1
|
Singh R, Kushwaha V, Rastogi SK, Rai P, Kumar S, Khandelwal N, Gupta S, Bisen AC, Varshney S, Singh A, Balaramnavar VM, Bhatta RS, Kumar R, Gaikwad AN, Sinha AK. Design, synthesis, and biological evaluation of novel quinoline carboxylic acid based styryl/alkyne hybrid molecule as a potent anti-adipogenic and antidyslipidemic agent via activation of Wnt/β-catenin pathway. Eur J Med Chem 2025; 288:117346. [PMID: 39954348 DOI: 10.1016/j.ejmech.2025.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
Obesity has emerged as the root cause for various metabolic disorders worldwide and hence demands for urgent attention. In the same stride, a series of quinoline carboxylic acid-based styryl/alkyne hybrids were designed, synthesized, and evaluated for their anti-adipogenic activity. Based on the structure-activity relationship, functional groups and essential substituents to potentiate the anti-adipogenic activity were identified. The potent compound (E)-6-fluoro-2-(4-(4-methylstyryl)phenyl)quinoline-4-carboxylic acid (5m) suppresses the adipogenesis with IC50 value of 0.330 μM. In vitro studies in 3T3-L1 preadipocytes cell line show that compound 5m prevents adipogenesis by stopping the cell cycle at the early phase of differentiation, which is caused by stimulation of the Wnt3a/β-catenin pathway. Further compound 5m improves the blood lipid profile and reduces adipogenic marker proteins in the epididymal white adipose tissue (eWAT) of dyslipidemic hamster at 100 mg/kg/day oral dose. Treatment with compound 5m reduces the hypertrophied adipose tissue along with the decrease in the levels of adipogenic marker proteins such as PPARγ and CEBPα. The pharmacokinetic result establishes the molecule 5m to be stable with significant oral bioavailability. Henceforth, the present study provides a unique insight into the anti-adipogenic/anti-dyslipidemic properties of a novel styryl-quinoline carboxylic acid scaffold with a scope to enhance the anti-adipogenic potency for therapeutic intervention of obesity.
Collapse
Affiliation(s)
- Richa Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Vinita Kushwaha
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Prashant Rai
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Astha Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Vishal M Balaramnavar
- Sanskriti University, School of Pharmacy and Research Center, 28 KM. Stone, Mathura-Delhi Highway, Chhata, Mathura, Uttar Pradesh (UP), 281401, India.
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
2
|
Tao T, Xu Y, Zhang CH, Zhang X, Chen J, Liu J. Single-cell transcriptomic analysis and luteolin treatment reveal three adipogenic genes, including Aspn, Htra1 and Efemp1. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159585. [PMID: 39662603 DOI: 10.1016/j.bbalip.2024.159585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
A comparative transcriptomic analysis in adipose stem and progenitor cells (ASPCs) between obese and lean mice might facilitate the identification of novel adipogenic genes. Here, we compare transcriptomic differences in the ASPCs of subcutaneous adipose tissue (SAT) between the mice fed on a high-fat-diet (HFD) and the chow diet (CD)-fed mice by analyzing three independent single-cell RNA sequencing datasets. Six differential genes, including three up-regulated genes Aspn, Rrbp1, Fbln2 and three down-regulated genes Htra1, Plpp3, Efemp1, are identified and confirmed in HFD-fed mice. Further, the expression of these genes is found to be significantly diminished in the differentiated 3T3-L1 cells. Treatment with luteolin, a dietary flavonoid known to inhibit 3T3-L1 adipogenesis, reverses the decreased expression of Aspn, Htra1 and Efemp1. Furthermore, knockdown of Aspn, Htra1 and Efemp1 significantly facilitates 3T3-L1 adipogenesis. Together, these genes not only are differential in ASPCs between obese and lean mice, but also are the adipogenic inhibitory genes that can be up-regulated by luteolin treatment.
Collapse
Affiliation(s)
- Tao Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanting Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Hui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Chandrasekaran A, Jeon Y, Kim SY, Seo DH, Yuk HJ, Son E, Kim DS, Kim SH, Lee GJ. Therapeutic Potential of Suaeda japonica Makino Leaf Extract Against Obesity in 3T3-L1 Preadipocytes and HFD-Induced C57BL/6 J Mice. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05170-4. [PMID: 39775455 DOI: 10.1007/s12010-024-05170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
The worldwide obesity prevalence is increasing, affecting around 4 million individuals annually. This research critically evaluated the anti-obesity efficacy of the Korean mudflat halophyte herb Suaeda japonica (Suaeda japonica Makino). In the obese mice model, the administration of 200 mg/kg b.w. of S. japonica extract (SJE) significantly mitigated obesity by modulating body and organ weight, food efficiency ratio, energy expenditure, multiple blood chemistry parameters, lipid accumulation, adipose tissue hypertrophy, and various gene expressions associated with lipogenesis and thermogenesis. The significant obesity control (80%) of the aforementioned concentration of SJE treatment in mice mimics the plant-derived commercial anti-obesity drug Garcinia cambogia (Garcinia gummi-gutta) (80%, 245 mg/kg) b.w. Since SJE has not been extensively studied for obesity management, this study demonstrated that it might influence physiological, biochemical, and molecular pathways to combat obesity and related metabolic illnesses.
Collapse
Affiliation(s)
- Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, 34134, Korea
| | - Yongsam Jeon
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Korea
| | - Seo-Young Kim
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Korea
| | - Dong-Hoon Seo
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, 34134, Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Korea
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon, 34520, Korea.
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Korea.
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
4
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
5
|
Wei L, Li Y, Hao Z, Zheng Z, Yang H, Xu S, Li S, Zhang L, Xu Y. Fermentation improves antioxidant capacity and γ-aminobutyric acid content of Ganmai Dazao Decoction by lactic acid bacteria. Front Microbiol 2023; 14:1274353. [PMID: 38029167 PMCID: PMC10652878 DOI: 10.3389/fmicb.2023.1274353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Ganmai Dazao Decoction is a traditional Chinese recipe, and is composed of licorice, floating wheat, and jujube. Methods Effects of lactic acid bacteria fermentation on the physicochemical properties, antioxidant activity, and γ-aminobutyric acid of Ganmai Dazao Decoction were studied. The changes of small and medium molecules in Ganmai Dazao Decoction before and after fermentation were determined by LC-MS non-targeted metabolomics. Results The results showed that the contents of lactic acid, citric acid, acetic acid, and total phenol content increased significantly, DPPH free radical clearance and hydroxyl free radical clearance were significantly increased. γ-aminobutyric acid content was 12.06% higher after fermentation than before fermentation. A total of 553 differential metabolites were detected and identified from the Ganmai Dazao Decoction before and after fermentation by partial least squares discrimination and VIP analysis. Discussion Among the top 30 differential metabolites with VIP values, the content of five functional substances increased significantly. Our results showed that lactic acid bacteria fermentation of Ganmai Dazao Decoction improves its antioxidant effects and that fermentation of Ganmai Dazao Decoction with lactic acid bacteria is an innovative approach that improves the health-promoting ingredients of Ganmai Dazao Decoction.
