1
|
Tripathi M, Thakur Y, Syed R, Asatkar AK, Alqahtani MS, Das D, Agrawal R, Verma B, Pande R. In-vitro and in-silico analysis and antitumor studies of novel Cu(II) and V(V) complexes of N-p-Tolylbenzohydroxamic acid. Int J Biol Macromol 2024; 268:131768. [PMID: 38663706 DOI: 10.1016/j.ijbiomac.2024.131768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/07/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.
Collapse
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; Department of Chemistry, Govt. J. Yoganandam Chhattisgarh College, Raipur C.G. - 492001
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ashish Kumar Asatkar
- Department of Chemistry, Satya Narayan Agrawal Govt. Arts and Commerce College, Kohka-Neora, Dist. Raipur, CG 493114, India
| | - Mohammad S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Devashish Das
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Bharati Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
2
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Comparison of the interactions of fanetizole with pepsin and trypsin: Spectroscopic and molecular docking approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Qureshi MA, Javed S. Aflatoxin B 1 Induced Structural and Conformational Changes in Bovine Serum Albumin: A Multispectroscopic and Circular Dichroism-Based Study. ACS OMEGA 2021; 6:18054-18064. [PMID: 34308039 PMCID: PMC8296610 DOI: 10.1021/acsomega.1c01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/23/2021] [Indexed: 05/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen that has been categorized as a group 1 human carcinogen by the International Agency for Research on Cancer. It is produced as a secondary metabolite by soil fungi Aspergillus flavus and Aspergillus parasiticus . Here, in this study, the effect of AFB1 on the structure and conformation of bovine serum albumin (BSA) using multispectroscopic tools like fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and circular dichroism spectropolarimetry has been ascertained. Ultraviolet absorption spectroscopy revealed hyperchromicity in the absorption spectra of BSA in the presence of AFB1. The binding constant was calculated in the range of 104 M-1, by fluorescence spectroscopy suggesting moderate binding of the toxin to BSA. The study also confirms the static nature of fluorescence quenching. The stoichiometry of binding sites was found to be unity. The competing capability of warfarin for AFB1 was higher than ibuprofen as calculated from site marker displacement assay. Förster resonance energy transfer confirmed the high efficiency of energy transfer from BSA to AFB1. Circular dichroism spectropolarimetry showed a decrease in the α-helix in BSA in the presence of AFB1. The melting temperature of BSA underwent an increment in the presence of a mycotoxin from 62.5 to 70.3 °C. Molecular docking confirmed the binding of AFB1 to subdomain IIA in BSA.
Collapse
|
5
|
Gu J, Zheng S, Huang X, He Q, Sun T. Exploring the mode of binding between butylated hydroxyanisole with bovine serum albumin: Multispectroscopic and molecular docking study. Food Chem 2021; 357:129771. [PMID: 33894572 DOI: 10.1016/j.foodchem.2021.129771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Considering the harm of BHA on humans, thorough research of the effect of BHA on the structure of serum albumin is necessary. The binding mechanisms of BHA with bovine serum albumin (BSA) and the effects of other three food additives (butylated hydroxytoluene, benzoic acid and citric acid) on BHA-BSA system were researched by multispectroscopy and molecular docking. The fluorescence quenching experiment results showed that the fluorescence quenching mechanism of BSA by BHA was static quenching. The binding constant ((5.70 ± 0.38) × 103 M-1 at 298 K) and thermodynamic parameters (ΔH = 110.8 ± 2.91 kJ·mol-1 and ΔS = 443.3 ± 9.30 J·mol-1·K-1) indicated that BHA and BSA formed a relatively stable complex through hydrophobic interaction. Three-dimensional fluorescence spectra confirmed the conformation changes of BSA due to the binding of BHA. Site marker competitive experiments and molecular docking proved that BHA could bind BSA into site I in subdomain IIA. The results of molecular docking showed that BHA formed hydrophobic interactions with amino acid residues (Ala290, Leu237, Leu259, Ile263 and Ile289). The presence of other food additives weakened the binding of BHA to BSA.
Collapse
Affiliation(s)
- Jiali Gu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China; College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Siyao Zheng
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Xiyao Huang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Qian He
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Ting Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
6
|
Waseem R, Shamsi A, Mohammad T, Alhumaydhi FA, Kazim SN, Hassan MI, Ahmad F, Islam A. Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer's Disease. ACS OMEGA 2021; 6:7910-7921. [PMID: 33778302 PMCID: PMC7992156 DOI: 10.1021/acsomega.1c00517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to study the interaction between purified irisin and rivastigmine tartrate (RT), a cholinesterase inhibitor used in Alzheimer's therapy. Irisin mainly promotes brown fat-like features in white adipose tissues; however, it has some important role in the nervous system also, i.e., capable of opposing synapse and memory failure in Alzheimer's disease (AD). The recombinant protein was purified by Ni-NTA chromatography and characterized using spectroscopic and in silico techniques. Further, the mechanism of interaction between irisin and RT was investigated using various biophysical techniques. Fluorescence quenching studies suggested that there exists a moderate binding between irisin and RT with a binding constant (K) of 104 M-1 and the irisin-RT complex is guided by a combination of both static and dynamic modes of quenching. Thermodynamic parameters suggested the reaction to be driven by hydrogen bonding, making it specific. FTIR and CD spectroscopy suggested no secondary structural alterations in irisin in the presence of RT. Molecular docking investigation provided an insight into the important residues that play a key role in irisin-RT interactions. This study delineates an important finding in AD therapy and can provide a platform further to explore the potential of irisin in AD treatment.
