1
|
Samara E, Schilling T, Ribeiro IMA, Haag J, Leonte MB, Borst A. Columnar cholinergic neurotransmission onto T5 cells of Drosophila. Curr Biol 2025:S0960-9822(25)00138-1. [PMID: 40020661 DOI: 10.1016/j.cub.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Several nicotinic and muscarinic acetylcholine receptors (AChRs) are expressed in the brain of Drosophila melanogaster. However, the contribution of different AChRs to visual information processing remains poorly understood. T5 cells are the primary motion-sensing neurons in the OFF pathway and receive input from four different columnar cholinergic neurons, Tm1, Tm2, Tm4, and Tm9. We reasoned that different AChRs in T5 postsynaptic sites might contribute to direction selectivity, a central feature of motion detection. We show that the nicotinic nAChRα1, nAChRα3, nAChRα4, nAChRα5, nAChRα7, and nAChβ1 subunits localize on T5 dendrites. By targeting synaptic markers specifically to each cholinergic input neuron, we find a prevalence of the nAChRα5 in Tm1, Tm2, and Tm4-to-T5 synapses and of nAChRα7 in Tm9-to-T5 synapses. Knockdown of nAChRα4, nAChRα5, nAChRα7, or mAChR-B individually in T5 cells alters the optomotor response and reduces T5 directional selectivity. Our findings indicate the contribution of a consortium of postsynaptic receptors to input visual processing and, thus, to the computation of motion direction in T5 cells.
Collapse
Affiliation(s)
- Eleni Samara
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany.
| | - Tabea Schilling
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Inês M A Ribeiro
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Institute of Medical Psychology, Medical Faculty, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Maria-Bianca Leonte
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
2
|
Zhang K, Chen L, Chen J, Huang H, Liu K, Zhang Y, Yang J, Wu S. Mutation V65I in the β1 Subunit of the Nicotinic Acetylcholine Receptor Confers Neonicotinoid and Sulfoxaflor Resistance in Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5671-5681. [PMID: 38442746 DOI: 10.1021/acs.jafc.3c09456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR β1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and β1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/β1 and α1/α8/β1) by coinjecting three cofactors for the first time in thrips, and α1/α8/β1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.
Collapse
Affiliation(s)
- Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Longwei Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jianwen Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Huixiu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Yi Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| |
Collapse
|
3
|
Yin C, O’Reilly AO, Liu SN, Du TH, Gong PP, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Liang JJ, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Tan QM, Lu HT, Xie W, Chu D, Zhou XG, Nauen R, Gui LY, Bass C, Yang X, Zhang YJ. Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides. PLoS Genet 2024; 20:e1011163. [PMID: 38377137 PMCID: PMC10906874 DOI: 10.1371/journal.pgen.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTβ1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dβ1 was replaced with BTβ1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dβ1 were replaced with the wildtype BTβ1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Collapse
Affiliation(s)
- Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Andrias O. O’Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qi-Mei Tan
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, P. R. China
| | - Han-Tang Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, School of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
4
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
5
|
Scott JG, Norris RH, Mertz RW, Dressel AE, Loeb G. Selection and characterization of spinetoram resistance in field collected Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105508. [PMID: 37532361 DOI: 10.1016/j.pestbp.2023.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Insecticides are commonly employed in vineyards to control vinegar flies and limit sour rot disease. Widespread resistance to available insecticides is having a negative impact on managing Drosophila melanogaster populations, rendering control of sour rot more difficult. An insecticide registered for use in vineyards to which resistance is not yet widespread (at least in New York and Missouri) is spinetoram. Spinetoram targets the nicotinic acetylcholine receptor α6, and mutations in α6 have been associated with resistance in some insects. Our goals were to select for a spinetoram resistant strain of D. melanogaster (starting with field collected populations), characterize the resistance, and identify the mutation responsible. After five selections a strain (SpinR) with >190-fold resistance was obtained. Resistance could not be overcome by insecticide synergists, suggesting an altered target site was involved. We cloned and sequenced the α6 allele from the spinetoram resistant strain and identified a mutation causing a glycine to alanine change at amino acid 301 (equivalent position to the G275E mutation found in some spinosad/spinetoram resistant insects). This mutation was found at low levels in field populations, but increased with each selection until it became homozygous in SpinR. We discuss how the identification of the spinetoram resistance mutation can be used for resistance management.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, 14853 USA.
| | - Rachel H Norris
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, 14853 USA
| | - Robert W Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, 14853 USA
| | - Anastacia E Dressel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, 14853 USA
| | - Greg Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
6
|
Yin C, Gui LY, Du TH, Zhang CJ, Wei XG, Yang J, Huang MJ, Fu BL, Gong PP, Liang JJ, Liu SN, Xue H, Hu JY, Ji Y, He C, Du H, Wang C, Zhang R, Wu QJ, Yang X, Zhang YJ. Knockdown of the Nicotinic Acetylcholine Receptor β1 Subunit Decreases the Susceptibility to Five Neonicotinoid Insecticides in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7221-7229. [PMID: 37157975 DOI: 10.1021/acs.jafc.3c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The sweet potato whitefly, Bemisia tabaci, (Gennadius) (Hemiptera:Aleyrodidae) is a global pest of crops. Neonicotinoids are efficient insecticides used for control of this pest. Insecticidal targets of neonicotinoids are insect nicotinic acetylcholine receptors (nAChRs). Here, we characterized and cloned the full length of the nAChR β1 subunit (BTβ1) in B. tabaci and confirmed the consistency of BTβ1 in B. tabaci MEAM1 and MED. Expression levels of BTβ1 in different developmental stages and body parts of adults were investigated and compared in B. tabaci MED. dsRNA was prepared to knock down BTβ1 in adult B. tabaci and significantly decreases the susceptibility to five neonicotinoid insecticides, including imidacloprid, clothianidin, thiacloprid, nitenpyram, and dinotefuran. This study indicated BTβ1 as a notable site influencing the susceptibility of B. tabaci to neonicotinoids.
Collapse
Affiliation(s)
- Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Lian-You Gui
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, People's Republic of China
| | - Tian-Hua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Cheng-Jia Zhang
- Hunan Provincial Key laboratory of Pesticide Biology and Precise Use Techology, Hunan Agricultural Biotechnology Research Institute, Changsha, Hunan 410125, People's Republic of China
| | - Xue-Gao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ming-Jiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bu-Li Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Pei-Pan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Jin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Shao-Nan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jin-Yu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Qing-Jun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - You-Jun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
7
|
Sun H, Lin X, Zhang H, Zhang Y, Liu Z. A consensus phosphoserine within the large cytoplasmic loop of insect nAChR α8 subunits modulated interaction between 14-3-3ε and nAChRs to regulate neonicotinoid efficacy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105384. [PMID: 37105614 DOI: 10.1016/j.pestbp.2023.105384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Neonicotinoids are insect-selective nicotinic acetylcholine receptors (nAChRs) agonists that are used extensively for plant protection and animal health care. Some chaperone proteins, such as 14-3-3 proteins, importantly modulate nAChRs to display the physiological and pharmacological properties. Here we found that there is a 14-3-3 binding motif RSPSTH within the cytoplasmic loop of most insect α8 subunits. In the motif, a potential phosphorylated serine residue, serine 337, was a putative protein kinase A (PKA) substrate. Using Locusta migratoria α8 subunit as a representative, here we demonstrated that Loc14-3-3ε interacted with the unique phosphoserine (α8S337) of Locα8 subunit to regulate agonist efficacy on hybrid Locα8/β2 nAChRs in Xenopus oocytes. Co-expression of Loc14-3-3ε caused a dramatic rise of maximal inward currents (Imax) of Locα8/β2 for acetylcholine and imidacloprid to 2.9-fold and 3.1-fold of that of Locα8/β2 alone. The S337A substitution of Locα8 reduced the Imax rise when Locα8S337A/β2 and Loc14-3-3ε were co-expressed. The increased agonist currents by exogenous Loc14-3-3ε on Locα8/β2 could be almost abolished by either PKA inhibitor KT5720 or 14-3-3 inhibitor difopein. The findings revealed that serine 337 within motif RSPSTH was important for the interaction between insect nAChRs and 14-3-3ε, and inhibiting the interaction would change the pharmacological property of insect nAChRs to agonist such as neonicotinoids which may provide insights to develop new targets for insecticide design.
