptation, and this hypothesis needs to be further investigated.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jiawen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuegang Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
34
|
Mohanan P, Yang TJ, Song YH. Genes and Regulatory Mechanisms for Ginsenoside Biosynthesis. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:87-97. [PMID: 36714200 PMCID: PMC9867542 DOI: 10.1007/s12374-023-09384-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Panax ginseng is a medicinal plant belonging to the Araliaceae family. Ginseng is known as the king of oriental medicine, which has been practiced since ancient times in East Asian countries and globally in the modern era. Ginseng is used as an adaptogen, and research shows that it has several pharmacological benefits for various ailments such as cancer, inflammation, diabetes, and neurological symptoms. The pharmacological benefits of ginseng are attributed to the triterpenoid saponin ginsenosides found throughout the Panax ginseng species, which are abundant in its root and are found exclusively in P. ginseng and Panax quinquefolius. Recently, with the completion of the entire ginseng genome sequencing and the construction of the ginseng genome database, it has become possible to access information about many genes newly predicted to be involved in ginsenoside biosynthesis. This review briefly summarizes the current progress in ginseng genome analysis and genes involved in ginsenoside biosynthesis, proposing directions for functional studies of the predicted genes related to ginsenoside production and its regulation.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Tae-Jin Yang
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Young Hun Song
- Plant Genomics and Breeding Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
35
|
Chilling stress and loss of an exonuclease lead to biparental inheritance of plastids. NATURE PLANTS 2023; 9:9-10. [PMID: 36650221 DOI: 10.1038/s41477-022-01330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
36
|
Rimet F, Canino A, Chonova T, Guéguen J, Bouchez A. Environmental filtering and mass effect are two important processes driving lake benthic diatoms: Results of a DNA metabarcoding study in a large lake. Mol Ecol 2023; 32:124-137. [PMID: 36239474 DOI: 10.1111/mec.16737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Environmental filtering is often found to dominate assembly rules in diatoms. These microalgae are diverse, especially at subspecies level, and tend to exhibit a niche phylogenetic conservatism. Therefore, other rules, such as competition or mass effects, should be detectable when environmental gradients and dispersal barriers are limited. We used metabarcoding to analyse benthic littoral diatom communities in 153 sites in a large lake (Geneva) exhibiting weak geographical barriers and weak environmental gradients outside river estuaries. We assessed assembly rules using variance partitioning, phylogenetic and source tracking analyses. No phylogenetic over-dispersion of communities, indicative of exclusive competition, was detected. Instead, we found these communities to be phylogenetically over-clustered, indicating environmental filtering, which was even stronger near river estuaries where environmental gradients are stronger. Finally, using a Bayesian method (SourceTracker), we found that rivers flowing into the lake bring communities that settle, especially in sites close to estuaries. Rivers with the highest discharges are primarily responsible for immigration, explaining 27% of lake composition. Therefore, despite favourable conditions to observe other rules, our results support that diatom communities are prominently assembled by environmental filtering and immigration processes, in particular from rivers. However, this does not exclude that other assembly rules may be at play at a finer spatial, temporal and/or phylogenetic scale.
Collapse
Affiliation(s)
- Frédéric Rimet
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| | - Alexis Canino
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France.,OFB, Auffargis, France
| | - Teofana Chonova
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| | - Julie Guéguen
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France.,OFB, Auffargis, France
| | - Agnès Bouchez
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| |
Collapse
|
37
|
Chung KP, Gonzalez-Duran E, Ruf S, Endries P, Bock R. Control of plastid inheritance by environmental and genetic factors. NATURE PLANTS 2023; 9:68-80. [PMID: 36646831 PMCID: PMC9873568 DOI: 10.1038/s41477-022-01323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Pierre Endries
- Universität Hamburg, Institut für Pflanzenwissenschaften und Mikrobiologie, Hamburg, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
38
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
39
|
Park HS, Jeon JH, Cho W, Lee Y, Park JY, Kim J, Park YS, Koo HJ, Kang JH, Lee TJ, Kim SH, Kim JB, Kwon HY, Kim SH, Paek NC, Jang G, Suh JY, Yang TJ. High-throughput discovery of plastid genes causing albino phenotypes in ornamental chimeric plants. HORTICULTURE RESEARCH 2022; 10:uhac246. [PMID: 36643742 PMCID: PMC9832966 DOI: 10.1093/hr/uhac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues. Meanwhile, another 14 chimeric plants were heteroplasmic, showing a mutation between green and albino tissues. We identified 14 different point mutations in eight functional plastid genes related to plastid-encoded RNA polymerase (rpo) or photosystems which caused albinism in the chimeric plants. Among them, 12 were deleterious mutations in the target genes, in which early termination appeared due to small deletion-mediated frameshift or single nucleotide substitution. Another was single nucleotide substitution in an intron of the ycf3 and the other was a missense mutation in coding region of the rpoC2 gene. We inspected chlorophyll structure, protein functional model of the rpoC2, and expression levels of the related genes in green and albino tissues of Reynoutria japonica. A single amino acid change, histidine-to-proline substitution, in the rpoC2 protein may destabilize the peripheral helix of plastid-encoded RNA polymerase, impairing the biosynthesis of the photosynthesis system in the albino tissue of R. japonica chimera plant.
