1
|
Pan F, Yang W, Zhao T, Liu K, Zhao S, Zhao L. Procyanidine alleviates bisphenol A-induced apoptosis in TM3 cells via the Nrf2 signaling pathway. Food Chem Toxicol 2024; 192:114908. [PMID: 39117098 DOI: 10.1016/j.fct.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Contaminated foods are a major source of bisphenol A (BPA) and are widely used in food packaging. Prolonged exposure to BPA can cause reproductive dysfunction in humans. Procyanidine (PC) is a potent natural antioxidant; however, the exact mechanism by which PC mitigates Leydig cell damage caused by BPA is unknown. In this study, the protective effect of PC against BPA-induced TM3 cell damage was investigated, and the underlying mechanism was assessed. PC treatment attenuates BPA-induced TM3 cell damage by suppressing oxidative stress and inhibiting TM3 apoptosis. In addition, PC upregulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant target genes. Treatment with the NRF2 inhibitor ML385 reversed the PC-induced upregulation of the mRNA expression of these genes. Overall, PC may mitigate BPA-induced cell damage by activating the Nrf2 signaling pathway, suggesting that PC supplementation may alleviate BPA toxicity in TM3 cells.
Collapse
Affiliation(s)
- Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
2
|
Kim J, Lee C, Noh SG, Kim S, Chung HY, Lee H, Moon JO. Integrative Transcriptomic Analysis Reveals Upregulated Apoptotic Signaling in Wound-Healing Pathway in Rat Liver Fibrosis Models. Antioxidants (Basel) 2023; 12:1588. [PMID: 37627582 PMCID: PMC10451232 DOI: 10.3390/antiox12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Liver fibrosis, defined by the aberrant accumulation of extracellular matrix proteins in liver tissue due to chronic inflammation, represents a pressing global health issue. In this study, we investigated the transcriptomic signatures of three independent liver fibrosis models induced by bile duct ligation, carbon tetrachloride, and dimethylnitrosamine (DMN) to unravel the pathological mechanisms underlying hepatic fibrosis. We observed significant changes in gene expression linked to key characteristics of liver fibrosis, with a distinctive correlation to the burn-wound-healing pathway. Building on these transcriptomic insights, we further probed the p53 signaling pathways within the DMN-induced rat liver fibrosis model, utilizing western blot analysis. We observed a pronounced elevation in p53 protein levels and heightened ratios of BAX/BCL2, cleaved/pro-CASPASE-3, and cleaved/full length-PARP in the livers of DMN-exposed rats. Furthermore, we discovered that orally administering oligonol-a polyphenol, derived from lychee, with anti-oxidative properties-effectively countered the overexpressions of pivotal apoptotic genes within these fibrotic models. In conclusion, our findings offer an in-depth understanding of the molecular alterations contributing to liver fibrosis, spotlighting the essential role of the apoptosis pathway tied to the burn-wound-healing process. Most importantly, our research proposes that regulating this pathway, specifically the balance of apoptosis, could serve as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Jihyun Kim
- BIT Convergence-Based Innovative Drug Development Targeting Mate-Inflammation, Pusan National University, Busan 46241, Republic of Korea;
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Changyong Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Sang Gyun Noh
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Seungwoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Hae Young Chung
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Haeseung Lee
- BIT Convergence-Based Innovative Drug Development Targeting Mate-Inflammation, Pusan National University, Busan 46241, Republic of Korea;