Collapse
Affiliation(s)
- Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 30071, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
8
|
Jensen MA, Blatz DJ, LaLone CA. Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:71-87. [PMID: 36263952 PMCID: PMC10100214 DOI: 10.1002/etc.5501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
For the majority of developed adverse outcome pathways (AOPs), the taxonomic domain of applicability (tDOA) is typically narrowly defined with a single or a handful of species. Defining the tDOA of an AOP is critical for use in regulatory decision-making, particularly when considering protection of untested species. Structural and functional conservation are two elements that can be considered when defining the tDOA. Publicly accessible bioinformatics approaches, such as the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool, take advantage of existing and growing databases of protein sequence and structural information to provide lines of evidence toward structural conservation of key events (KEs) and KE relationships (KERs) of an AOP. It is anticipated that SeqAPASS results could readily be combined with data derived from empirical toxicity studies to provide evidence of both structural and functional conservation, to define the tDOA for KEs, KERs, and AOPs. Such data could be incorporated in the AOP-Wiki as lines of evidence toward biological plausibility for the tDOA. We present a case study describing the process of using bioinformatics to define the tDOA of an AOP using an AOP linking the activation of the nicotinic acetylcholine receptor to colony death/failure in Apis mellifera. Although the AOP was developed to gain a particular biological understanding relative to A. mellifera health, applicability to other Apis bees, as well as non-Apis bees, has yet to be defined. The present study demonstrates how bioinformatics can be utilized to rapidly take advantage of existing protein sequence and structural knowledge to enhance and inform the tDOA of KEs, KERs, and AOPs, focusing on providing evidence of structural conservation across species. Environ Toxicol Chem 2023;42:71-87. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Marissa A. Jensen
- Department of Biology, Swenson College of Science and EngineeringUniversity of Minnesota DuluthDuluthMinnesotaUSA
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Carlie A. LaLone
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
9
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
10
|
Yuan GR, Chen ML, Peng ML, Lei W, Meng LW, Dou W, Wang JJ. Knockdown of a Nicotinic Acetylcholine Receptor Subunit Gene Bdorβ1 Decreases Susceptibility to Oxa-Bridged trans- instead of cis-Nitromethylene Neonicotinoid Insecticides in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13554-13562. [PMID: 36224100 DOI: 10.1021/acs.jafc.2c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorβ1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorβ1 shows high identities to other insect nAChRs β1 subunits. Double injection of dsBdorβ1 reduced the expression of Bdorβ1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorβ1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Ling Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Lan Peng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Lei
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
11
|
Zhang YC, Pei XG, Yu ZT, Gao Y, Wang LX, Zhang N, Song XY, Wu SF, Gao CF. Effects of nicotinic acetylcholine receptor subunit deletion mutants on insecticide susceptibility and fitness in Drosophila melanogaster. PEST MANAGEMENT SCIENCE 2022; 78:3519-3527. [PMID: 35576366 DOI: 10.1002/ps.6992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in insects and also the target site for many insecticides. Unfortunately, the effectiveness of these insecticides is diminishing as a consequence of the evolution of insecticide resistance. Further exploration of insecticide targets is important to sustainable pest management. RESULTS In order to validate the role of nAChR subunits in insecticide susceptibility and test whether the subunit's absence imposes the fitness cost on insects, we determined the susceptibility of eight nAChR subunit deletion mutants of Drosophila melanogaster to nine insecticides. These findings highlighted the specific resistance of the Dα6 deletion mutant to spinosyns. Although triflumezopyrim, dinotefuran and imidacloprid are competitive modulators of nAChRs, differences in susceptibility of the insect with different deletion mutants suggested that the target sites of these three insecticides do not overlap completely. Mutants showed decreased susceptibility to insecticides, accompanied by a reduction in fitness. The number of eggs produced by Dα1attP , Dα2attP , Dβ2attP and Dβ3attP females was significantly lesser than that of the vas-Cas9 strain as the control. In addition, adults of Dα2attP , Dα3attP and Dα7attP strains showed lower climbing performance. Meanwhile, males of Dα3attP , Dα5attP , Dβ2attP and Dβ3attP , and females of Dβ2attP showed significantly shorter longevity than those of the vas-Cas9 strain. CONCLUSION This study provides new insights into the interactions of different insecticides with different nAChRs subunit in D. melanogaster as a research model, it could help better understand such interaction in agricultural pests whose genetic manipulations for toxicological research are often challenging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Xin-Guo Pei
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Zhi-Tao Yu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Yang Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Li-Xiang Wang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Xin-Yu Song
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| |
Collapse
|
12
|
Chen W, Gu X, Yang YT, Batterham P, Perry T. Dual nicotinic acetylcholine receptor subunit gene knockouts reveal limits to functional redundancy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105118. [PMID: 35715057 DOI: 10.1016/j.pestbp.2022.105118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) subunit gene family consists of ten members in Drosophila melanogaster. The mature nAChR is a pentamer assembled from these subunits. Despite recent advances in the in vitro expression of some receptor subunit combinations (nAChR subtypes), the in vivo combinations and stoichiometry of these subtypes remains poorly defined. In addition, there are many potential nAChR signalling roles for different subtypes in insect behaviour, development and physiology. Prior work has shown that nAChR subunit mutants can display altered sleep and mating behaviour, disrupted hormone signalling and reduced locomotion, climbing ability and longevity. Teasing out the specific receptor subunits that are involved in these different functions is potentially made more difficult given that the structural similarity between members of gene families often means that there is a degree of functional redundancy. In order to circumvent this, we created a dual knockout strain for the Dα1 and Dβ2 nAChR subunit genes and examined four traits including insecticide resistance. These subunits had been previously implicated in the response to a neonicotinoid insecticide, imidacloprid. The use of the dual knockout revealed that Dα1 and Dβ2 subunits are involved in signalling that leads to the inflation of wings following adult emergence from the pupal case. The Dβ1 subunit had previously been implicated as a contributor to this function. The lack of a phenotype or low penetrance of the phenotype in the Dα1 and Dβ2 single mutants compared to the dual knockout suggests that these subunits are, to some extent, functionally redundant. We also observed stronger reductions in climbing ability and longevity in the dual knockout. Our findings demonstrate that a dual knockout approach to examining members of the nAChR subunit gene family may increase the power of genetic approaches linking individual subunits and combinations thereof to particular biological functions. This approach will be valuable as the nAChRs are so widely expressed in the insect brain that they are likely to have many functions that hereto remain undetected.