Collapse
Affiliation(s)
- Linya Wei
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Yiming Li
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zina Hao
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenjie Zheng
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huixin Yang
- Comparative Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Suixin Xu
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Shihan Li
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
- Comparative Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Yunhe Xu
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
7
|
Luteolin protects against adipogenic and lipogenic potency induced by human relevant mixtures of persistent organic pollutants (POPs) in the 3T3-L1 model. Food Chem Toxicol 2023; 173:113608. [PMID: 36639049 DOI: 10.1016/j.fct.2023.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Human exposure to persistent organic pollutants (POPs) may contribute to obesogenic effects. We have previously shown that POP mixtures modelled on blood levels relevant to the Scandinavian population induces adipogenic effects in the mouse 3T3-L1 cell line. Luteolin is a flavone that has shown anti-lipogenic and anti-adipogenic effects on adipogenesis in in vitro models. In this study, luteolin has been applied to inhibit adipocyte formation and intracellular lipid content increase induced by a human relevant mixture of POPs. 3T3-L1 cells were exposed to a POP mixture consisting of 29 chemicals, including amongst others polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylated acids (PFAAs), and polybrominated diphenyl ethers (PBDEs). Rosiglitazone was applied as a positive lipogenic control. Luteolin was tested between 0.5 and 10 μM. High content analysis was used to assess changes in adipocyte formation and intracellular lipid content in the 3T3-L1 cell line. Luteolin significantly reduced POP-induced adipocyte formation at 2, 5 and 10 μM, and lipid accumulation at 10 μM. Interestingly, luteolin did not affect rosiglitazone induced adipo- and lipogenic effects, suggesting differences in mechanisms of action. In conclusion, this in vitro study shows that dietary polyphenols such as luteolin may protect against POP induced adipo- and lipogenic effects.
Collapse
|
8
|
Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6828230. [PMID: 36647430 PMCID: PMC9840553 DOI: 10.1155/2023/6828230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly (P < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-α, PPARγ, SREBP-1c, and FAS) and proinflammatory (TNF-α and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. In vivo model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.
Collapse
|
9
|
Takahashi J, Takahashi N, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production, and Glucose Uptake via Its PPARγ Ligand Activity. ACS OMEGA 2022; 7:48113-48120. [PMID: 36591200 PMCID: PMC9798764 DOI: 10.1021/acsomega.2c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Although valerenic acid (VA) is an important marker compound for quantitative assessment of Valeriana officinalis products, little is known about its potential effects on adipocytes. We investigated the effects of VA on adipocyte differentiation, adiponectin production, and glucose uptake using 3T3-L1 adipocytes. The results showed that VA promoted adipocyte differentiation and increased the gene expression of adipogenesis and glucose uptake-related proteins, including peroxisome proliferator-activated receptor gamma (PPARγ), cytosine-cytosine-adenosine-adenosine-thymidine enhancer binding protein alpha (C/EBPα), adiponectin, and glucose transporter 4 (GLUT4). Additionally, cell cultures treated with VA had elevated adiponectin secretion and glucose uptake. The PPARγ luciferase assay indicated VA as a partial agonist of PPARγ, while the analysis using its antagonist, GW9662, and a docking simulation between PPARγ and VA revealed the binding site of VA as likely adjacent to the Ω loop pocket of PPARγ. Taken together, these results demonstrate that VA acts as a PPARγ partial agonist to promote adipocyte differentiation, adiponectin production, and glucose uptake.
Collapse
Affiliation(s)
- Jun Takahashi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Nobuyuki Takahashi
- Department
of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
10
|
Muruganathan N, Dhanapal AR, Baskar V, Muthuramalingam P, Selvaraj D, Aara H, Shiek Abdullah MZ, Sivanesan I. Recent Updates on Source, Biosynthesis, and Therapeutic Potential of Natural Flavonoid Luteolin: A Review. Metabolites 2022; 12:1145. [PMID: 36422285 PMCID: PMC9696498 DOI: 10.3390/metabo12111145] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.
Collapse
Affiliation(s)
- Nandakumar Muruganathan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anand Raj Dhanapal
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Plant Tissue Culture & Central Instrumentation Laboratory, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Venkidasamy Baskar
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Dhivya Selvaraj
- Department of Computer Science and Engineering CSE-AI, Amrita School of Engineering, Chennai 601103, Tamil Nadu, India
| | - Husne Aara
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | | | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr 2022; 64:4016-4030. [PMID: 36300856 DOI: 10.1080/10408398.2022.2138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is characterized by excessive body fat accumulation and is a high-risk factor for metabolic comorbidities, including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. In lean individuals, adipose tissue (AT) is not only an important regulatory organ for energy storage and metabolism, but also an indispensable immune and endocrine organ. The sustained energy imbalance induces adipocyte hypotrophy and hyperplasia as well as AT remodeling, accompanied by chronic low-grade inflammation and adipocytes dysfunction in AT, ultimately leading to systemic insulin resistance and ectopic lipid deposition. Luteolin is a natural flavonoid widely distributed in fruits and vegetables and possesses multifold biological activities, such as antioxidant, anticancer, and anti-inflammatory activities. Diet supplementation of this flavonoid has been reported to inhibit AT lipogenesis and inflammation as well as the ectopic lipid deposition, increase AT thermogenesis and systemic energy expenditure, and finally improve obesity and associated metabolic diseases. The purpose of this review is to reveal the nutritional activities of luteolin in obesity and its complications with emphasis on its action on AT energy metabolism, immunoregulation, and endocrine intervention.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jiahui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
12
|
Functional Complementation of Anti-Adipogenic Phytonutrients for Obesity Prevention and Management. Nutrients 2022; 14:nu14204325. [PMID: 36297009 PMCID: PMC9609749 DOI: 10.3390/nu14204325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Obesity is an established risk factor for metabolic disease. This study explores the functional complementation of anti-adipogenic phytonutrients for obesity prevention and management. Nine phytonutrients were selected based on their ability to affect the expression of one or more selected adipogenic biomarker proteins. The phytonutrients include berberine, luteolin, resveratrol, fisetin, quercetin, fucoidan, epigallocatechin gallate, hesperidin, and curcumin. The selected adipogenic biomarker proteins include PPARɣ, SREBP1c, FASN, PLIN1, FABP4, and β-catenin. Individually, phytonutrients had variable effects on the expression level of selected adipogenic biomarker proteins. Collectively, the functional complementation of nine phytonutrients suppressed de novo fatty acid biosynthesis via the negative regulation of PPARɣ, FASN, PLIN1, and FABP4 expression; activated glycolysis via the positive regulation of SREBP1c expression; and preserved cell–cell adhesion via the inhibition of β-catenin degradation. In primary human subcutaneous preadipocytes, the composition of nine phytonutrients had more potent and longer lasting anti-adipogenic effects compared to individual phytonutrients. In a diet-induced obesity murine model, the composition of nine phytonutrients improved glucose tolerance and reduced weight gain, liver steatosis, visceral adiposity, circulating triglycerides, low-density lipoprotein cholesterol, and inflammatory cytokines and chemokines. The functional complementation of anti-adipogenic phytonutrients provides an effective approach toward engineering novel therapeutics for the prevention and management of obesity and metabolic syndrome.