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Jeon-Ok Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| |
Collapse
|
3
|
Peng LN, Lin MH, Lee HF, Hsu CC, Chang SJ, Chen LK. Clinical efficacy of oligonol® supplementation on metabolism and muscle health in middle-aged and older adults: A double-blinded randomized controlled trial. Arch Gerontol Geriatr 2022; 103:104784. [PMID: 35985196 DOI: 10.1016/j.archger.2022.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oligonol® is a low-molecular-weight polyphenol that has biological effects on metabolism in animals. However, little is known about its roles in muscle function and muscle quality in middle-aged and older adults. METHODS 120 participants were enrolled for study based on 1:1 randomization. Participants in the intervention group were provided 200 mg oligonol® prepared as capsules, and 200 mg placebo (dextrin) was provided in control group. RESULTS Data from 103 participants (52 in the intervention group and 51 in the control group) were available for analysis. The mean age of all participants was 64.0 ± 8.2 years, and two-thirds of the participants were females. Baseline demographic characteristics, functional assessment, laboratory data and muscle parameters were similar between groups. Hip circumference decreased (p = 0.009) during the study period, and the 6-m walking speed increased (p = 0.001) in women in the intervention group. In contrast, 6-m walking speed, 6-min walking distance and handgrip strength were significantly improved in men in the intervention group, but increased total body fat percentage (p = 0.038) and decreased mid-thigh cross-muscle area (CMA) (p = 0.007) were observed in the control group. Compared to the control group, the 12-week interval change in the percentage of mid-thigh CMA was maintained in men in the intervention group but was significantly decreased in the control group (p = 0.03, 95% CI:0.002-0.05). CONCLUSIONS Oligonol supplementation (200 mg per day) significantly improved physical performance and muscle mass in men. Further studies are needed to confirm the potential favorable effects of oligonol® supplementation.
Collapse
Affiliation(s)
- Li-Ning Peng
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan.
| | - Ming-Hsien Lin
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Huei-Fang Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Chia-Chia Hsu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
4
|
Reale M, Costantini E, Jagarlapoodi S, Khan H, Belwal T, Cichelli A. Relationship of Wine Consumption with Alzheimer's Disease. Nutrients 2020; 12:E206. [PMID: 31941117 PMCID: PMC7019227 DOI: 10.3390/nu12010206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most threatening neurodegenerative disease, is characterized by the loss of memory and language function, an unbalanced perception of space, and other cognitive and physical manifestations. The pathology of AD is characterized by neuronal loss and the extensive distribution of senile plaques and neurofibrillary tangles (NFTs). The role of environment and the diet in AD is being actively studied, and nutrition is one of the main factors playing a prominent role in the prevention of neurodegenerative diseases. In this context, the relationship between dementia and wine use/abuse has received increased research interest, with varying and often conflicting results. Scope and Approach: With this review, we aimed to critically summarize the main relevant studies to clarify the relationship between wine drinking and AD, as well as how frequency and/or amount of drinking may influence the effects. Key Findings and Conclusions: Overall, based on the interpretation of various studies, no definitive results highlight if light to moderate alcohol drinking is detrimental to cognition and dementia, or if alcohol intake could reduce risk of developing AD.