Collapse
Affiliation(s)
- Wei Chen
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Xinyue Gu
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Ying Ting Yang
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Philip Batterham
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
13
|
Mitchell EL, Viscarra F, Bermudez I, Hawkins J, Goodchild JA, Jones AK. The Apis mellifera alpha 5 nicotinic acetylcholine receptor subunit expresses as a homomeric receptor that is sensitive to serotonin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105055. [PMID: 35249651 DOI: 10.1016/j.pestbp.2022.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are molecular targets of highly effective insecticides such as neonicotinoids. Functional expression of these receptors provides useful insights into their functional and pharmacological properties. Here, we report that the α5 nAChR subunit of the honey bee, Apis mellifera, functionally expresses in Xenopus laevis oocytes, which is the first time a homomeric insect nAChR has been robustly expressed in a heterologous system without the need for chaperone proteins. Using two-electrode voltage-clamp electrophysiology we show that the α5 receptor has low sensitivity to acetylcholine with an EC50 of 2.37 mM. However, serotonin acts as an agonist with a considerably lower EC50 at 119 μM that is also more efficacious than acetylcholine in activating the receptor. Molecular modelling indicates that residues in the complementary binding site may be involved in the selectivity towards serotonin. This is the first report of a ligand-gated ion channel activated by serotonin from an insect and phylogenetic analysis shows that the α5 subunit of A. mellifera and other non-Dipteran insects, including pest species, belong to a distinct subgroup of subunits, which may represent targets for the development of novel classes of insecticides.
Collapse
Affiliation(s)
- Eleanor L Mitchell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Franco Viscarra
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Joseph Hawkins
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| | - Jim A Goodchild
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
14
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Cartereau A, Taillebois E, Le Questel JY, Thany SH. Mode of Action of Neonicotinoid Insecticides Imidacloprid and Thiacloprid to the Cockroach Pameα7 Nicotinic Acetylcholine Receptor. Int J Mol Sci 2021; 22:9880. [PMID: 34576043 PMCID: PMC8471617 DOI: 10.3390/ijms22189880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | - Emiliane Taillebois
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | | | - Steeve H. Thany
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| |
Collapse
|
16
|
Christesen D, Yang YT, Chen W, Batterham P, Perry T. Loss of the Dβ1 nicotinic acetylcholine receptor subunit disrupts bursicon-driven wing expansion and diminishes adult viability in Drosophila melanogaster. Genetics 2021; 219:iyab112. [PMID: 34849910 PMCID: PMC8633089 DOI: 10.1093/genetics/iyab112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/03/2021] [Indexed: 01/15/2023] Open
Abstract
Cholinergic signaling dominates the insect central nervous system, contributing to numerous fundamental pathways and behavioral circuits. However, we are only just beginning to uncover the diverse roles different cholinergic receptors may play. Historically, insect nicotinic acetylcholine receptors have received attention due to several subunits being key insecticide targets. More recently, there has been a focus on teasing apart the roles of these receptors, and their constituent subunits, in native signaling pathways. In this study, we use CRISPR-Cas9 genome editing to generate germline and somatic deletions of the Dβ1 nicotinic acetylcholine receptor subunit and investigate the consequences of loss of function in Drosophila melanogaster. Severe impacts on movement, male courtship, longevity, and wing expansion were found. Loss of Dβ1 was also associated with a reduction in transcript levels for the wing expansion hormone bursicon. Neuron-specific somatic deletion of Dβ1 in bursicon-producing neurons (CCAP-GAL4) was sufficient to disrupt wing expansion. Furthermore, CCAP-GAL4-specific expression of Dβ1 in a germline deletion background was sufficient to rescue the wing phenotype, pinpointing CCAP neurons as the neuronal subset requiring Dβ1 for the wing expansion pathway. Dβ1 is a known target of multiple commercially important insecticides, and the fitness costs exposed here explain why field-isolated target-site resistance has only been reported for amino acid replacements and not loss of function. This work reveals the importance of Dβ1-containing nicotinic acetylcholine receptors in CCAP neurons for robust bursicon-driven wing expansion.
Collapse
Affiliation(s)
- Danielle Christesen
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ying Ting Yang
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Wei Chen
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Philip Batterham
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Trent Perry
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep 2021; 44:6119684. [PMID: 33493349 DOI: 10.1093/sleep/zsab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Sleep and arousal are both important for animals. The neurotransmitter acetylcholine (ACh) has long been found to promote both sleep and arousal in mammals, an apparent paradox which has also been found to exist in flies, causing much confusion in understanding sleep and arousal. Here, we have systematically studied all 13 ACh receptors (AChRs) in Drosophila to understand mechanisms underlying ACh function in sleep and arousal. We found that exogenous stimuli-induced arousal was decreased in nAChRα3 mutants, whereas sleep was decreased in nAChRα2 and nAChRβ2 mutants. nAChRα3 functions in dopaminergic neurons to promote exogenous stimuli-induced arousal, whereas nAChRα2 and β2 function in octopaminergic neurons to promote sleep. Our studies have revealed that a single transmitter can promote endogenous sleep and exogenous stimuli-induced arousal through distinct receptors in different types of downstream neurons.