Collapse
Affiliation(s)
| | | | | | | | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiseok Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jo Koo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Hwa Kang
- Hantaek Botanical Garden, Yongin, Gyeonggi-do, 17183, Republic of Korea
| | - Taek Joo Lee
- Hantaek Botanical Garden, Yongin, Gyeonggi-do, 17183, Republic of Korea
| | - Sang Hoon Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Hae-Yun Kwon
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | |
Collapse
|
40
|
Park YS, Kang JS, Park JY, Shim H, Yang HO, Kang JH, Yang TJ. Analysis of the complete plastomes and nuclear ribosomal DNAs from Euonymus hamiltonianus and its relatives sheds light on their diversity and evolution. PLoS One 2022; 17:e0275590. [PMID: 36197898 PMCID: PMC9534445 DOI: 10.1371/journal.pone.0275590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Euonymus hamiltonianus and its relatives (Celastraceae family) are used for ornamental and medicinal purposes. However, species identification in Euonymus is difficult due to their morphological diversity. Using plastid genome (plastome) data, we attempt to reveal phylogenetic relationship among Euonymus species and develop useful markers for molecular identification. We assembled the plastome and nuclear ribosomal DNA (nrDNA) sequences from five Euonymus lines collected from South Korea: three Euonymus hamiltonianus accessions, E. europaeus, and E. japonicus. We conducted an in-depth comparative analysis using ten plastomes, including other publicly available plastome data for this genus. The genome structures, gene contents, and gene orders were similar in all Euonymus plastomes in this study. Analysis of nucleotide diversity revealed six divergence hotspots in their plastomes. We identified 339 single nucleotide polymorphisms and 293 insertion or deletions among the four E. hamiltonianus plastomes, pointing to abundant diversity even within the same species. Among 77 commonly shared genes, 9 and 33 were identified as conserved genes in the genus Euonymus and E. hamiltonianus, respectively. Phylogenetic analysis based on plastome and nrDNA sequences revealed the overall consensus and relationships between plastomes and nrDNAs. Finally, we developed six barcoding markers and successfully applied them to 31 E. hamiltonianus lines collected from South Korea. Our findings provide the molecular basis for the classification and molecular taxonomic criteria for the genus Euonymus (at least in Korea), which should aid in more objective classification within this genus. Moreover, the newly developed markers will be useful for understanding the species delimitation of E. hamiltonianus and closely related species.
Collapse
Affiliation(s)
- Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | | | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
41
|
Richards SM, Li L, Breen J, Hovhannisyan N, Estrada O, Gasparyan B, Gilliham M, Smith A, Cooper A, Zhang H. Recovery of chloroplast genomes from medieval millet grains excavated from the Areni-1 cave in southern Armenia. Sci Rep 2022; 12:15164. [PMID: 36071150 PMCID: PMC9452526 DOI: 10.1038/s41598-022-17931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Panicum miliaceum L. was domesticated in northern China at least 7000 years ago and was subsequentially adopted in many areas throughout Eurasia. One such locale is Areni-1 an archaeological cave site in Southern Armenia, where vast quantities archaeobotanical material were well preserved via desiccation. The rich botanical material found at Areni-1 includes P. miliaceum grains that were identified morphologically and14C dated to the medieval period (873 ± 36 CE and 1118 ± 35 CE). To investigate the demographic and evolutionary history of the Areni-1 millet, we used ancient DNA extraction, hybridization capture enrichment, and high throughput sequencing to assemble three chloroplast genomes from the medieval grains and then compared these sequences to 50 modern P. miliaceum chloroplast genomes. Overall, the chloroplast genomes contained a low amount of diversity with domesticated accessions separated by a maximum of 5 SNPs and little inference on demography could be made. However, in phylogenies the chloroplast genomes separated into two clades, similar to what has been reported for nuclear DNA from P. miliaceum. The chloroplast genomes of two wild (undomesticated) accessions of P. miliaceum contained a relatively large number of variants, 11 SNPs, not found in the domesticated accessions. These results demonstrate that P. miliaceum grains from archaeological sites can preserve DNA for at least 1000 years and serve as a genetic resource to study the domestication of this cereal crop.