Collapse
Affiliation(s)
- Rashid Waseem
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Taj Mohammad
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Syed Naqui Kazim
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
7
|
Difference in the binding mechanism of distinct antimony forms in bovine serum albumin. Biometals 2021; 34:493-510. [PMID: 33587218 DOI: 10.1007/s10534-021-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The toxicity of antimony (Sb) is closely related to its chemical forms. To further realize the toxicity risk of different forms of Sb, the separate and simultaneous binding mechanisms of antimony potassium tartrate/potassium pyroantimonate with bovine serum albumin (BSA) were investigated with muti-spectroscopic methods. Fluorescence quenching result and UV-vis absorption spectra showed that a 1:1 complex was formed between antimony potassium tartrate/potassium pyroantimonate and BSA through a modest binding force. The results revealed that the binding of antimony potassium tartrate/potassium pyroantimonate to BSA caused changes in the secondary structure of BSA. Both Sb forms (antimony potassium tartrate and potassium pyroantimonate) were able to interact with BSA when coexisting but there was a binding influence on their interacting with the BSA. Both Sb forms interfere with the binding of the other to protein.
Collapse
|
8
|
Almutairi FM, Ajmal MR, Siddiqi MK, Majid N, Al-Alawy AIA, Abdelhameed AS, Khan RH. Biophysical insight into the interaction of levocabastine with human serum albumin: spectroscopy and molecular docking approach. J Biomol Struct Dyn 2020; 39:1525-1534. [PMID: 32308140 DOI: 10.1080/07391102.2020.1750486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interaction of levocabastine with human serum albumin (HSA) is investigated by applying fluorescence spectroscopy, circular dichroism spectroscopy and molecular docking methods. Levocabastine is an important drug in treatment of allergy and currently a target drug for drug repurposing to treat other diseases like vernal keratoconjuctivitis. Fluorescence quenching data revealed that levocabastine bind weakly to protein with binding constant in the order of 103 M-1. Förster resonance energy transfer results indicated the binding distance of 2.28 nm for levocabastine. Synchronous fluorescence result suggest slight blue shift for tryptophan upon levocabastine binding, binding of levocabastine impelled rise in α-helical structure in protein, while there are minimal changes in tertiary structure in protein. Moreover, docking results indicate levocabastine binds to pocket near to the drug site-I in HSA via hydrogen bonding and hydrophobic interactions. Understanding the interaction of levocabastine with HSA is significant for the advancement of therapeutic and diagnostic strategies for optimal treatment results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Rehan Ajmal
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adel Ibrahim Ahmad Al-Alawy
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Hassan MI, Ahmad F, Islam A. Probing the interaction of Rivastigmine Tartrate, an important Alzheimer's drug, with serum albumin: Attempting treatment of Alzheimer's disease. Int J Biol Macromol 2020; 148:533-542. [PMID: 31954794 DOI: 10.1016/j.ijbiomac.2020.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023]
Abstract
The present study was aimed at investigating the binding between an important drug of Alzheimer's therapy, Rivastigmine tartrate (RT), with Bovine serum albumin (BSA). BSA is a model protein that is increasingly being used for studies related to drug-protein interaction owing to its structural similarity with human serum albumin (HSA) which is extremely abundant in the circulatory system comprising around 60% of the total plasma protein. Fluorescence spectroscopy implied that complex formation is taking place between BSA and RT; binding constant calculated was of the order of 104 M-1 implicative of the strength of this interaction. Fluorescence spectroscopy was carried out at three different temperatures in a bid to find out the operative mode of quenching; static quenching was taking place for RT-BSA interaction with a binding constant of 2.5 × 104 M-1 at 298 K. Further, changes in Far UV CD spectra clearly implied that RT induces structural transition in BSA suggestive of RT-BSA complex formation. The negative value of ∆G0 as obtained from fluorescence spectroscopy and isothermal titration calorimetry (ITC) suggests the reaction to be spontaneous and thermodynamically favorable. Additionally, molecular docking was employed to investigate different forces and critical residues involved in RT-BSA interaction. Furthermore, all-atom molecular dynamics simulation for 50 ns was performed on the BSA-RT complex to investigate its conformational behavior, stability and dynamics.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|