Collapse
Affiliation(s)
- Xihuimin Dai
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA
| | - Enxing Zhou
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Wei Yang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Renbo Mao
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenxia Zhang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Yi Rao
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
18
|
Jones AK, Goven D, Froger JA, Bantz A, Raymond V. The cys-loop ligand-gated ion channel gene superfamilies of the cockroaches Blattella germanica and Periplaneta americana. PEST MANAGEMENT SCIENCE 2021; 77:3787-3799. [PMID: 33347700 DOI: 10.1002/ps.6245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cockroaches are serious urban pests that can transfer disease-causing microorganisms as well as trigger allergic reactions and asthma. They are commonly managed by pesticides that act on cys-loop ligand-gated ion channels (cysLGIC). To provide further information that will enhance our understanding of how insecticides act on their molecular targets in cockroaches, we used genome and reverse transcriptase polymerase chain reaction (RT-PCR) data to characterize the cysLGIC gene superfamilies from Blattella germanica and Periplaneta americana. RESULTS The B. germanica and P. americana cysLGIC superfamilies consist of 30 and 32 subunit-encoding genes, respectively, which are the largest insect cysLGIC superfamilies characterized to date. As with other insects, the cockroaches possess ion channels predicted to be gated by acetylcholine, γ-aminobutyric acid, glutamate and histamine, as well as orthologues of the drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. The large cysLGIC superfamilies of cockroaches are a result of an expanded number of divergent nicotinic acetylcholine receptor subunits, with B. germanica and P. americana, respectively, possessing eight and ten subunit genes. Diversity of the cockroach cysLGICs is also broadened by alternative splicing and RNA A-to-I editing. Unusually, both cockroach species possess a second glutamate-gated chloride channel as well as another CG8916 subunit. CONCLUSION These findings on B. germanica and P. americana enhance our understanding of the evolution of the insect cysLGIC superfamily and provide a useful basis for the study of their function, the detection and management of insecticide resistance, and for the development of improved pesticides with greater specificity towards these major pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Delphine Goven
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Josy-Anne Froger
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Alexandre Bantz
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Valerie Raymond
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| |
Collapse
|
19
|
Temporal regulation of nicotinic acetylcholine receptor subunits supports central cholinergic synapse development in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2004685118. [PMID: 34074746 DOI: 10.1073/pnas.2004685118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The construction and maturation of the postsynaptic apparatus are crucial for synapse and dendrite development. The fundamental mechanisms underlying these processes are most often studied in glutamatergic central synapses in vertebrates. Whether the same principles apply to excitatory cholinergic synapses, such as those found in the insect central nervous system, is not known. To address this question, we investigated a group of projection neurons in the Drosophila larval visual system, the ventral lateral neurons (LNvs), and identified nAchRα1 (Dα1) and nAchRα6 (Dα6) as the main functional nicotinic acetylcholine receptor (nAchR) subunits in the larval LNvs. Using morphological analyses and calcium imaging studies, we demonstrated critical roles of these two subunits in supporting dendrite morphogenesis and synaptic transmission. Furthermore, our RNA sequencing analyses and endogenous tagging approach identified distinct transcriptional controls over the two subunits in the LNvs, which led to the up-regulation of Dα1 and down-regulation of Dα6 during larval development as well as to an activity-dependent suppression of Dα1 Additional functional analyses of synapse formation and dendrite dynamics further revealed a close association between the temporal regulation of individual nAchR subunits and their sequential requirements during the cholinergic synapse maturation. Together, our findings support transcriptional control of nAchR subunits as a core element of developmental and activity-dependent regulation of central cholinergic synapses.
Collapse
|
20
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
21
|
Lan J, Wang Z, Chen Z, Zhang L, Zhao J, Guan Q, Liao C, Liu N, Han Q. Identification of the Aedes aegypti nAChR gene family and molecular target of spinosad. PEST MANAGEMENT SCIENCE 2021; 77:1633-1641. [PMID: 33202106 DOI: 10.1002/ps.6183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spinosad is an insecticide with unique mode of action (MOA) of disrupting nicotinic acetylcholine receptor and is efficacious against many insect species. Mutations in the nicotinic acetylcholine receptor (nAChR) α6 subunit have been identified that are associated with levels of spinosad resistance, but the molecular characterization of the nAChR gene family and a causative association between nAChR α6 and resistance to spinosad in Aedes aegypti, a primary vector of many arboviruses, have not yet been reported. RESULTS In this study, we identified 10 candidate nAChR subunits in Ae. Aegypti, nAChRα1-α9 and nAChRβ1, showing similarly orthologous relationships with Anopheles gambiae. With the application of the CRISPR/Cas9 genome editing system, we introduced a 32-bp deletion at the 5' end of the Aaeα6 (Ae. aegypti nAChR α6) gene in a homozygous mutant strain (Aaeα6-KO). The mutation produced two successive pre-mature stop codons, resulting in loss of function in the target receptor. The Aaeα6-KO mutant strain exhibited a 320-fold level of resistance to spinosad compared with wildtype. A recessive mode of inheritance for spinosad resistance was found in the Aaeα6-KO strain. CONCLUSION CRISPR/Cas9 introduced truncated Aaeα6 receptor in Ae. aegypti resulted in an increased level of resistance to spinosad, suggesting that the conserved nAChR α6 subunit is the target for spinosad insecticide. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zihe Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
22
|
Perry T, Chen W, Ghazali R, Yang YT, Christesen D, Martelli F, Lumb C, Bao Luong HN, Mitchell J, Holien JK, Parker MW, Sparks TC, Batterham P. Role of nicotinic acetylcholine receptor subunits in the mode of action of neonicotinoid, sulfoximine and spinosyn insecticides in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103547. [PMID: 33548485 DOI: 10.1016/j.ibmb.2021.103547] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Insecticides remain valuable tools for the control of insect pests that significantly impact human health and agriculture. A deeper understanding of insecticide targets is important in maintaining this control over pests. Our study systematically investigates the nicotinic acetylcholine receptor (nAChR) gene family, in order to identify the receptor subunits critical to the insect response to insecticides from three distinct chemical classes (neonicotinoids, spinosyns and sulfoximines). Applying the CRISPR/Cas9 gene editing technology in D. melanogaster, we were able to generate and maintain homozygous mutants for eight nAChR subunit genes. A ninth gene (Dβ1) was investigated using somatic CRISPR in neural cells to overcome the low viability of the homozygous germline knockout mutant. These findings highlight the specificity of the spinosyn class insecticide, spinosad, to receptors containing the Dα6 subunit. By way of contrast, neonicotinoids are likely to target multiple receptor subtypes, beyond those receptor subunit combinations previously identified. Significant differences in the impacts of specific nAChR subunit deletions on the resistance level of flies to neonicotinoids imidacloprid and nitenpyram indicate that the receptor subtypes they target do not completely overlap. While an R81T mutation in β1 subunits has revealed residues co-ordinating binding of sulfoximines and neonicotinoids differ, the resistance profiles of a deletion of Dβ1 examined here provide new insights into the mode of action of sulfoxaflor (sulfoximine) and identify Dβ1 as a key component of nAChRs targeted by both these insecticide classes. A comparison of resistance phenotypes found in this study to resistance reported in insect pests reveals a strong conservation of subunit targets across many different insect species and that mutations have been identified in most of the receptor subunits that our findings would predict to have the potential to confer resistance.
Collapse
Affiliation(s)
- Trent Perry
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia.