Collapse
|
13
|
Peanut Shell Extract and Luteolin Regulate Lipid Metabolism and Induce Browning in 3T3-L1 Adipocytes. Foods 2022; 11:foods11172696. [PMID: 36076880 PMCID: PMC9455591 DOI: 10.3390/foods11172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Peanut shells are agricultural waste products that require utilization. The freeze-dried ethanolic peanut shell extract (PSE) contained 10.01 ± 0.55 mg/g of luteolin (LUT) with a total polyphenol content of 18.11 ± 0.88 mg GAE/g. Thus, LUT is one of the major polyphenolic components in PSE. Although PSE displays antibacterial and neurotrophic activities, minimal research is available addressing its potential role in lipid metabolism. This study investigated the role of PSE in terms of inhibiting adipogenesis, accelerating lipolysis, and promoting lipid browning using the 3T3-L1 cell line. Without affecting cell viability, high concentrations of PSE and LUT prevented adipogenesis by reducing the mRNA levels of C/EBPα, PPARγ, and SREBP1-c, and increasing the protein levels of pACC and pAMPK. Moreover, PSE and LUT induced lipolysis by activating lipolytic proteins, and enhanced the protein expressions of the brown adipocyte-specific markers, UCP1, PGC-1α, and SIRT1 in fully differentiated 3T3-L1 adipocytes. Increased mitochondrial biosynthesis provided additional evidence in favor of these findings. Due to their anti-obesity properties, it is proposed that PSE and LUT could be used as potential dietary supplements.
Collapse
|
14
|
Xue W, Yu SY, Kuss MA, Kong Y, Shi W, Chung S, Kim SY, Duan B. 3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication 2022; 14. [PMID: 35504266 DOI: 10.1088/1758-5090/ac6c4b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
Cancer-associated cachexia (CAC) is a complex metabolic and behavioral syndrome with multiple manifestations that involve systemic inflammation, weight loss, and adipose lipolysis. It impacts the quality of life of patients and is the direct cause of death in 20-30% of cancer patients. The severity of fat loss and adipose tissue remodeling negatively correlate with patients' survival outcomes. To address the mechanism of fat loss and design potential approaches to prevent the process, it will be essential to understand CAC pathophysiology through white adipose tissue models. In the present study, an engineered human white adipose tissue (eWAT) model based on three-dimensional (3D) bioprinting was developed and treated with pancreatic cancer cell-conditioned medium (CM) to mimic the status of CAC in vitro. We found that the CM treatment significantly increased the lipolysis and accumulation of the extracellular matrix (ECM). The 3D eWATs were further vascularized to study the influence of vascularization on lipolysis and CAC progression, which was largely unknown. Results demonstrated that CM treatment improved the angiogenesis of vascularized eWATs (veWATs), and veWATs demonstrated decreased glycerol release but increased Ucp1 expression, compared to eWATs. Many unique inflammatory cytokines (IL-8, CXCL-1, GM-CSF, etc) from the CM were detected and supposed to contribute to eWAT lipolysis, Ucp1 up-regulation, and ECM development. In response to CM treatment, eWATs also secreted inflammatory adipokines related to the metastatic ability of cancer, muscle atrophy, and vascularization (NGAL, CD54, IGFBP-2, etc). Our work demonstrated that the eWAT is a robust model for studying cachectic fat loss and the accompanying remodeling of adipose tissue. It is therefore a useful tool for future research exploring CAC physiologies and developing potential therapies.
Collapse
Affiliation(s)
- Wen Xue
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Seok-Yeong Yu
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Mitchell A Kuss
- Regenerative Medicine, University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Yunfan Kong
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Wen Shi
- University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Soonkyu Chung
- University of Massachusetts Amherst, UMA, Amherst, Massachusetts, 01003, UNITED STATES
| | - So-Youn Kim
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Bin Duan
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| |
Collapse
|
15
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
16
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
17
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1441-1454. [PMID: 33522240 DOI: 10.1021/acs.jafc.0c08085] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Luteolin, a flavone subclass of flavonoids, is commonly found in food plants and has multiple biological activities. Recently, evidence is growing with regard to the potential of luteolin intake to beneficially affect glycolipid metabolism disorders (GLMDs), particularly insulin resistance, diabetes, and obesity. The aim of this contribution is to provide an overview of recent advances in identifying and understanding the pharmacokinetic properties (absorption, metabolism, and bioavailability) of luteolin, its regulatory effects on glycolipid metabolism, and the underlying mechanisms of action of luteolin in the brain, liver, adipose tissues, and other tissues/organs. Collectively, luteolin or its principal metabolites may contribute to counteracting GLMDs, especially for human obesity and diabetes.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
18
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2020; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
19
|
Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization. Nutrients 2020; 12:nu12123663. [PMID: 33260769 PMCID: PMC7761141 DOI: 10.3390/nu12123663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Olive tree (Olea europaea L.) leaves are an abundant source of bioactive compounds with several beneficial effects for human health. Recently, the effect of olive leaf extract in obesity has been studied. However, the molecular mechanism in preventing obesity-related inflammation has not been elucidated. Obesity is a state of chronic low-grade inflammation and is associated with an increase of pro-inflammatory M1 macrophages infiltration in the adipose tissue. In the current study, we explored Olea europaea L. leaf extract (OLE) anti-inflammatory activity using an in vitro model of obesity-induced inflammation obtained by stimulating murine macrophages RAW 264.7 with high dose of the free fatty acid palmitate. We found that OLE significantly suppressed the induction of pro-inflammatory mediators, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), prostaglandin E2 (PGE2) and reactive oxygen species (ROS), while it enhanced the anti-inflammatory cytokine, IL-10. Moreover, we demonstrated that OLE reduced the oxidative stress induced by palmitate in macrophages by regulating the NF-E2-related factor 2 (NRF2)−Kelch-like ECH-associated protein 1 (KEAP1) pathway. Finally, we showed that OLE promoted the shift of M1 macrophage toward less inflammatory M2-cells via the modulation of the associated NF-κB and proliferator-activated receptor gamma (PPARγ) signaling pathways. Thereby, our findings shed light on the potential therapeutic feature of OLE in recovering obesity-associated inflammation via regulating M1/M2 status.
