1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Bark SJ, Wegrzyn J, Taupenot L, Ziegler M, O'Connor DT, Ma Q, Smoot M, Ideker T, Hook V. The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PLoS One 2012; 7:e41134. [PMID: 22916103 PMCID: PMC3420874 DOI: 10.1371/journal.pone.0041134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/17/2012] [Indexed: 12/25/2022] Open
Abstract
Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health.
Collapse
Affiliation(s)
- Steven J. Bark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| | - Jill Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laurent Taupenot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael Ziegler
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Daniel T. O'Connor
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Qi Ma
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael Smoot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| |
Collapse
|
3
|
El Golli N, Issertial O, Rosa JP, Briquet-Laugier V. Evidence for a granule targeting sequence within platelet factor 4. J Biol Chem 2005; 280:30329-35. [PMID: 15964840 DOI: 10.1074/jbc.m503847200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelets achieve bleeding arrest at sites of vascular injury via secretion of secretory proteins from their storage granules, termed alpha-granules. We have recently analyzed granule targeting of platelet factor 4 (PF4), a secretory alpha-granule chemokine, and demonstrated that PF4 alpha-granule storage relied upon determinants within PF4 mature sequence. To define these determinants, PF4 mutants fused to the fluorescent reporter protein green fluorescent protein were generated by progressive deletions and site-directed mutagenesis. They were then transfected in AtT20 cells and assessed for granule targeting by colocalization with ACTH-containing granules, using laser scanning confocal microscopy. This strategy identified the amino acid 41-50 (LIATLKNGRK) sequence as most critical for PF4 granule targeting and/or storage; its deletion from PF4 induced a marked decrease in granule storage (from 81 +/- 2% to 17 +/- 3%, p < or = 0.0001). Ala-scanning mutagenesis of LIATLKNGRK narrowed down the targeting motif to LKNG. A direct role for LKNG in alpha-granule targeting was confirmed in the thrombopoietin-induced human megakaryocytic Dami cells, in which the LKNG-green fluorescent protein chimera exhibited an 82.5 +/- 1.8% colocalization with the alpha-granule proteins von Willebrand factor and P-selectin. LKNG is poorly conserved within the chemokine family. However three-dimensional alignments of the human alpha-granule chemokines Nap-2 (neutrophil-activating peptide) and RANTES (Regulated upon Activation Normal T Cell Expressed and Secreted) with PF4 revealed that LKNG, a surface-exposed hydrophilic turn/loop, matched Nap-2 (LKDG) and RANTES (TRKN) peptides with similar features. Moreover Nap-2 and RANTES peptides exhibited the same alpha-granule targeting efficiency than LKNG. We therefore postulate that the three-dimensional and physicochemical characteristics of PF4 LKNG are of general relevance to alpha-granule targeting of chemokines and possibly of other alpha-granule proteins.
Collapse
Affiliation(s)
- Nargès El Golli
- Laboratory of Hemostasis and Thrombosis, Cardiovascular Research Center Inserm Lariboisière, U689-E6 INSERM, IFR139, Université Paris 7, Hôpital Lariboisière, 2 rue Ambroise Paré, 75010 Paris, France
| | | | | | | |
Collapse
|
4
|
Mans BJ, Neitz AW. Molecular crowding as a mechanism for tick secretory granule biogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1187-1193. [PMID: 15522614 DOI: 10.1016/j.ibmb.2004.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/29/2004] [Indexed: 05/24/2023]
Abstract
During feeding ticks secrete bioactive components into the host to counter-act its immune and hemostatic defense systems. These bioactive components are stored in secretory granules that are secreted during feeding in an exocrine stimulus-response type of mechanism. All proteins destined for secretion are packaged into these granules during granule biogenesis. Up to date no mechanism for granule biogenesis has been proposed, except to note that biogenesis occurs under conditions of high protein and calcium concentrations in an acidic environment. Previously, the most abundant proteins (TSGPs) found in the salivary glands of the soft tick, Ornithodoros savignyi, were suggested to play a part in granule biogenesis, based on their high abundance. The TSGPs are part of the lipocalin family, of which numerous members have been identified in ticks. We consider here the high concentrations of the TSGPs in salivary glands and what effect this will have on the crowded environment inside the secretory granules. It is shown that the TSGPs occur at concentrations that will lead to molecular crowding of which one result is the non-specific aggregation of components to reduce crowding effects. Aggregation of proteins as a mechanism of granule biogenesis has been proposed before, but not in terms of molecular crowding. We thus propose molecular crowding as the general mechanism of granule biogenesis, in tick secretory granules, but can also be extended to other forms of secretory granules in general.