| | - Wei Chen
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Razi Ghazali
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Ying Ting Yang
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Danielle Christesen
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Felipe Martelli
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Chris Lumb
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Hang Ngoc Bao Luong
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Judith Mitchell
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Jessica K Holien
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Michael W Parker
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Thomas C Sparks
- Corteva Agriscience, 9330 Zionville Road, Indianapolis, IN, 46268, USA
| | - Philip Batterham
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| |
Collapse
|
23
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Grau-Bové X, Weetman D. RNA editing: an overlooked source of fine-scale adaptation in insect vectors? CURRENT OPINION IN INSECT SCIENCE 2020; 40:48-55. [PMID: 32599511 DOI: 10.1016/j.cois.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
RNA editing is a source of molecular diversity that regulates the functional repertoire of animal transcriptomes. Multiple studies in Drosophila have revealed that conserved editing events can be a source of evolutionary adaptations, and there is a solid body of evidence linking editing and the fine-tuning of neural genes, which are often targeted by insecticides used in vector control. Yet, despite these suggestive connections, genome-wide analyses of editing in insect vectors are conspicuously lacking. Future advances will require complementing the growing wealth of vector genomes with targeted transcriptome analyses. Here, we review recent investigations of the genetic footprints of adaptive RNA editing in insects and provide an overview of new methodologies applicable to studies of RNA editing in insect vectors.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
25
|
Shan T, Chen C, Ding Q, Chen X, Zhang H, Chen A, Shi X, Gao X. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104563. [PMID: 32359542 DOI: 10.1016/j.pestbp.2020.104563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Bradysia odoriphaga is a destructive insect pest, damaging more than 30 crop species. Nicotinic acetylcholine receptors (nAChRs) mediating fast excitatory transmission in the central nervous system in insects are the molecular targets of some economically important insecticides including imidacloprid, which has been widely used to control B. odoriphaga in China since 2013. However, the clear characterization about nAChRs in B. odoriphaga is still unknown. Hence, our objective is to identify and characterize the nAChR gene family in B. odoriphaga based on the transcriptome database and sequence, phylogenetic and expression profiles analysis. In this study, we cloned seven nAChR subunit genes from B. odoriphaga, including Boα1, Boα2, Boα3, Boα7, Boα8, Boβ1 and Boβ3. Sequence analysis revealed that the seven nAChR subunits of B. odoriphaga shared the typical structural features with Drosophila melanogaster nAChR α1 subunit, including an extracellular N-terminal domain containing six functional loops (loop A-F), a signature Cys-loop with two disulfide bond-forming cysteines separated by 13 amino acid residues, and four typical transmembrane helices (TM1-TM4) in the C-terminal region. Phylogenetic analysis suggested that seven nAChR subunit genes in B. odoriphaga are evolutionarily conserved among four model insects, including D. melanogaster, Bombyx mori, Apis mellifera and Tribolium castaneum. Meanwhile, nAChR α4, α5, α6 and β2 subunit genes may potentially exist in B. odoriphaga, which need further study. Furthermore, quantitative real-time PCR analysis revealed the specific expression pattern of nAChR subunits in three body parts including head, thorax and abdomen, and developmental expression pattern of nAChR subunits throughout the B. odoriphaga life cycle. These results provided necessary information for further investigating the diverse functions of nAChRs in B. odoriphaga.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qian Ding
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Huihui Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China..
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Ureña E, Guillem-Amat A, Couso-Ferrer F, Beroiz B, Perera N, López-Errasquín E, Castañera P, Ortego F, Hernández-Crespo P. Multiple mutations in the nicotinic acetylcholine receptor Ccα6 gene associated with resistance to spinosad in medfly. Sci Rep 2019; 9:2961. [PMID: 30814521 PMCID: PMC6393475 DOI: 10.1038/s41598-019-38681-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/28/2018] [Indexed: 11/23/2022] Open
Abstract
Spinosad is an insecticide widely used for the control of insect pest species, including Mediterranean fruit fly, Ceratitis capitata. Its target site is the α6 subunit of the nicotinic acetylcholine receptors, and different mutations in this subunit confer resistance to spinosad in diverse insect species. The insect α6 gene contains 12 exons, with mutually exclusive versions of exons 3 (3a, 3b) and 8 (8a, 8b, 8c). We report here the selection of a medfly strain highly resistant to spinosad, JW-100 s, and we identify three recessive Ccα6 mutant alleles in the JW-100 s population: (i) Ccα63aQ68* containing a point mutation that generates a premature stop codon on exon 3a (3aQ68*); (ii) Ccα63aAG>AT containing a point mutation in the 5' splicing site of exon 3a (3aAG > AT); and (iii) Ccα63aQ68*-K352* that contains the mutation 3aQ68* and another point mutation on exon 10 (K352*). Though our analysis of the susceptibility to spinosad in field populations indicates that resistance has not yet evolved, a better understanding of the mechanism of action of spinosad is essential to implement sustainable management practices to avoid the development of resistance in field populations.
Collapse
Affiliation(s)
- Enric Ureña
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower St, London, WC1E 6BT, UK
| | - Ana Guillem-Amat
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- Universidad Politecnica de Madrid, Madrid, Spain
| | - Francisco Couso-Ferrer
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Beatriz Beroiz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Nathalia Perera
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Elena López-Errasquín
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Castañera
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Hernández-Crespo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
27
|
Zhang Y, Xu X, Bao H, Shao X, Li Z, Liu Z. The binding properties of cycloxaprid on insect native nAChRs partially explain the low cross-resistance with imidacloprid in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2019; 75:246-251. [PMID: 29877026 DOI: 10.1002/ps.5108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Neonicotinoids, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) used to control Nilaparvata lugens, a major rice insect pest. High imidacloprid resistance has been reported in N. lugens both in the laboratory and in the field. Cycloxaprid (CYC), an oxa-bridged cis-nitromethylene neonicotinoid, showed high insecticidal activity against N. lugens and low cross-resistance in imidacloprid-resistant strains and field populations. RESULTS Binding studies demonstrated that imidacloprid has two binding sites with different affinities (Kd = 3.18 ± 0.43 pm and 1.78 ± 0.19 nm) in N. lugens nAChRs. CYC was poor at displacing [3 H]imidacloprid at its high-affinity binding site (Ki = 159.38 ± 20.43 nm), but quite efficient at the low-affinity binding site (Ki = 1.27 ± 0.35 nm). These data showed that CYC had overlapping binding sites with imidacloprid only at its low-affinity binding site. Therefore, the low displacement ability of CYC against imidacloprid binding at its high-affinity site could partially explain the low cross-resistance of CYC in imidacloprid-resistant populations. CONCLUSION The high insecticidal activity, low cross-resistance and different binding properties on insect nAChRs of CYC show that it is a potential insecticide for the control of N. lugens and related insect pests, especially ones with high resistance to neonicotinoids. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Muraoka Y, Nakamura A, Tanaka R, Suda K, Azuma Y, Kushimura Y, Lo Piccolo L, Yoshida H, Mizuta I, Tokuda T, Mizuno T, Nakagawa M, Yamaguchi M. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs. Exp Neurol 2018; 310:1-13. [PMID: 30165075 DOI: 10.1016/j.expneurol.2018.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Neuron-specific knockdown of the dFIG4 gene, a Drosophila homologue of human FIG4 and one of the causative genes for Charcot-Marie-Tooth disease (CMT), reduces the locomotive abilities of adult flies, as well as causing defects at neuromuscular junctions, such as reduced synaptic branch length in presynaptic terminals of the motor neurons in third instar larvae. Eye imaginal disc-specific knockdown of dFIG4 induces abnormal morphology of the adult compound eye, the rough eye phenotype. In this study, we carried out modifier screening of the dFIG4 knockdown-induced rough eye phenotype using a set of chromosomal deficiency lines on the second chromosome. By genetic screening, we detected 9 and 15 chromosomal regions whose deletions either suppressed or enhanced the rough eye phenotype induced by the dFIG4 knockdown. By further genetic screening with mutants of individual genes in one of these chromosomal regions, we identified the gene CR18854 that suppressed the rough eye phenotype and the loss-of-cone cell phenotype. The CR18854 gene encodes a long non-coding RNA (lncRNA) consisting of 2566 bases. Mutation and knockdown of CR18854 patially suppressed the enlarged lysosome phenotype induced by Fat body-specific knockdown of dFIG4. Further characterization of CR18854, and a few other lncRNAs in relation to dFIG4 in neuron, using neuron-specific dFIG4 knockdown flies indicated a genetic link between the dFIG4 gene and lncRNAs including CR18854 and hsrω. We also obtained data indicating genetic interaction between CR18854 and Cabeza, a Drosophila homologue of human FUS, which is one of the causing genes for amyotrophic lateral sclerosis (ALS). These results suggest that lncRNAs such as CR18854 and hsrω are involved in a common pathway in CMT and ALS pathogenesis.