Collapse
|
20
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Jang MS, Kong CS. Effect and Comparison of Luteolin and Its Derivative Sodium Luteolin-4'-sulfonate on Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through AMPK-Mediated PPAR γ Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8894910. [PMID: 33178328 PMCID: PMC7644305 DOI: 10.1155/2020/8894910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Luteolin is a common phytochemical from the flavonoid family with a flavone structure. Studies reported several bioactivities for luteolin and similar flavones. Attenuating the increased adipogenesis of bone marrow cells (hBM-MSCs) has been regarded as a therapeutic target against osteoporotic bone disorders. In the present study, the potential roles of luteolin and its sulfonic acid derivative luteolin-OSO3Na in regulating adipogenic differentiation of hBM-MSCs were investigated. Adipo-induced cells were treated with or without compounds, and their effect on adipogenesis was evaluated by adipogenic marker levels such as lipid accumulation and PPARγ pathway activation. Luteolin hindered the adipogenic lipid accumulation in adipo-induced hBM-MSCs. Immunoblotting and reverse transcription-polymerase chain reaction analysis results indicated that luteolin downregulated PPARγ and downstream factors of C/EBPα and SREBP1c expression which resulted in inhibition of adipogenesis. Luteolin-OSO3Na showed similar effects; however, it was significantly less effective compared to luteolin. Investigating p38, JNK, and ERK MAPKs and AMPK activation indicated that luteolin suppressed the MAPK phosphorylation while stimulating AMPK phosphorylation. On the other hand, luteolin-OSO3Na was not able to notably affect the MAPK and AMPK activation. In conclusion, this study suggested that luteolin inhibited adipogenic differentiation of hBM-MSCs via upregulating AMPK activation. Replacing its 4'-hydroxyl group with sulfonic acid sodium salt diminished its antiadipogenic effect indicating its role in regulating AMPK activation. The general significance is that luteolin is a common phytochemical with various health-beneficial effects. The current study suggested that luteolin may serve as a lead compound for developing antiosteoporotic substances with antiadipogenic properties.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Mi-Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
21
|
Park HS, Lee K, Kim SH, Hong MJ, Jeong NJ, Kim MS. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. J Food Biochem 2020; 44:e13358. [PMID: 32598492 DOI: 10.1111/jfbc.13358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023]
Abstract
Luteolin, a naturally derived flavonoid, exerts beneficial effects such as antitumor, antioxidant, and anti-inflammatory effects. However, the molecular mechanism underlying the effect of luteolin in hypercholesterolemia remains unclear. In this study, we demonstrated that luteolin upregulated the expression of liver X receptor (LXR) α, ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B member 1 (SRB1), which play a major role in cholesterol efflux, in HepG2 hepatocytes. Luteolin-stimulated expression of ABCG1 and SRB1 was reversed by inhibitory compound of LXRα. Luteolin administration also upregulated the expression of ABCG1, and SRB1 as well as cholesterol 7 α-hydroxylase (Cyp7α1) in the liver of diet-induced obese mice. Luteolin decreased the level of blood cholesterol and non-high-density lipoprotein cholesterol in obese mice. In addition, luteolin ameliorated glucose intolerance and reduced expression of gluconeogenesis-associated enzymes in an LXRα-dependent manner. PRACTICAL APPLICATIONS: Luteolin is known to possess various pharmacological activities. This research revealed that luteolin ameliorates hypercholesterolemia and glucose intolerance in diet-induced obesity. The results indicate that the potential properties of luteolin in cholesterol metabolism could be explained, at least in part, as being due to upregulated expression of ABCG1, and SRB1 through activation of liver X receptor, LXRα signaling pathway in HepG2 cells.
Collapse
Affiliation(s)
- Hee-Sook Park
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Kyunhee Lee
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Wanju-gun, Republic of Korea
| | - Soon-Hee Kim
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Moon Ju Hong
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Wanju-gun, Republic of Korea
| | - Nam-Joo Jeong
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Myung-Sunny Kim
- Research group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Wanju-gun, Republic of Korea
| |
Collapse
|
22
|
Yuan J, Shi Q, Chen J, Lu J, Wang L, Qiu M, Liu J. Effects of 23-epi-26-deoxyactein on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity in C57BL/6 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153264. [PMID: 32570112 DOI: 10.1016/j.phymed.2020.153264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/23/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The ethanolic extract of Actaea racemosa L. (Cimicifuga racemosa (L.) Nutt.) has recently been reported to ameliorate obesity-related insulin resistance, hyperlipidemia, and fatty liver in rodents. However, it remains unclear which A. racemosa components are responsible for these beneficial effects. PURPOSE We aimed to examine the anti-obesity potential of 23-epi-26-deoxyactein (DA), which is contained in the ethanolic extracts of A. racemosa. STUDY DESIGN AND METHODS To evaluate the effects of DA on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity in C57BL/6 mice, in vitro and in vivo tests were performed. For in vitro assessment, we used Oil red O staining that showed lipid accumulation in differentiated 3T3-L1 cells. For in vivo tests, male 5-week-old C57BL/6 mice were fed with low-fat diet (LFD), high-fat diet (HFD), HFD with 10 mg/kg/d luteolin (LU; positive control drug), HFD with 1 mg/kg/d DA, and HFD with 5 mg/kg/d DA for 12 weeks, respectively. Glucose and insulin tolerance tests were performed at week 17. The lipid deposition of adipose tissue and liver was visualized by hematoxylin and eosin staining. Real-time PCR showed mRNA levels of genes involved in adipogenesis, lipogenesis, and lipolysis. AMPK signaling and SIRT1-FOXO1 pathway were assessed by real-time PCR and western blot. RESULTS 10 μM DA and 20 μM LU treatments inhibited 3T3-L1 adipogenesis through down-regulating the expression of C/ebpα, C/ebpβ, and Pparγ, which are the critical adipogenic transcription factors. The in vivo results showed that 5 mg/kg/d DA and 10 mg/kg/d LU significantly lowered body weight gain, fat mass, and liver weight in HFD-fed mice. Meanwhile, DA and LU also reduced insulin resistance and serum lipoprotein levels in HFD-fed mice. Mechanistic studies showed that DA and LU promoted adipocyte lipolysis in mice through activating the AMPK signaling and SIRT1-FOXO1 pathway. CONCLUSION The in vitro results indicate that 10 μM DA suppresses adipogenesis in 3T3-L1 preadipocytes. The in vivo treatment with 5 mg/kg/d DA ameliorates diet-induced obesity in mice, suggesting that DA is a promising natural compound for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Yuan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiangqiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Juan Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lu Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
23
|