Collapse
Affiliation(s)
- Ben J Mans
- The Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| | | |
Collapse
|
5
|
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 2003; 81:631-9. [PMID: 12529877 DOI: 10.1002/bit.10517] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most important criteria for successful generation of a therapeutic protein from a recombinant cell is to obtain a cell line that maintains stability of production. If this is not achieved it can generate problems for process yields, effective use of time and money, and for regulatory approval of products. However, selection of a cell line that sustains stability of production over the required time period may be difficult to achieve during development of a therapeutic protein. There are several studies in the literature that have reported on the instability of protein production from recombinant cell lines. The causes of instability of production are varied and, in many cases, the exact molecular mechanisms are unknown. The production of proteins by cells is modulated by molecular events at levels ranging from transcription, posttranscriptional processing, translation, posttranslational processing, to secretion. There is potential for regulation of stability of protein production at many or all of these stages. In this study we review published information on stability of protein production for three industrially important cell lines: hybridoma, Chinese hamster ovary (CHO), and nonsecreting (NS0) myeloma cell lines. We highlight the most likely molecular loci at which instability may be engendered and indicate other areas of protein production that may affect stability from mammalian cells. We also outline approaches that could help to overcome the problems associated with unpredictable expression levels and maximized production, and indicate the consequences these might have for stability of production.
Collapse
Affiliation(s)
- Louise M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
6
|
Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, Zaydfudim V, Conner S. The biology of cortical granules. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:117-206. [PMID: 11580200 DOI: 10.1016/s0074-7696(01)09012-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An egg-that took weeks to months to make in the adult-can be extraordinarily transformed within minutes during its fertilization. This review will focus on the molecular biology of the specialized secretory vesicles of fertilization, the cortical granules. We will discuss their role in the fertilization process, their contents, how they are made, and the molecular mechanisms that regulate their secretion at fertilization. This population of secretory vesicles has inherent interest for our understanding of the fertilization process. In addition, they have import because they enhance our understanding of the basic processes of secretory vesicle construction and regulation, since oocytes across species utilize this vesicle type. Here, we examine diverse animals in a comparative approach to help us understand how these vesicles function throughout phylogeny and to establish conserved themes of function.
Collapse
Affiliation(s)
- G M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912 , USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Milgram SL, Kho ST, Martin GV, Mains RE, Eipper BA. Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J Cell Sci 1997; 110 ( Pt 6):695-706. [PMID: 9099944 DOI: 10.1242/jcs.110.6.695] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the amidation of glycine-extended peptides in neuroendocrine cells. At steady state, membrane PAM is accumulated in a perinuclear compartment. We examined the distribution of membrane PAM in stably transfected AtT-20 cells and compared its localization to markers for the trans-Golgi network (TGN), endosomes, and lysosomes. At the light microscopic level, the distribution of membrane PAM does not overlap extensively with lysosomal markers but does overlap with TGN38 and with SCAMP, a component of post-Golgi membranes involved in recycling pathways. By immunoelectron microscopy, membrane PAM is present in tubulovesicular structures which constitute the TGN; some of these PAM-containing tubulovesicular structures are more distal to the Golgi stacks and do not contain TGN38. While some POMC-derived peptides are present in tubulovesicular structures like those that contain membrane PAM, the majority of the POMC-derived peptides are present in secretory granules. There is little overlap between the steady state distribution of membrane PAM and internalized FITC-transferrin in the early endosomes. Few of the perinuclear PAM-containing structures are labeled with HRP or WGA-HRP even following long incubations. Therefore, membrane PAM is localized to perinuclear tubulovesicular structures which are partially devoid of TGN38 and are not all endosomal in origin.
Collapse
Affiliation(s)
- S L Milgram
- Physiology Department, The University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
8
|
Milgram SL, Mains RE, Eipper BA. Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. J Biol Chem 1996; 271:17526-35. [PMID: 8663411 DOI: 10.1074/jbc.271.29.17526] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have investigated the trafficking of integral membrane peptidylglycine alpha-amidating monooxygenase (PAM) in the neuroendocrine AtT-20 cell line. This bifunctional enzyme has two domains which together catalyze the COOH-terminal alpha-amidation of peptidylglycine substrates yielding amidated products stored in secretory granules. As soluble proteins, both catalytic domains were independently targeted to secretory granules. In contrast, membrane PAM was largely localized to the trans-Golgi network (TGN). Upon truncation of its cytoplasmic COOH-terminal domain, membrane PAM was less efficiently cleaved by secretory granule enzymes and accumulated on the plasma membrane. When transferred to the lumenal domain of the interleukin 2 receptor alpha-chain (Tac protein), the cytoplasmic domain of PAM caused rerouting of Tac from the surface to the TGN and supported internalization of Tac antibody from the plasma membrane. To define sequences in the cytoplasmic domain of integral membrane PAM involved in its trafficking, we expressed PAM proteins containing truncations, deletions, or point mutations in the COOH-terminal cytoplasmic domain. PAM proteins were not retained in the TGN when half of the cytoplasmic domain was deleted; such proteins accumulated on the plasma membrane, were not efficiently internalized, and were cleaved to generate a bifunctional PAM protein that was not stored in secretory granules. A tyrosine-based internalization motif was identified, which was not required for efficient cleavage of full-length integral membrane PAM by secretory granule enzymes. Deletion of an 18-amino acid domain surrounding this Tyr residue both diminished cleavage of membrane PAM by secretory granule enzymes and eliminated internalization of PAM from the plasma membrane. The cytoplasmic domain is responsible for retaining membrane PAM in the TGN and for retrieving membrane PAM from the cell surface, while the lumenal catalytic domains of PAM appear to be responsible for targeting the protein to secretory granules.