Collapse
Affiliation(s)
- Marcella Reale
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Erica Costantini
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Srinivas Jagarlapoodi
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
| | - Angelo Cichelli
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| |
Collapse
|
5
|
Reyes-Camacho D, Vinyeta E, Pérez JF, Aumiller T, Criado L, Palade LM, Taranu I, Folch JM, Calvo MA, Van der Klis JD, Solà-Oriol D. Phytogenic actives supplemented in hyperprolific sows: effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression. J Anim Sci 2020; 98:skz390. [PMID: 31910258 PMCID: PMC6981091 DOI: 10.1093/jas/skz390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Phytogenic actives (PA) are plant-derived natural bioactive compounds that may promote livestock health and well-being, as well as improve growth performance and production efficiency. The current study aims to evaluate their effects on sows and their offspring. Eighty-one hyperprolific sows (up to parity 7) were assigned to 3 experimental treatments. Control sows were offered a nonsupplemented diet during gestation and lactation, and treated sows were fed the control diet supplemented with 1 g/kg of a blend of PA (BPA) in lactation (L) or during gestation and lactation (GL). An evaluation was made of placental and milk maternal transfer of these BPA and colostrum-milk features, sows and piglets antioxidant status, reproductive performance (litter size), body weight (BW) changes, weaning-estrus interval, and litter performance. Finally, piglet´s jejunum gene expression was measured. The BPA supplementation during gestation (GL) increased the number of piglets born alive (P = 0.020) and reduced (P < 0.05) the newborn piglets BW, while there were no differences among treatments on the suckling (day 20) and weaned (day 7) piglets BW (P > 0.05). Dietary phytogenic volatile compounds reached GL placental fluid, and milk of L and GL sows (P < 0.05). Moreover, colostrum protein in GL and milk fat content in L and GL were increased (P < 0.05). Milk of GL showed inhibitory activity against Bacillus subtilis and Staphylococcus aureus (P < 0.05). Antioxidant status of GL sows showed an enhanced (P < 0.05) of catalase (CAT) and total antioxidant capacity levels at early gestation (day 35), whereas higher levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes at late gestation (day 110). Likewise, GL newborn piglets showed higher CAT levels, whereas both CAT and SOD levels in suckling piglets, as well as CAT, SOD, and GSH-Px in weaned piglets, were increased in L and GL (P < 0.05). Jejunum messenger ribonucleic acid abundance of suckling piglets in L and GL groups showed overexpression of barrier function MUC2, digestive enzyme IDO, and immune response PPARGC-α, TNF-α, TGF-β1, and IL-10 genes (P < 0.05). In conclusion, dietary BPA supplementation in hyperprolific sows increased the litter size (born alive) and improved the composition and bioactivity of colostrum and milk, besides, modified the antioxidant status of sows and their offspring, as well as the suckling piglets gut health gene expression. Several BPA volatile compounds were prenatal and postnatal maternally transferred (placental fluid and milk).
Collapse
Affiliation(s)
- David Reyes-Camacho
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ester Vinyeta
- Product Development and Innovations, Delacon Biotechnik GmbH, Engerwitzdorf, Austria
| | - Jose Francisco Pérez
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Tobias Aumiller
- Product Development and Innovations, Delacon Biotechnik GmbH, Engerwitzdorf, Austria
| | - Lourdes Criado
- Centre for Research in Agricultural Genomics, Department of Animal Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laurentiu Mihai Palade
- Laboratory of Animal Biology, National Research and Development Institute for Animal Biology and Nutrition, IBNA, Balotesti, Romania
| | - Ionelia Taranu
- Laboratory of Animal Biology, National Research and Development Institute for Animal Biology and Nutrition, IBNA, Balotesti, Romania
| | - Josep M Folch
- Centre for Research in Agricultural Genomics, Department of Animal Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Angels Calvo
- Research Group on Applied and Environmental Microbiology, Department of Animal Anatomy and Health, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jan Dirk Van der Klis
- Product Development and Innovations, Delacon Biotechnik GmbH, Engerwitzdorf, Austria
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
6
|
Sotler R, Poljšak B, Dahmane R, Jukić T, Pavan Jukić D, Rotim C, Trebše P, Starc A. PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH. Acta Clin Croat 2019; 58:726-736. [PMID: 32595258 PMCID: PMC7314298 DOI: 10.20471/acc.2019.58.04.20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review article is focused on the impact of antioxidants and prooxidants on health with emphasis on the type of antioxidants that should be taken. Medical researchers suggest that diet may be the solution for the control of chronic diseases such as cardiovascular complications, hypertension, diabetes mellitus, and different cancers. In this survey, we found scientific evidence that the use of antioxidants should be limited only to the cases where oxidative stress has been identified. This is often the case of specific population groups such as postmenopausal women, the elderly, infants, workers exposed to environmental pollutants, and the obese. Before starting any supplementation, it is necessary to measure oxidative stress and to identify and eliminate the possible sources of free radicals and thus increased oxidative stress.