Sudhakaran M, Doseff AI. The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules 2020; 25:E2477. [PMID: 32471061 PMCID: PMC7321129 DOI: 10.3390/molecules25112477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is an inflammatory disease that is approaching pandemic levels, affecting nearly 30% of the world's total population. Obesity increases the risk of diabetes, cardiovascular disorders, and cancer, consequentially impacting the quality of life and imposing a serious socioeconomic burden. Hence, reducing obesity and related life-threatening conditions has become a paramount health challenge. The chronic systemic inflammation characteristic of obesity promotes adipose tissue remodeling and metabolic changes. Macrophages, the major culprits in obesity-induced inflammation, contribute to sustaining a dysregulated immune function, which creates a vicious adipocyte-macrophage crosstalk, leading to insulin resistance and metabolic disorders. Therefore, targeting regulatory inflammatory pathways has attracted great attention to overcome obesity and its related conditions. However, the lack of clinical efficacy and the undesirable side-effects of available therapeutic options for obesity provide compelling reasons for the need to identify additional approaches for the prevention and treatment of obesity-induced inflammation. Plant-based active metabolites or nutraceuticals and diets with an increased content of these compounds are emerging as subjects of intense scientific investigation, due to their ability to ameliorate inflammatory conditions and offer safe and cost-effective opportunities to improve health. Flavones are a class of flavonoids with anti-obesogenic, anti-inflammatory and anti-carcinogenic properties. Preclinical studies have laid foundations by establishing the potential role of flavones in suppressing adipogenesis, inducing browning, modulating immune responses in the adipose tissues, and hindering obesity-induced inflammation. Nonetheless, the understanding of the molecular mechanisms responsible for the anti-obesogenic activity of flavones remains scarce and requires further investigations. This review recapitulates the molecular aspects of obesity-induced inflammation and the crosstalk between adipocytes and macrophages, while focusing on the current evidence on the health benefits of flavones against obesity and chronic inflammation, which has been positively correlated with an enhanced cancer incidence. We conclude the review by highlighting the areas of research warranting a deeper investigation, with an emphasis on flavones and their potential impact on the crosstalk between adipocytes, the immune system, the gut microbiome, and their role in the regulation of obesity.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Aranaz P, Zabala M, Romo-Hualde A, Navarro-Herrera D, López-Yoldi M, Vizmanos JL, Martínez JA, Milagro FI, González-Navarro CJ. A combination of borage seed oil and quercetin reduces fat accumulation and improves insulin sensitivity in obese rats. Food Funct 2020; 11:4512-4524. [PMID: 32391533 DOI: 10.1039/d0fo00504e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolic properties of omega-6 fatty acid consumption are being increasingly accepted. We had previously observed that supplementation with a borage seed oil (BSO), as a source of linoleic (18:2n-6; LA) and gamma-linolenic (18:3n-6; GLA) acids, reduces body weight and visceral adiposity and improves insulin sensitivity in a diet-induced obesity model of Wistar rats. Here, it was investigated whether the anti-obesogenic properties of BSO could be maintained in a pre-obese model of rats, and if these effects are enhanced by a combination with low doses of quercetin, together with its potential role in the regulation of the adipocyte biology. The combination of BSO and quercetin during 8 weeks was able to ameliorate glucose intolerance and insulin resistance, and to improve liver steatosis. Although no effects were observed on body weight, animals supplemented with this combination exhibited a lower proportion of visceral adiposity. In addition, in vitro differentiation of epididymal adipose-precursor cells of the BSO-treated animals exhibited a down-regulation of Fasn, Glut4, Pparg and Srebp1 genes, in comparison with the control group. Finally, in vitro evaluation of the components of BSO demonstrated that the anti-adipogenic activity of quercetin was significantly potentiated by the combination with both LA and GLA through the down-regulation of different adipogenesis-key genes in 3T3-L1 cells. All these data suggest that omega-6 fatty acids LA and GLA, and their natural sources such as BSO, could be combined with quercetin to potentiate their effects in the prevention of the excess of adiposity and the insulin resistance.
Collapse
Affiliation(s)
- Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim JH, Lee S, Cho EJ. Flavonoids from Acer okamotoanum Inhibit Adipocyte Differentiation and Promote Lipolysis in the 3T3-L1 Cells. Molecules 2020; 25:molecules25081920. [PMID: 32326254 PMCID: PMC7222000 DOI: 10.3390/molecules25081920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Flavonoids, quercitrin, isoquercitrin (IQ), and afzelin, were isolated from ethyl acetate fraction of Acer okamotoanum. We investigated anti-obesity effects and mechanisms of three flavonoids from A. okamotoanum in the differentiated 3T3-L1 cells. The differentiated 3T3-L1 cells increased triglyceride (TG) contents, compared with non-differentiated normal group. However, treatments of three flavonoids from A. okamotoanum decreased TG contents without cytotoxicity. In addition, they showed significant down-regulation of several adipogenic transcription factors, such as γ-cytidine-cytidine-adenosine-adenosine-thymidine/enhancer binding protein -α, -β, and peroxisome proliferator-activated receptor-γ, compared with non-treated control group. Furthermore, treatment of the flavonoids inhibited expressions of lipogenesis-related proteins including fatty acid synthase, adipocyte protein 2, and glucose transporter 4. Moreover, IQ-treated group showed significant up-regulation of lipolysis-related proteins such as adipose triglyceride lipase and hormone-sensitive lipase. In addition, flavonoids significantly activated 5′-adenosine monophosphate-activated protein kinase (AMPK) compared to control group. In particular, IQ showed higher inhibition of TG accumulation by regulation of pathways related with both adipogenesis and lipolysis, than other flavonoids. The present results indicated that three flavonoids of A. okamotoanum showed anti-obesity activity by regulation of adipocyte differentiation, lipolysis, and AMPK signaling, suggesting as an anti-obesity functional agents.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: ; Tel.: +82-51-510-2837
| |
Collapse
|
26
|
Anyanwu GO, Kolb AF, Bermano G. Antiobesity functional leads and targets for drug development. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020:143-160. [DOI: 10.1016/b978-0-12-817890-4.00009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
28
|
Xie Y, Zhang Y, Su X. Antidiabetic and Hypolipidemic Effects of 5,7-Dimethoxyflavone in Streptozotocin-Induced Diabetic Rats. Med Sci Monit 2019; 25:9893-9901. [PMID: 31869828 PMCID: PMC6939444 DOI: 10.12659/msm.918794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The flavones are considered as competent antidiabetic molecules due to their strong antioxidant activities and higher in vivo stability. The present study evaluated the antidiabetic and hypolipidemic effects of 5,7-dimethoxyflavone in streptozotocin (STZ)-induced diabetic rat models. MATERIAL AND METHODS The antidiabetic potential of 5,7-dimethoxyflavone was evaluated in streptozotocin-induced diabetic rats. The serum levels of triglyceride, total cholesterol, and high-density lipoprotein cholesterol were measured using the Randox assay kit. Histopathological examination was carried out by hematoxylin and eosin (HE) staining. RESULTS Oral administration of 5,7-dimethoxyflavone significantly reduced STZ-induced enhancement in blood sugar and glycosylated hemoglobin, as well as significant increases in C-peptide, insulin, hemoglobin, and total protein content (p<0.05). Additionally, treatment with 5,7-dimethoxyflavone resulted in a remarkable increase in non-enzymic antioxidants. Administration of 5,7-dimethoxyflavone had a hypolipidemic effect by significantly reducing levels of serum triglycerides, total cholesterol, and low-density lipoproteins. The histopathological examination of rat pancreases revealed the beneficial effect of 5,7-dimethoxyflavone and protection of ß cell integrity in STZ-induced diabetic rats. CONCLUSIONS These findings reflect the antidiabetic and hypolipidemic effects of 5,7-dimethoxyflavone, suggesting that 5,7-dimethoxyflavone may be a promising compound for use in development of new antidiabetic drugs.