Collapse
Affiliation(s)
- Stephen M Richards
- School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Leiting Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James Breen
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Telethon Kids Institute, Australian National University, Canberra, Australia
| | | | - Oscar Estrada
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Grupo de Agrobiotecnología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Matthew Gilliham
- Waite Research Institute and School of Agriculture, Food, and Wine, ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Alexia Smith
- Department of Anthropology, University of Connecticut, Connecticut, USA
| | - Alan Cooper
- BlueSky Genetics, Ashton, SA, Australia.,South Australian Museum, Adelaide, SA, Australia
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
42
|
Yang S, Deng Y, Li S. Advances in plastid transformation for metabolic engineering in higher plants. ABIOTECH 2022; 3:224-232. [PMID: 36313931 PMCID: PMC9590572 DOI: 10.1007/s42994-022-00083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 03/12/2023]
Abstract
The plastid (chloroplast) genome of higher plants is an appealing target for metabolic engineering via genetic transformation. Although the bacterial-type plastid genome is small compared with the nuclear genome, it can accommodate large quantities of foreign genes that precisely integrate through homologous recombination. Engineering complex metabolic pathways in plants often requires simultaneous and concerted expression of multiple transgenes, the possibility of stacking several transgenes in synthetic operons makes the transplastomic approach amazing. The potential for extraordinarily high-level transgene expression, absence of epigenetic gene silencing and transgene containment due to the exclusion of plastids from pollen transmission in most angiosperm species further add to the attractiveness of plastid transformation technology. This minireview describes recent advances in expanding the toolboxes for plastid genome engineering, and highlights selected high-value metabolites produced using transplastomic plants, including artemisinin, astaxanthin and paclitaxel.
Collapse
Affiliation(s)
- Sheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yi Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
43
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
44
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
45
|
Chang M, Kim JY, Lee H, Lee EJ, Lee WH, Moon S, Choe S, Choung CM. Development of diagnostic SNP markers and a novel SNP genotyping assay for distinguishing opium poppies. Forensic Sci Int 2022; 339:111416. [DOI: 10.1016/j.forsciint.2022.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
|
46
|
Fischer A, Dotzek J, Walther D, Greiner S. Graph-based models of the Oenothera mitochondrial genome capture the enormous complexity of higher plant mitochondrial DNA organization. NAR Genom Bioinform 2022; 4:lqac027. [PMID: 35372837 PMCID: PMC8969700 DOI: 10.1093/nargab/lqac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondrial genomes display an enormous structural complexity, as recombining repeat-pairs lead to the generation of various sub-genomic molecules, rendering these genomes extremely challenging to assemble. We present a novel bioinformatic data-processing pipeline called SAGBAC (Semi-Automated Graph-Based Assembly Curator) that identifies recombinogenic repeat-pairs and reconstructs plant mitochondrial genomes. SAGBAC processes assembly outputs and applies our novel ISEIS (Iterative Sequence Ends Identity Search) algorithm to obtain a graph-based visualization. We applied this approach to three mitochondrial genomes of evening primrose (Oenothera), a plant genus used for cytoplasmic genetics studies. All identified repeat pairs were found to be flanked by two alternative and unique sequence-contigs defining so-called 'double forks', resulting in four possible contig-repeat-contig combinations for each repeat pair. Based on the inferred structural models, the stoichiometry of the different contig-repeat-contig combinations was analyzed using Illumina mate-pair and PacBio RSII data. This uncovered a remarkable structural diversity of the three closely related mitochondrial genomes, as well as substantial phylogenetic variation of the underlying repeats. Our model allows predicting all recombination events and, thus, all possible sub-genomes. In future work, the proposed methodology may prove useful for the investigation of the sub-genome organization and dynamics in different tissues and at various developmental stages.