Collapse
Affiliation(s)
| | - Borut Poljšak
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Raja Dahmane
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Tomislav Jukić
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Doroteja Pavan Jukić
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Cecilija Rotim
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Polonca Trebše
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Andrej Starc
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| |
Collapse
|
7
|
Chen X, Xu B, Nie L, He K, Zhou L, Huang X, Spencer P, Yang X, Liu J. Flavanol-rich lychee fruit extract substantially reduces progressive cognitive and molecular deficits in a triple-transgenic animal model of Alzheimer disease. Nutr Neurosci 2019; 24:720-734. [PMID: 31603034 DOI: 10.1080/1028415x.2019.1673527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective treatment to prevent or arrest the advance of Alzheimer disease (AD) has yet to be discovered. We investigated whether OligonolR, an FDA-approved flavanol-rich extract prepared from lychee fruit and green tea, exerted beneficial effects relevant to AD in a triple transgenic male mouse model of AD (3×Tg-AD). At 9 months of age, untreated 3×Tg-AD mice vs. wild-type (WT) controls displayed cognitive deficits in behavioral assays and, at 12 months, elevated levels of hippocampal amyloid beta-protein (Aβ), amyloid precursor protein (APP), tau phosphorylation, and pro-inflammatory cytokines. 3×Tg-AD mice given Oligonol showed fewer cognitive deficits and attenuated pathological indices at 12 months. Oligonol treatment of 3×Tg-AD mice modulated expression of some critical brain proteins that involve multiple pathways relevant to mitochondrial dysfunction, proteasomal failure, endoplasmic reticulum (ER) stress and synaptic impairment. Together, these results demonstrate that continuous Oligonol treatment attenuates AD-like pathology and cognitive impairment of 3×Tg-AD mice and set the stage for clinical trials of this flavanol-rich plant extract in patients with early AD.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Luling Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| |
Collapse
|
8
|
Kim M, Park WH, Lee S, Suh DH, Kim K, No JH, Kim YB. Oligonol, a Low Molecular Weight Polyphenol, Enhances Apoptotic Cell Death in Ovarian Cancer Cells via Suppressing NF-κB Activation. Nutr Cancer 2019; 71:141-148. [PMID: 30633587 DOI: 10.1080/01635581.2018.1557215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oligonol, a low molecular weight polyphenol derived from lychee fruit, not only has anti-inflammatory effects in various disease conditions but also has antitumor-promoting effects. We evaluate the nuclear factor-kappa B (NF-κB)-related anticancer effect of oligonol in ovarian cancer using SKOV-3 cells. METHODS Cell viability was examined after oligonol treatment using MTT assay and reactive oxygen species (ROS) production measurement. Subsequently, apoptotic cell death was visualized by the TdT-mediated dUTP nick-end labeling (TUNEL) method. The effect of oligonol on the NF-κB signaling pathway was evaluated using western blot analysis and luciferase activity measurement of p65, an NF-κB subunit. RESULTS Cell viability significantly decreased after oligonol treatment of 72 h. Apoptosis-related markers were highly expressed in oligonol-treated cells, and increased apoptosis after oligonol treatment was also confirmed using the TUNEL assay. Western blotting results showed the expression of NF-κB signaling pathway factors, p-ERK, TRAF2, and p-IκBα, increased following treatment with oligonol, whereas p65 and COX-2 expression decreased. Immunofluorescence imaging results showed p65 luciferase activity in the nucleus as well as a shift to cytoplasmic expression. CONCLUSION Oligonol treatment significantly enhances apoptotic cell death in SKOV-3 cells, with the suppression of NF-κB activation, which plays an essential role in this anticancer effect.