Collapse
Affiliation(s)
- Yongli Xie
- Department of Endocrinology, Jiangxi Pingxiang People's Hospital, Pingxiang, Jiangxi, China (mainland)
| | - Yawei Zhang
- Department of Endocrinology, Jiangxi Pingxiang People's Hospital, Pingxiang, Jiangxi, China (mainland)
| | - Xiaoqing Su
- Department of Endocrinology, Jiangxi Pingxiang People's Hospital, Pingxiang, Jiangxi, China (mainland)
| |
Collapse
|
29
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
30
|
Hedayati N, Bemani Naeini M, Mohammadinejad A, Mohajeri SA. Beneficial effects of celery (
Apium graveolens
) on metabolic syndrome: A review of the existing evidences. Phytother Res 2019; 33:3040-3053. [PMID: 31464016 DOI: 10.1002/ptr.6492] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Narges Hedayati
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Mehri Bemani Naeini
- Nanotechnology Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Arash Mohammadinejad
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
- Department of ChemistryPayame Noor University Tehran Iran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
31
|
Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice. PLoS One 2019; 14:e0218792. [PMID: 31226166 PMCID: PMC6588247 DOI: 10.1371/journal.pone.0218792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
The increased prevalence of obesity and associated insulin resistance calls for effective therapeutic treatment of metabolic diseases. The current PPARγ-targeting antidiabetic drugs have undesirable side effects. The present study investigated the anti-diabetic and anti-obesity effects of withaferin A (WFA) in diet-induced obese (DIO) C57BL/6J mice and also the anti-adipogenic effect of WFA in differentiating 3T3- F442A cells. DIO mice were treated with WFA (6 mg/kg) or rosiglitazone (10 mg/kg) for 8 weeks. At the end of the treatment period, metabolic profile, liver function and inflammatory parameters were obtained. Expression of selective genes controlling insulin signaling, inflammation, adipogenesis, energy expenditure and PPARγ phosphorylation-regulated genes in epididymal fats were analyzed. Furthermore, the anti-adipogenic effect of WFA was evaluated in 3T3- F442A cell line. WFA treatment prevented weight gain without affecting food or caloric intake in DIO mice. WFA-treated group also exhibited lower epididymal and mesenteric fat pad mass, an improvement in lipid profile and hepatic steatosis and a reduction in serum inflammatory cytokines. Insulin resistance was reduced as shown by an improvement in glucose and insulin tolerance and serum adiponectin. WFA treatment upregulated selective insulin signaling (insr, irs1, slc2a4 and pi3k) and PPARγ phosphorylation-regulated (car3, selenbp1, aplp2, txnip, and adipoq) genes, downregulated inflammatory (tnf-α and il-6) genes and altered energy expenditure controlling (tph2 and adrb3) genes. In 3T3- F442A cell line, withaferin A inhibited adipogenesis as indicated by a decrease in lipid accumulation in differentiating adipocytes and protein expression of PPARγ and C/EBPα. The effect of rosiglitazone on physiological and lipid profiles, insulin resistance, some genes expression and differentiating adipocytes were markedly different. Our data suggest that WFA is a promising therapeutic agent for both diabetes and obesity.
Collapse
|
32
|
Jung YC, Kim HW, Min BK, Cho JY, Son HJ, Lee JY, Kim JY, Kwon SB, Li Q, Lee HW. Inhibitory Effect of Olive Leaf Extract on Obesity in High-fat Diet-induced Mice. In Vivo 2019; 33:707-715. [PMID: 31028187 PMCID: PMC6559891 DOI: 10.21873/invivo.11529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM The rapid increase in the number of people who are overweight or obese, which increases the risk of diseases and health problems, is becoming an important issue. Herein, we investigated whether olive leaf extract (OLE) has potent anti-obesity effects in high-fat induced mouse models. MATERIALS AND METHODS C57BL/6 mice were randomized into normal control, high-fat diet (HFD), HFD with OLE, and HFD with garcinia groups and administered experimental diets for 12 weeks. Body weight and food intake were measured once per week and obesity-related biomarkers were evaluated in the serum and adipose tissue. RESULTS OLE significantly suppressed weight gain, food efficiency ratio, visceral fat accumulation, and serum lipid composition in HFD-induced mice. Furthermore, the expression of adipogenesis- and thermogenesis-related molecules was decreased in the OLE-treated group. CONCLUSION OLE prevents obesity development by regulating the expression of molecules involved in adipogenesis and thermogenesis.
Collapse
Affiliation(s)
- Yun-Chan Jung
- Institute of Research and Development, Chaon Corp., Seongnam, Republic of Korea
| | - Hyun Woo Kim
- Institute of Research and Development, Chaon Corp., Seongnam, Republic of Korea
| | - Bok Kee Min
- Nova K Health Corp., Seoul, Republic of Korea
| | | | | | | | | | | | - Qiang Li
- Institute of Research and Development, Chaon Corp., Seongnam, Republic of Korea
| | - Hee-Woo Lee
- Institute of Research and Development, Chaon Corp., Seongnam, Republic of Korea
| |
Collapse
|
33
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
34
|
Inula Japonica Thunb. Flower Ethanol Extract Improves Obesity and Exercise Endurance in Mice Fed A High-Fat Diet. Nutrients 2018; 11:nu11010017. [PMID: 30577560 PMCID: PMC6356276 DOI: 10.3390/nu11010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/20/2023] Open
Abstract
Inula japonica Thunb. (Asteraceae) is a flowering plant that grows mainly in Korea, Japan, and China and its flower extract has diverse biological effects such as anti-inflammatory and antioxidative activities. However, the effects on obesity and enhancement of endurance capacity have not been explored yet. This study aims to reveal the effects of I. japonica flower ethanol extract (IJE) on obesity and endurance capacity in high-fat diet (HFD) fed C57BL/6J mice and the mechanism. IJE inhibited lipid accumulation in 3T3-L1 adipocytes in vitro. Also, IJE-fed mice showed reduced body weight gain, hepatic lipid, and body fat mass, and increased muscle weight. IJE reduced lipid accumulation in the liver and adipose tissue by decreasing lipogenic and adipogenic gene expression. Additionally, consumption of low-dose IJE significantly enhanced endurance capacity via increasing AMP-activated protein kinase activity and mRNA levels of Myh7 and Myh2. Luteolin and 1β-hydroxyalantolactone (1β-HA), compounds of IJE, are involved in anti-adipogenesis in the 3T3-L cells and only luteolin increased the protein levels of MHC during C2C12 myoblast differentiation. Collectively, our results suggest that consumption of IJE not only helps to prevent obesity but also enhances endurance capacity reduced by HFD.
Collapse
|
35
|
Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:359-368. [PMID: 29366769 DOI: 10.1016/j.jep.2017.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. MATERIALS AND METHODS In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. CONCLUSIONS This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas.