Collapse
Affiliation(s)
- Yuuka Muraoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Aya Nakamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yumiko Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukie Kushimura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Luca Lo Piccolo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masanori Nakagawa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; North Medical Center, Kyoto Prefectural University of Medicine, 481 otokoyama, yosano-cho, yosa-gun, Kyoto 629-2291, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
29
|
Wan Y, Yuan G, He B, Xu B, Xie W, Wang S, Zhang Y, Wu Q, Zhou X. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:1-10. [PMID: 29753712 DOI: 10.1016/j.ibmb.2018.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), a molecular target for spinosyns and neonicotinoids, mediate rapid cholinergic transmission in insect central nervous system by binding acetylcholine. Previous studies have shown that mutations in nAChRs contribute to the high level of resistance to these two classes of insecticides. In this study, we identified nine nAChR subunits from a transcriptome of the western flower thrips, Frankliniella occidentalis, including α1-7, β1, and β2. Exon 4 of α4 and exons 3 and 8 of α6 each have two splicing variants, respectively. In addition, altered or incorrect splicing leads to truncated forms of α3, α5, and α6 subunits. The abundance of every nAChRs in both spinosad susceptible and resistant strains was highest in the 1st instar nymph. Significantly more truncated forms of α6 subunit were detected in spinosad resistant strains, whereas, hardly any full-length form was found in the two highly resistant F. occidentalis strains (resistance ratio >104-fold). Under laboratory conditions, spinosad resistance was positively correlated with truncated α6 transcripts. The correlation was later confirmed under the field conditions using five field strains. As the molecular target of spinosad, the percentage of truncated nAChR α6 subunits can be used as a diagnostic tool to detect and quantify spinosad resistance in the field.
Collapse
Affiliation(s)
- Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guangdi Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingqing He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
30
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
31
|
Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 2018; 7:34550. [PMID: 29671739 PMCID: PMC5927767 DOI: 10.7554/elife.34550] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
To understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.
Collapse
Affiliation(s)
- Vincent Croset
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Zhang Y, Han Y, Yang Q, Wang L, He P, Liu Z, Li Z, Guo H, Fang J. Resistance to cycloxaprid in Laodelphax striatellus is associated with altered expression of nicotinic acetylcholine receptor subunits. PEST MANAGEMENT SCIENCE 2018; 74:837-843. [PMID: 28991400 DOI: 10.1002/ps.4757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cycloxaprid is a new oxabridged cis-configuration neonicotinoid insecticide, the resistance development potential and underlying resistance mechanism of which were investigated in the small brown planthopper, Laodelphax striatellus (Fallén), an important agricultural pest of rice. RESULTS A cycloxaprid-resistant strain (YN-CPD) only achieved 10-fold higher resistance, in contrast to 106-fold higher resistance to buprofezin and 332-fold higher resistance to chlorpyrifos achieved after exposure to similar selection pressure, and the cycloxaprid selected line showed no cross-resistance to the buprofezin and chlorpyrifos-selected resistance strains. Moreover, we identified 10 nicotinic acetylcholine receptor (nAChR) subunits from the transcriptome of L. striatellus, and six segments had open reading frames (ORFs). While we did not find mutations in the nAChR genes of L. striatellus, subunits Lsα1 and Lsβ1 exhibited, respectively, 9.60-fold and 3.36-fold higher expression in the resistant strain, while Lsα8 exhibited 0.44-fold lower expression. Suppression of Lsα1 through ingestion of dsLsα1 led to an increase in susceptibility to cycloxaprid. CONCLUSION The findings indicate that resistance to cycloxaprid develops slowly compared with resistance to other chemicals and without cross-resistance to chlorpyrifos or buprofezin; over-expressed Lsα1 is associated with low cycloxaprid resistance levels, but the importance of over-expressed Lsβ1 and reduced expression of Lsα8 could not be excluded. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueliang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Yangchun Han
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Qiong Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zewen Liu
- Key Laboratory of Monitoring and Management of Plant Disease and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
33
|
Duan Y, Dou S, Zhang H, Wu C, Wu M, Lu J. Linkage of A-to-I RNA Editing in Metazoans and the Impact on Genome Evolution. Mol Biol Evol 2018; 35:132-148. [PMID: 29048557 PMCID: PMC5850729 DOI: 10.1093/molbev/msx274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adenosine-to-inosine (A-to-I) RNA editomes have been systematically characterized in various metazoan species, and many editing sites were found in clusters. However, it remains unclear whether the clustered editing sites tend to be linked in the same RNA molecules or not. By adopting a method originally designed to detect linkage disequilibrium of DNA mutations, we examined the editomes of ten metazoan species and detected extensive linkage of editing in Drosophila and cephalopods. The prevalent linkages of editing in these two clades, many of which are conserved between closely related species and might be associated with the adaptive proteomic recoding, are maintained by natural selection at the cost of genome evolution. Nevertheless, in worms and humans, we only detected modest proportions of linked editing events, the majority of which were not conserved. Furthermore, the linkage of editing in coding regions of worms and humans might be overall deleterious, which drives the evolution of DNA sites to escape promiscuous editing. Altogether, our results suggest that the linkage landscape of A-to-I editing has evolved during metazoan evolution. This present study also suggests that linkage of editing should be considered in elucidating the functional consequences of RNA editing.
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingming Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Somers J, Luong HNB, Batterham P, Perry T. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost? Fly (Austin) 2017; 12:46-54. [PMID: 29095106 DOI: 10.1080/19336934.2017.1396399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.
Collapse
Affiliation(s)
- Jason Somers
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia.,b UCL Ear Institute , University College London , 332 Gray's Inn Road, London , WC1 × 8EE , United Kingdom
| | - Hang Ngoc Bao Luong
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| | - Philip Batterham
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| | - Trent Perry
- a School of BioSciences and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , VIC , Australia
| |
Collapse
|
35
|
The functional interaction between nicotinic acetylcholine receptors and Ly-6/neurotoxin proteins in Locusta migratoria. Neurochem Int 2017; 108:381-387. [DOI: 10.1016/j.neuint.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022]
|
36
|
Palmer-Young EC, Hogeboom A, Kaye AJ, Donnelly D, Andicoechea J, Connon SJ, Weston I, Skyrm K, Irwin RE, Adler LS. Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees. PLoS One 2017; 12:e0183729. [PMID: 28832668 PMCID: PMC5568382 DOI: 10.1371/journal.pone.0183729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. APPROACH Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. RESULTS We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced-rather than increased-phytochemical consumption relative to uninfected bees. CONCLUSIONS Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- Organismic & Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Alison Hogeboom
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Alexander J. Kaye
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Dash Donnelly
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Jonathan Andicoechea
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sara June Connon
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ian Weston
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kimberly Skyrm
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Rebecca E. Irwin
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
37
|
Bao H, Liu Y, Zhang Y, Liu Z. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:36-41. [PMID: 28755692 DOI: 10.1016/j.pestbp.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with Kd values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [3H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria.