Collapse
Affiliation(s)
- Miseon Kim
- a Department of Obstetrics and Gynecology, CHA Gangnam Medical Center , CHA University School of Medicine , Seoul , Republic of Korea
| | - Wook Ha Park
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Seul Lee
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Dong Hoon Suh
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Kidong Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Jae Hong No
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Yong Beom Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| |
Collapse
|
9
|
l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. ZYGOTE 2018; 26:149-161. [DOI: 10.1017/s0967199418000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryThe objective of the study was to investigate the effect of l-ergothioneine (l-erg) (5 mM or 10 mM) supplementation in maturation medium on the developmental potential and OCTN1-dependant l-erg-mediated (10 mM) change in mRNA abundance of apoptotic (Bcl2, Bax, Casp3 and PCNA) and antioxidant (GPx, SOD1, SOD2 and CAT) genes in sheep oocytes and developmental stages of embryos produced in vitro. Oocytes matured with l-erg (10 mM) reduced their embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH in matured oocytes that in turn improved developmental potential, resulting in significantly (P < 0.05) higher percentages of cleavage (53.72% vs 38.86, 46.56%), morulae (34.36% vs 20.62, 25.84%) and blastocysts (14.83% vs 6.98, 9.26%) compared with other lower concentrations (0 mM and 5 mM) of l-erg without change in maturation rate. l-Erg (10 mM) treatment did not influence the mRNA abundance of the majority of apoptotic and antioxidant genes studied in the matured oocytes and developmental stages of embryo. A gene expression study found that the SLC22A4 gene that encodes OCTN1, an integral membrane protein and specific transporter of l-erg was not expressed in oocytes and developmental stages of embryos. Therefore it was concluded from the study that although there was improvement in the developmental potential of sheep embryos by l-erg supplementation in maturation medium, there was no change in the expression of the majority of the genes studied due to the absence of the SLC22A4 gene in oocytes and embryos that encode OCTN1, which is responsible for transportation of l-erg across the membrane to alter gene expression.
Collapse
|
10
|
Alves JM, Leandro LF, Senedese JM, Castro PTD, Pereira DE, Resende FA, Campos DL, Silva JJMD, Varanda EA, Bastos JK, Ambrósio SR, Tavares DC. Antigenotoxicity properties of Copaifera multijuga oleoresin and its chemical marker, the diterpene (-)-copalic acid. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:116-129. [PMID: 29286884 DOI: 10.1080/15287394.2017.1420505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.
Collapse
Affiliation(s)
| | | | | | | | | | - Flávia Aparecida Resende
- b Grupo de Pesquisa em Química Medicinal e Medicina Regenerativa Universidade de Araraquara , Araraquara , São Paulo , Brazil
| | - Débora Leite Campos
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jonas Joaquim Mangabeira da Silva
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Eliana Aparecida Varanda
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jairo Kenupp Bastos
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | | |
Collapse
|
11
|
Long M, Yang SH, Shi W, Li P, Guo Y, Guo J, He JB, Zhang Y. Protective effect of proanthocyanidin on mice Sertoli cell apoptosis induced by zearalenone via the Nrf2/ARE signalling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26724-26733. [PMID: 28956244 DOI: 10.1007/s11356-017-0123-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 05/07/2023]
Abstract
This study evaluated the protective effect of proanthocyanidin (PC) on the cytotoxicity of the Sertoli cell TM4 of mice, as induced by zearalenone (ZEA). Flow cytometry was used to detect the apoptosis rate of cells in each group. The activities of antioxidant enzymes and the content of antioxidant substances were detected by using a proprietary kit; the RT-PCR method was used to detect the expression level of mRNA, the related genes of Nrf2/ARE signal pathway, the nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase (γ-GCS) and the expression level of mRNA, the apoptosis-related genes, Bcl-2 and Bax; the Western-blot method was used to detect the protein expression levels of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 in each group. Our results showed that PC could reduce the apoptosis rate of the TM4 cells exposed to ZEA (p < 0.01); PC could enhance the decrease in the activities of T-SOD and GSH-Px induced by ZEA (p < 0.05), reduce the increase in the content of MDA, as caused by ZEA; PC could significantly up-regulate the down-regulation levels of the mRNA and protein of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 induced by ZEA. PC could enhance the decrease in the mRNA expression level of Bcl-2 and down-regulate the mRNA expression of Bax induced by ZEA (p < 0.05). These results demonstrated that PC conferred protective effects against oxidative damage and apoptosis of TM4 cells induced by ZEA. The protection mechanism of PC on TM4 cells might act through the activation of the Nrf2/ARE signalling pathway.