Collapse
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahong Zhao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Yanjun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
36
|
Hadrich F, Sayadi S. Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α. Lipids Health Dis 2018; 17:95. [PMID: 29695233 PMCID: PMC5922308 DOI: 10.1186/s12944-018-0738-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 11/26/2022] Open
Abstract
Background Apigetrin, a flavonoid found in many plant leaves and seeds, has been known to possess antimutagenic, anti-cancer, antioxidant and anti-inflammatory properties. Here, we are investigating the effect of the apigetrin on adipocytes differentiation in 3T3-L1 adipocytes, and elucidating the mechanism of its action. Methods Lipids accumulation was measured by Oil Red O staining and cell cycle was analyzed by flow cytometry. The antioxidant effect of apigetrin was evaluated against hydrogen peroxide. The expression of various genes, involved in adipogenesis and inflammation, was studied by real-time PCR. Results Our results showed that apigterin treatment inhibited significantly lipid accumulation without effect on cell viability at 100 μM, and it exerted the anti-adipogenic effect during the early stages of differentiation. Flow cytometry analysis showed that apigenin-7-O-glucoside (Ap7G) inhibited cell proliferation during mitotic clonal expansion and caused cell cycle delay. Quantitative PCR analysis revealed that the mRNA levels of C/EBP-α, PPAR-γ, SREBP-1c and FAS were suppressed after apigetrin treatment at 100 μM. Moreover, the mRNA level of pro-inflammatory genes (TNF-α and IL-6) were suppressed after apigterin treatment, at high concentration preadipocyte cells. Conclusion Taken together, these results indicated that apigenin-7-O-glucoside inhibits adipogenesis of 3T3-L1 preadipocytes at early stage of adipogenesis.
Collapse
Affiliation(s)
- Fatma Hadrich
- Environmental Bioprocesses Laboratory, AUF Regional Excellence Pole (AUF-PER-LBP), Sfax Biotechnology Center, P.O. Box 1177, 3038, Sfax, Tunisia.
| | - Sami Sayadi
- Environmental Bioprocesses Laboratory, AUF Regional Excellence Pole (AUF-PER-LBP), Sfax Biotechnology Center, P.O. Box 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
37
|
Abstract
Propose Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is characteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Methods Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action of these compounds in human or animal cell lines as well as animal models. Results Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes. Conclusion The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibition of clonal expansion, and cell-cycle arrest.
Collapse
|
38
|
Gupta A, Kumar A, Kumar D, Nandan S, Shankar K, Varshney S, Rajan S, Srivastava A, Gupta S, Kanojiya S, Narender T, Gaikwad AN. Ethyl acetate fraction of Eclipta alba: a potential phytopharmaceutical targeting adipocyte differentiation. Biomed Pharmacother 2017; 96:572-583. [PMID: 29032341 DOI: 10.1016/j.biopha.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023] Open
Abstract
Natural products have always fascinated mankind for their miraculous properties. Eclipta alba (E. alba), a medicinal herb has long been used in traditional medicine for curing several pathologies. It has been shown to have anti-diabetic effect as well as hepato-protective activity. Here, in order to address metabolic derangements, the study was designed to evaluate the efficacy of E. alba and its fractions in adipogenesis inhibition and dyslipidemia. Of the crude extract and fractions screened, ethyl acetate fraction of E. alba inhibited adipocyte differentiation in 3T3-L1 pre-adipocytes and hMSC derived adipocytes. It inhibited mitotic clonal expansion and caused cell cycle arrest in G1 and S phase as suggested by western blot analysis and flow cytometry. It was also shown to have lipolytic effects. Oral administration of ethyl acetate fraction of E. alba to hamsters unveiled its anti-adipogenic as well as anti-dyslipidemic activity in-vivo. Mass spectrometry analysis of ethyl acetate fraction confirmed the presence of several bioactive components, projecting it as an effective phytopharmaceutical agent. In conclusion, ethyl acetate fraction of E. alba possesses potent anti-adipogenic as well as anti-dyslipidemic activity and could be projected as an herbal formulation towards obesity.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashok Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Shiv Nandan
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110025, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - T Narender
- Academy of Scientific and Innovative Research, New Delhi, 110025, India.
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
39
|
Saibandith B, Spencer JPE, Rowland IR, Commane DM. Olive Polyphenols and the Metabolic Syndrome. Molecules 2017; 22:E1082. [PMID: 28661446 PMCID: PMC6152042 DOI: 10.3390/molecules22071082] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Here, the effects of consuming polyphenol-rich olive products, including olive leaves, their crude extract, and extra virgin olive oil, on aspects of the metabolic syndrome are reviewed. We have sought to summarize the available scientific evidence from dietary intervention trials demonstrating a role for these phytochemicals in ameliorating aberrant glucose metabolism, high blood pressure and elevated blood lipids, and we discuss the potential mechanisms underpinning these observations. Searches for relevant literature published in English were conducted via PubMed and Science Direct. Based on published dietary intervention studies, there is convincing evidence to show that olive polyphenols, independently of olive lipids, reduce risk factors for metabolic syndrome, in particular by improving blood sugar and blood pressure control, and in reducing low density lipoprotein oxidation. There is more limited evidence to suggest that the consumption of olive polyphenols or related products can reduce body weight and visceral fat or impede weight gain, and similarly there are some limited data suggesting improved lipid profiles. There is some mechanistic data to support observations made in human volunteers, but further work is needed in this area. The consumption of olive polyphenols within the context of a healthy pattern of food intake may, in part, explain the reduced risk of metabolic disease associated with adherence to the Mediterranean diet.
Collapse
Affiliation(s)
- Bandhita Saibandith
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, School of Chemistry Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AH, UK.
| | - Jeremy P E Spencer
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, School of Chemistry Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AH, UK.
| | - Ian R Rowland
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, School of Chemistry Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AH, UK.
| | - Daniel M Commane
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, School of Chemistry Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AH, UK.
| |
Collapse
|
40
|
Styshova ON, Popov AM, Artyukov AA, Klimovich AA. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp Ther Med 2017; 13:1651-1659. [PMID: 28565749 DOI: 10.3892/etm.2017.4217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
The present review analyzed the recent experimental studies of the alleviating activity of main constituents of the polyphenol complex from seagrasses of the genus Zostera, namely rosmarinic acid, luteolin and its sulfated derivatives, on carbohydrate and lipid metabolism disorders. A number of studies by our group and others, in which various experimental models of diabetes and hyperlipidemia were used, show a therapeutic action of the polyphenol complex and the abovementioned phenolic constituents, when applied separately and in combination. Based on the analysis of the results of these studies, the probable mechanisms of the therapeutic action of these compounds in diabetes and hyperlipidemia were proposed.