Collapse
Affiliation(s)
- Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 50 St. Zhongling, Nanjing 210014, China
| | - Yang Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
38
|
Xu G, Wu SF, Teng ZW, Yao HW, Fang Q, Huang J, Ye GY. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae). INSECT SCIENCE 2017; 24:371-384. [PMID: 26847606 DOI: 10.1111/1744-7917.12324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily, mediating fast synaptic cholinergic transmission in the central nervous system in insects. Insect nAChRs are the molecular targets of economically important insecticides, such as neonicotinoids and spinosad. Identification and characterization of the nAChR gene family in the rice striped stem borer, Chilo suppressalis, could provide beneficial information about this important receptor gene family and contribute to the investigation of the molecular modes of insecticide action and resistance for current and future chemical control strategies. We searched our C. suppressalis transcriptome database using Bombyx mori nAChR sequences in local BLAST searches and obtained the putative nAChR subunit complementary DNAs (cDNAs) via reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends methods. Similar to B. mori, C. suppressalis possesses 12 nAChR subunits, including nine α-type and three β-type subunits. Quantitative RT-PCR analysis revealed the expression profiles of the nAChR subunits in various tissues, including the brain, subesophageal ganglion, thoracic ganglion, abdominal ganglion, hemocytes, fat body, foregut, midgut, hindgut and Malpighian tubules. Developmental expression analyses showed clear differential expression of nAChR subunits throughout the C. suppressalis life cycle. The identification of nAChR subunits in this study will provide a foundation for investigating the diverse roles played by nAChRs in C. suppressalis and for exploring specific target sites for chemicals that control agricultural pests while sparing beneficial species.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Wei Yao
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Zhang Y, Liu Y, Bao H, Sun H, Liu Z. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies. Neurosci Lett 2017; 638:151-155. [DOI: 10.1016/j.neulet.2016.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
40
|
Berger M, Puinean AM, Randall E, Zimmer CT, Silva WM, Bielza P, Field LM, Hughes D, Mellor I, Hassani-Pak K, Siqueira HAA, Williamson MS, Bass C. Insecticide resistance mediated by an exon skipping event. Mol Ecol 2016; 25:5692-5704. [PMID: 27748560 PMCID: PMC5111602 DOI: 10.1111/mec.13882] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio‐insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the α6 subunit cDNA from spinosad selected and unselected strains of T. absoluta revealed all Taα6 transcripts of the selected strain were devoid of exon 3, with comparison of genomic DNA and mRNA revealing this is a result of exon skipping. Exon skipping cosegregated with spinosad resistance in survival bioassays, and functional characterization of this alteration using modified human nAChR α7, a model of insect α6, demonstrated that exon 3 is essential for receptor function and hence spinosad sensitivity. DNA and RNA sequencing analyses suggested that exon skipping did not result from genetic alterations in intronic or exonic cis‐regulatory elements, but rather was associated with a single epigenetic modification downstream of exon 3a, and quantitative changes in the expression of trans‐acting proteins that have known roles in the regulation of alternative splicing. Our results demonstrate that the intrinsic capacity of the α6 gene to generate transcript diversity via alternative splicing can be readily exploited during the evolution of resistance and identifies exon skipping as a molecular alteration conferring insecticide resistance.
Collapse
Affiliation(s)
- Madeleine Berger
- Rothamsted Research, Harpenden, AL5 2JQ, UK.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Emma Randall
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Christoph T Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Wellington M Silva
- Departamento de Agronomia-(Entomologia), Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil
| | - Pablo Bielza
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena, 30203, Spain
| | | | | | - Ian Mellor
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Herbert A A Siqueira
- Departamento de Agronomia-(Entomologia), Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil
| | | | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
41
|
Taillebois E, Thany SH. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:40-54. [PMID: 27357353 DOI: 10.1002/arch.21340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), Université d'Angers, Angers, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, Orléans, France
| |
Collapse
|
42
|
Nicotine-induced acute hyperactivity is mediated by dopaminergic system in a sexually dimorphic manner. Neuroscience 2016; 332:149-59. [PMID: 27365175 DOI: 10.1016/j.neuroscience.2016.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
Short-term exposure to nicotine induces positive effects in mice, monkeys and humans, including mild euphoria, hyperactivity, and enhanced cognition. However, the underlying neural basis and molecular mechanisms for these effects remain poorly understood. Here, using a video recording system, we find that acute nicotine administration induces locomotor hyperactivity in Drosophila, similar to observations made in higher model organisms. Suppressing dopaminergic neurons or down-regulating dopamine 1-like receptor (DopR) abolishes this acute nicotine response, but surprisingly, does so only in male flies. Using a GFP reconstitution across synaptic partners (GRASP) approach, we show that dopaminergic neurons possess potential synaptic connections with acetylcholinergic neurons in wide regions of the brain. Furthermore, dopaminergic neurons are widely activated upon nicotine perfusion in both sexes, while the response curve differs significantly between the sexes. Moreover, knockdown of the β1 nicotine acetylcholine receptor (nAChR) in dopaminergic neurons abolishes the acute nicotine response only in male flies, while panneural knock-down occurs in both sexes. Taken together, our results reveal that in fruit flies, dopaminergic neurons mediate nicotine-induced acute locomotor hyperactivity in a sexually dimorphic manner, and Drosophila β1 nAChR subunit plays a crucial role in this nicotine response. These findings provide important insights into the molecular and neural basis of acute nicotine effects, and the underlying mechanisms may play conserved roles across species.
Collapse
|
43
|
Martin JA, Garczynski SF. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae). INSECT SCIENCE 2016; 23:277-287. [PMID: 25504620 DOI: 10.1111/1744-7917.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.
Collapse
Affiliation(s)
- Jessica A Martin
- USDA-ARS, Yakima Agricultural Research Laboratory, Wapato, WA 98951, USA
| | | |
Collapse
|
44
|
Qu Y, Chen J, Li C, Wang Q, Guo W, Han Z, Jiang W. The subunit gene Ldα1 of nicotinic acetylcholine receptors plays important roles in the toxicity of imidacloprid and thiamethoxam against Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 127:51-58. [PMID: 26821658 DOI: 10.1016/j.pestbp.2015.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ACh-gated ion channels. It is believed that nAChRs composed of different subunits may vary in their function and toxicological characteristics. Neonicotinoids are activators of nAChRs and important insecticides that are extensively used for crop protection and resistance has been developed by some pests. They are also major insecticides for the control of Leptinotarsa decemlineata, which is a destructive defoliator pest that invaded the Xinjiang region of China in the 1990s. However, little is known about the constitution or subunits of the target in this pest. In this study, the full-length cDNAs encoding four new nAChR subunits (named Ldα3, Ldα6, Ldα10, and Ldβ1) were cloned from L. decemlineata. These genes encode 822-, 753-, 672-, and 759-amino acid proteins, respectively, which share typical features of insect nAChRs subunits and closely resemble the corresponding subunits of the nAChRs from Tribolium castaneum. Temporal and spatial expression analyses showed that these genes, as well as the previously identified Ldα1, Ldα2, and Ldα8 genes, are widely expressed in all developmental stages, including eggs, larvae of various instars, pupae, and adults. All genes monitored were expressed at higher levels in the head than in the thorax and abdomen, except for Ldα10. Dietary ingestion of double-stranded RNA bacterially expressed for Ldα1 (dsLdα1) significantly reduced the mRNA level of Ldα1 in treated larvae and adults by 48.0% and 78.6%, respectively. Among the non-target genes, Ldα3, Ldα9, and Ldβ1 were significantly up-regulated in larvae. A toxicity bioassay showed that dsLdα1 treatment greatly decreased the sensitivity to imidacloprid and thiamethoxam in adults. The larval susceptibility to thiamethoxam but not to imidacloprid was also reduced because of the lower down-regulation of Ldα1. Thus, our results suggest that Ldα1 encodes a subunit of a functional nAChR that mediates the toxicity of imidacloprid and thiamethoxam against L. decemlineata and that the down-regulation of Ldα1 might be an important mechanism for resistance and/or tolerance of L. decemlineata to neonicotinoids.