Collapse
Affiliation(s)
- S L Milgram
- Physiology Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
9
|
Harter C, Wieland F. The secretory pathway: mechanisms of protein sorting and transport. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:75-93. [PMID: 8652612 DOI: 10.1016/0304-4157(96)00003-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C Harter
- Institut für Biochemie I, Universität Heidelberg, Germany
| | | |
Collapse
|
10
|
Foster JA, Gerton GL. Autoantigen 1 of the guinea pig sperm acrosome is the homologue of mouse Tpx-1 and human TPX1 and is a member of the cysteine-rich secretory protein (CRISP) family. Mol Reprod Dev 1996; 44:221-9. [PMID: 9115720 DOI: 10.1002/(sici)1098-2795(199606)44:2<221::aid-mrd11>3.0.co;2-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned and sequenced cDNAs encoding autoantigen 1 (AA1), a testis-specific protein and the major autoantigen of the guinea pig sperm acrosome. The cDNA predicts a precursor protein of 244 amino acids including a 21 amino acid hydrophobic, secretory signal sequence. The mature polypeptide is predicted to have a molecular mass of 24,891 Daltons which agrees with the experimentally determined molecular weight of 25,000. Consistent with previous studies demonstrating that AA1 is not a glycoprotein, the predicted amino acid sequence contained no canonical sites for N-linked glycosylation. Comparison with other sequences showed that AA1 is the guinea pig homologue of the testis-specific protein Tpx-1 in mice and TPX1 in humans. AA1 also showed significant amino acid sequence homology with other cysteine-rich secretory proteins (CRISP's): rat and mouse acidic epididymal glycoproteins (AEG; also known as proteins D/E in rats) and helothermine, a toxin from the Mexican beaded lizard. In addition, AA1 had a lesser degree of homology with antigen 5 (vespid wasp venom), PR-1 (a plant pathogenesis related protein), and GliPR (a protein identified in human gliomas). Northern analysis of RNA from purified guinea pig spermatogenic cells showed that a 1.5 kb message was first detected in pachytene spermatocytes, was strongest in round spermatids, and was detected at a low level in condensing spermatids. Immunoblot analysis and metabolic labeling data of AA1 in spermatogenic cells showed that the protein was synthesized as early as the pachytene spermatocyte stage of spermatogenesis. Thus, the patterns of AA1 mRNA and protein expression during spermatogenesis are similar to the expression of other acrosomal mRNAs and proteins that are first detected meiotically.
Collapse
Affiliation(s)
- J A Foster
- Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia 19104-6080, USA
| | | |
Collapse
|
11
|
Holthuis JC, Jansen EJ, van Riel MC, Martens GJ. Molecular probing of the secretory pathway in peptide hormone-producing cells. J Cell Sci 1995; 108 ( Pt 10):3295-305. [PMID: 7593290 DOI: 10.1242/jcs.108.10.3295] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic machinery in the melanotrope cells of the Xenopus intermediate pituitary is primarily dedicated to the generation of proopiomelanocortin (POMC)-derived, melanophore-stimulating peptides. Transfer of the animal to a black background stimulates the production of these peptides and causes a dramatic increase in POMC mRNA levels. To identify genes involved in the biosynthesis and regulated release of peptide hormones, we differentially screened an intermediate pituitary cDNA library of toads adapted to a black background with cDNA probes derived from intermediate pituitary mRNA of black- and white-adapted animals. Here we report the identification of twelve distinct genes whose expression levels in the melanotropes are regulated in coordination with that of POMC. Four of these genes are novel while the others code for translocon-associated proteins, a lumenal cysteine protease of the endoplasmic reticulum, prohormone-processing enzymes, members of the granin family and a transmembrane protein presumably involved in the assembly and/or specific functioning of vacuolar H(+)-ATPase from secretory granules. Our results indicate that a wide variety of both soluble and membrane-associated components of the secretory pathway is recruited in physiologically activated, peptide hormone-producing cells.
Collapse
Affiliation(s)
- J C Holthuis
- Department of Animal Physiology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Noland TD, Friday BB, Maulit MT, Gerton GL. The sperm acrosomal matrix contains a novel member of the pentaxin family of calcium-dependent binding proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31677-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Milgram SL, Eipper BA, Mains RE. Differential trafficking of soluble and integral membrane secretory granule-associated proteins. J Cell Biol 1994; 124:33-41. [PMID: 8294504 PMCID: PMC2119905 DOI: 10.1083/jcb.124.1.33] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.
Collapse
Affiliation(s)
- S L Milgram
- Neuroscience Department, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|