Collapse
Affiliation(s)
- Olga Nikolaevna Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexander Michailovich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.,School of Natural Sciences, Far Eastern Federal University, Vladivostok 690000, Russia
| | - Alexander Alekseevish Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Anna Anatolievna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
41
|
Sonani RR, Rastogi RP, Singh NK, Thadani J, Patel PJ, Kumar J, Tiwari AK, Devkar RV, Madamwar D. Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress. PROTOPLASMA 2017; 254:849-862. [PMID: 27335008 DOI: 10.1007/s00709-016-0996-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In vitro antioxidant virtue and life-prolonging effect of phycoerythrin (PE; a pigment protein isolated from Phormidium sp. A09DM) have been revealed in our previous reports (Sonani et al. in Age 36:9717, 2014a; Sonani et al. in Process Biochem 49:1757-1766, 2014b). It has been hypothesized that the PE expands life span of Caenorhabditis elegans (bears large resemblance with human aging pathways) due to its antioxidant virtue. This hypothesis is tested in present study by checking the effect of PE on intracellular reactive oxygen species (ROS) generation and associated physiological deformities using mouse and human skin fibroblasts, C. elegans, and Drosophila melanogaster Oregon R + and by divulging PE's structural attributes responsible for its antioxidant asset. PE treatment displayed noteworthy decrease of 67, 48, and 77 % in ROS level in mouse fibroblast (3T3-L1), human fibroblast, and C. elegans N2, respectively, arisen under chemical-induced oxidative stress. PE treatment delayed the development of paraquat-induced Alzheimer phenotype by 14.5 % in C. elegans CL4176. Furthermore, PE improved the locomotion of D. melanogaster Oregon R + under oxidative stress with simultaneous up-regulation in super-oxide dismutase and catalase activities. The existence of 52 Glu + Asp + His + Thr residues (having metal ion sequestration capacity), 5 phycoerythrobilin chromophores (potential electron exchangers) in PE's primary structure, and significant hydrophobic patches on the surface of its α- and β-subunits are supposed to collectively contribute in the antioxidant virtues of PE. Altogether, results support the hypothesis that it is the PE's antioxidant asset, which is responsible for its life-prolonging effect and thus could be exploited in the therapeutics of ROS-associated abnormalities including aging and neurodegeneration in eukaryotes.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Vadtal Road, Satellite Campus, Bakrol, Anand, Gujarat, 388 315, India
- Commission of Atomic and Alternative Energy, Institute of Biology and Technology of Saclay, 91191, Gif/Yvette, France
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Vadtal Road, Satellite Campus, Bakrol, Anand, Gujarat, 388 315, India
| | - Niraj K Singh
- Department of Biotechnology, Shri A. N. Patel PG Institute, Anand, Gujarat, 388001, India
| | - Jaymesh Thadani
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Puja J Patel
- Department of Biotechnology, Shri A. N. Patel PG Institute, Anand, Gujarat, 388001, India
| | - Jitendra Kumar
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
- DBT-PU-IPLS Programme, Department of Botany/Biotechnology, Patna University, Patna, Bihar, 800005, India.
| | - Anand K Tiwari
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382007, India.
| | - Ranjitsinh V Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Vadtal Road, Satellite Campus, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
42
|
Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Res 2016; 2016:4794576. [PMID: 28042289 PMCID: PMC5155092 DOI: 10.1155/2016/4794576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.
Collapse
|
43
|
Sun NN, Wu TY, Chau CF. Natural Dietary and Herbal Products in Anti-Obesity Treatment. Molecules 2016; 21:molecules21101351. [PMID: 27727194 PMCID: PMC6273667 DOI: 10.3390/molecules21101351] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
The prevalence of overweight and obesity is on the rise around the world. Common comorbidities associated with obesity, particularly diabetes, hypertension, and heart disease have an impact on social and financial systems. Appropriate lifestyle and behavior interventions are still the crucial cornerstone to weight loss success, but maintaining such a healthy lifestyle is extremely challenging. Abundant natural materials have been explored for their obesity treatment potential and widely used to promote the development of anti-obesity products. The weight loss segment is one of the major contributors to the overall revenue of the dietary supplements market. In this review, the anti-obesity effects of different dietary or herbal products, and their active ingredients and mechanisms of action against obesity will be discussed.
Collapse
Affiliation(s)
- Nan-Nong Sun
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Tsung-Yen Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chi-Fai Chau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
44
|
Francisco V, Figueirinha A, Costa G, Liberal J, Ferreira I, Lopes MC, García-Rodríguez C, Cruz MT, Batista MT. The Flavone Luteolin Inhibits Liver X Receptor Activation. JOURNAL OF NATURAL PRODUCTS 2016; 79:1423-1428. [PMID: 27135143 DOI: 10.1021/acs.jnatprod.6b00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Luteolin is a dietary flavonoid with medicinal properties including antioxidant, antimicrobial, anticancer, antiallergic, and anti-inflammatory. However, the effect of luteolin on liver X receptors (LXRs), oxysterol sensors that regulate cholesterol homeostasis, lipogenesis, and inflammation, has yet to be studied. To unveil the potential of luteolin as an LXRα/β modulator, we investigated by real-time RT-PCR the expression of LXR-target genes, namely, sterol regulatory element binding protein 1c (SREBP-1c) in hepatocytes and ATP-binding cassette transporter (ABC)A1 in macrophages. The lipid content of hepatocytes was evaluated by Oil Red staining. The results demonstrated, for the first time, that luteolin abrogated the LXRα/β agonist-induced LXRα/β transcriptional activity and, consequently, inhibited SREBP-1c expression, lipid accumulation, and ABCA1 expression. Therefore, luteolin could abrogate hypertriglyceridemia associated with LXR activation, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism, such as hepatic steatosis, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Vera Francisco
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Liberal
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Isabel Ferreira
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria C Lopes
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC , C/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Maria T Cruz
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria T Batista
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
45
|
Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of DnaJ (Hsp40) Homolog, Subfamily B, Member 1. J Nutr Biochem 2016; 30:24-32. [DOI: 10.1016/j.jnutbio.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
|
46
|
Popov AM, Krivoshapko ON, Klimovich AA, Artyukov AA. [Biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulphated derivatives]. BIOMEDITSINSKAIA KHIMIIA 2016; 62:22-30. [PMID: 26973183 DOI: 10.18097/pbmc20166201022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers recent experimental studies of biological activity and mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives in diseases associated with disorders of carbohydrate and lipid metabolism. Particular attention is focused on the results of studies showing a high therapeutic potential of these phenolic compounds in their prophylactic and therapeutic use at experimental modeling of type 2 diabetes and hyperlipidemia. Based on the analysis of our results and the literature data putative mechanisms of therapeutic action of rosmarinic acid, luteolin and its sulfated derivatives have been proposed.
Collapse
Affiliation(s)
- A M Popov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - O N Krivoshapko
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Klimovich
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - A A Artyukov
- Elyakov Pacibic Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
47
|
|
48
|
Lim H, Yeo E, Song E, Chang YH, Han BK, Choi HJ, Hwang J. Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells. Nutr Res Pract 2015; 9:599-605. [PMID: 26634048 PMCID: PMC4667200 DOI: 10.4162/nrp.2015.9.6.599] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ) as well as the mRNA levels of CEBPα, PPARγ, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.
Collapse
Affiliation(s)
- Heejin Lim
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Eunju Yeo
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Eunju Song
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | - Yun-Hee Chang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| | | | | | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 449-728, Korea
| |
Collapse
|
49
|
Singh T, Goel RK. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology 2015; 49:1-7. [DOI: 10.1016/j.neuro.2015.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
50
|
POUDEL BARUN, NEPALI SARMILA, XIN MINGJIE, KI HYEONHUI, KIM YOUNGHO, KIM DAEKI, LEE YOUNGMI. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway. Mol Med Rep 2015; 12:3139-45. [DOI: 10.3892/mmr.2015.3700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
|