Collapse
Affiliation(s)
- Yang Qu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhua Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenge Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Wang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenchao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Zhaojun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Kim GR, Yoon TH, Park WG, Park JY, Kang JH, Kim HW. Five nicotinic acetylcholine receptor subunits from the Morotoge shrimp,Pandalopsis japonica: cloning, tissue distribution, and functional expression inXenopusoocytes. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1109547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Beck ME, Gutbrod O, Matthiesen S. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities. Chemphyschem 2015; 16:2760-2767. [PMID: 26175091 PMCID: PMC4576818 DOI: 10.1002/cphc.201500341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 01/22/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands.
Collapse
Affiliation(s)
- Michael E Beck
- Head of Computational Science, Bayer CropScience AG, R&D-SMR-RT-Computational Science, Alfred-Nobel-Strasse 5040789 Monheim am Rhein (Germany)
| | - Oliver Gutbrod
- Molecular Modelling, Bayer CropScience AG, R&D-SMR-RT-Computational Science, Alfred-Nobel-Strasse 5040789 Monheim am Rhein (Germany)
| | - Svend Matthiesen
- Molecular Modelling, Bayer CropScience AG, R&D-SMR-RT-Computational Science, Alfred-Nobel-Strasse 5040789 Monheim am Rhein (Germany)
| |
Collapse
|
47
|
Somers J, Nguyen J, Lumb C, Batterham P, Perry T. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:116-127. [PMID: 25747007 DOI: 10.1016/j.ibmb.2015.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
The vinegar fly, Drosophila melanogaster, has been used to identify and manipulate insecticide resistance genes. The advancement of genome engineering technology and the increasing availability of pest genome sequences has increased the predictive and diagnostic capacity of the Drosophila model. The Drosophila model can be extended to investigate the basic biology of the interaction between insecticides and the proteins they target. Recently we have developed an in vivo system that permits the expression and study of key insecticide targets, the nicotinic acetylcholine receptors (nAChRs), in controlled genetic backgrounds. Here this system is used to study the interaction between the insecticide spinosad and a nAChR subunit, Dα6. Reciprocal chimeric subunits were created from Dα6 and Dα7, a subunit that does not respond to spinosad. Using the in vivo system, the Dα6/Dα7 chimeric subunits were tested for their capacity to respond to spinosad. Only the subunits containing the C-terminal region of Dα6 were able to respond to spinosad, thus confirming the importance this region for spinosad binding. A new incompletely dominant, spinosad resistance mechanism that may evolve in pest species is also examined. First generated using chemical mutagenesis, the Dα6(P146S) mutation was recreated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, the first use of this technology to introduce a resistant mutation into a controlled genetic background. Both alleles present with the same incompletely dominant, spinosad resistance phenotype, proving the P146S replacement to be the causal mutation. The proximity of the P146S mutation to the conserved Cys-loop indicates that it may impair the gating of the receptor. The results of this study enhance the understanding of nAChR structure:function relationships.
Collapse
Affiliation(s)
- Jason Somers
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Joseph Nguyen
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Chris Lumb
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Phil Batterham
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Trent Perry
- Bio21 Institute - Genetics Department, The University of Melbourne, Parkville, 3010 Victoria, Australia.
| |
Collapse
|
48
|
Wang X, Bao H, Sun H, Zhang Y, Fang J, Liu Q, Liu Z. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis. J Neurochem 2015; 134:455-62. [PMID: 25951893 DOI: 10.1111/jnc.13151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qinghong Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Cys-loop ligand-gated ion channel gene discovery in the Locusta migratoria manilensis through the neuron transcriptome. Gene 2015; 561:276-82. [DOI: 10.1016/j.gene.2015.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 11/23/2022]
|
50
|
Hou W, Liu Q, Tian L, Wu Q, Zhang Y, Xie W, Wang S, Miguel KS, Funderburk J, Scott JG. The α6 nicotinic acetylcholine receptor subunit of Frankliniella occidentalis is not involved in resistance to spinosad. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 111:60-67. [PMID: 24861935 DOI: 10.1016/j.pestbp.2014.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Insects evolve resistance which constrains the sustainable use of insecticides. Spinosyns, a class of environmentally-friendly macrolide insecticides, is not an exception. The mode of inheritance and the mechanisms of resistance to spinosad (the most common spinosyn insecticide) in Frankliniella occidentalis (Western flower thrips, WFT) were investigated in this study. Resistance (170,000-fold) was autosomal and completely recessive. Recent studies showed that deletion of the nicotinic acetylcholine receptor α6 subunit gene resulted in strains of Drosophila melanogaster, Plutella xylostella and Bactrocera dorsalis that are resistant to spinosad, indicating that nAChRα6 subunit maybe important for the toxic action of this insecticide. Conversely, a G275E mutation of this subunit in F. occidentalis was recently proposed as the mechanism of resistance to spinosad. We cloned and characterized nAChRα6 from three susceptible and two spinosad resistant strains from China and the USA. The Foα6 cDNA is 1873bp and the open reading frame is 1458bp which encodes 485 amino acid residues with a predicted molecular weight of 53.5-kDa, the 5' and 3' UTRs are 121 and 294bp, respectively. There was no difference in the cDNA sequence between the resistant and susceptible thrips, suggesting the G275E mutation does not confer resistance in these populations. Ten isoforms of Foα6, arising from alternative splicing, were isolated and did not differ between the spinosad-susceptible and resistant strains. Quantitative real time PCR analysis showed Foα6 was highly expressed in the first instar larva, pupa and adult, and the expression levels were 3.67, 2.47, 1.38 times that of the second instar larva. The expression level was not significantly different between the susceptible and resistant strains. These results indicate that Foα6 is not involved in resistance to spinosad in F. occidentalis from China and the USA.
Collapse
Affiliation(s)
- Wenjie Hou
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Qiulei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Lixia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, China.
| | - Keri San Miguel
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Joe Funderburk
- Department of Entomology and Nematology, University of Florida, Quincy, FL 32351, USA.
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|