Collapse
Affiliation(s)
- Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jana Dotzek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
47
|
Cho KS, Lee HO, Lee SC, Park HJ, Seo JH, Cho JH, Park YE, Choi JG, Yang TJ. Mitochondrial genome recombination in somatic hybrids of Solanum commersonii and S. tuberosum. Sci Rep 2022; 12:8659. [PMID: 35606486 PMCID: PMC9127095 DOI: 10.1038/s41598-022-12661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424, Republic of Korea.
| | - Hyun-Oh Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Sang-Choon Lee
- Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Hyun-Jin Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jin-Hee Seo
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ji-Hong Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Young-Eun Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
48
|
Chen Q, Shen P, Bock R, Li S, Zhang J. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. PLANT CELL REPORTS 2022; 41:1103-1114. [PMID: 35226116 DOI: 10.1007/s00299-022-02840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Global survey of plastid gene expression during fruit ripening in kiwifruit provides cis-elements for the future engineering of the plastid genome of kiwifruit. A limitation in the application of plastid biotechnology for molecular farming is the low-level expression of transgenes in non-green plastids compared with photosynthetically active chloroplasts. Unlike other fruits, not all chloroplasts are transformed into chromoplasts during ripening of red-fleshed kiwifruit (Actinidia chinensis cv. Hongyang) fruits, which may make kiwifruit an ideal horticultural plant for recombinant protein production by plastid engineering. To identify cis-elements potentially triggering high-level transgene expression in edible tissues of the 'Hongyang' kiwifruit, here we report a comprehensive analysis of kiwifruit plastid gene transcription in green leaves and fruits at three different developmental stages. While transcripts of a few photosynthesis-related genes and most genetic system genes were substantially upregulated in green fruits compared with leaves, nearly all plastid genes were significantly downregulated at the RNA level during fruit development. Expression of a few genes remained unchanged, including psbA, the gene encoding the D1 polypeptide of photosystem II. However, PsbA protein accumulation decreased continuously during chloroplast-to-chromoplast differentiation. Analysis of post-transcriptional steps in mRNA maturation, including intron splicing and RNA editing, revealed that splicing and editing may contribute to regulation of plastid gene expression. Altogether, 40 RNA editing sites were verified, and 5 of them were newly discovered. Taken together, this study has generated a valuable resource for the analysis of plastid gene expression and provides cis-elements for future efforts to engineer the plastid genome of kiwifruit.
Collapse
Affiliation(s)
- Qiqi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
49
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
50
|
Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nat Commun 2022; 13:1133. [PMID: 35241655 PMCID: PMC8894339 DOI: 10.1038/s41467-022-28807-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Most sexual organisms inherit organelles from one parent, commonly by excluding organelles from the smaller gametes. However, post-mating elimination of organelles derived from one gamete ensures uniparental inheritance, where the underlying mechanisms to distinguish organelles by their origin remain obscure. Mating in Chlamydomonas reinhardtii combines isomorphic plus and minus gametes, but chloroplast DNA from minus gametes is selectively degraded in zygotes. Here, we identify OTU2p (otubain protein 2), encoded in the plus mating-type locus MT+, as the protector of plus chloroplast. Otu2p is an otubain-like deubiquitinase, which prevents proteasome-mediated degradation of the preprotein translocase of the outer chloroplast membrane (TOC) during gametogenesis. Using OTU2p-knockouts and proteasome inhibitor treatment, we successfully redirect selective DNA degradation in chloroplasts with reduced TOC levels regardless of mating type, demonstrating that plus-specific Otu2p establishes uniparental chloroplast DNA inheritance. Our work documents that a sex-linked organelle quality control mechanism drives the uniparental organelle inheritance without dimorphic gametes. Most sexual organisms ensure that organelles are inherited from a single parent. Here, the authors describe OTU2p, a Chlamydomonas deubiquitinase that drives uniparental organelle inheritance without gametic dimorphism by preventing proteasome-mediated degradation exclusively in gametes of the plus mating type.
Collapse
|