Collapse
Affiliation(s)
- Miao Long
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shu-Hua Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Shi
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayi Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
12
|
Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res Bull 2017; 135:40-46. [DOI: 10.1016/j.brainresbull.2017.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
|
13
|
Emanuele S, Lauricella M, Calvaruso G, D'Anneo A, Giuliano M. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients 2017; 9:nu9090992. [PMID: 28885570 PMCID: PMC5622752 DOI: 10.3390/nu9090992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
14
|
In vivo and in silico study of allicin as a stroke prevention. Porto Biomed J 2017; 2:204. [DOI: 10.1016/j.pbj.2017.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Pan MH, Yang G, Li S, Li MY, Tsai ML, Wu JC, Badmaev V, Ho CT, Lai CS. Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Mol Nutr Food Res 2017. [PMID: 28643888 DOI: 10.1002/mnfr.201601104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SCOPE SlimTrym® is a formulated product composed of citrus polymethoxyflavones (PMFs), green tea extract, and lychee extract. We investigated the effect of dietary SlimTrym® on diet-induced obesity and associated non-alcoholic fatty liver disease (NAFLD) in mice. METHODS AND RESULTS Male C57BL/6 mice were fed a normal diet (ND), high fat diet (HFD) or HFD containing 0.1% or 0.5% SlimTrym® for 16 weeks. Dietary SlimTrym® significantly reduced weight gain and relative perigonadal, retroperitoneal, mesenteric fat weight as well as the size of adipocyte in HFD-fed mice. SlimTrym® supplementation also effectively diminished hepatic steatosis and the serum levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), triacylglycerol (TG), and total cholesterol (TCHO). Down-regulation of peroxisome proliferator-activated receptor (PPAR)γ, sterol regulatory element-binding protein (SREBP)-1, and the activation of AMP-activated protein kinase (AMPK) signaling by SlimTrym® in both adipose tissue and liver may be responsible for the observed anti-obesity effects. CONCLUSION SlimTrym® supplementation potentially diminished diet-induced obesity and hepatic steatosis via regulating AMPK signaling and molecules involved in lipid metabolism.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China
| | - Ming-Yi Li
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Offor U, Ajayi SA, Jegede IA, Kharwa S, Naidu EC, Azu OO. Renal histoarchitectural changes in nevirapine therapy: possible role of kolaviron and vitamin C in an experimental animal model. Afr Health Sci 2017; 17:164-174. [PMID: 29026390 PMCID: PMC5636239 DOI: 10.4314/ahs.v17i1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is paucity of literature regarding the nephrotoxicity of antiretroviral drugs and its interaction with plant-based adjuvants. This study investigates the attenuating effect of kolaviron in nevirapine-therapy on the histological structure of the kidneys of adult male Sprague-Dawley rats. OBJECTIVE To determine the attenuating influence of anti-oxidant status of kolaviron on the kidneys of experimental animals following nevirapine administration. METHODS Forty eight pathogen-free adult male Sprague-Dawley rats were used for this study. The animals were divided into 8 groups (A-H) with 6 animals in each group. Group A was given normal saline as the control; group B was given nevirapine; group C was given kolaviron; group D was given vitamin C; group E was given nevirapine and kolaviron; group F was given nevirapine and vitamin C; Group G was given nevirapine and kolaviron (kolaviron withdrawn after day 28) and group H was given corn oil. The experiment lasted 56 days after which the animals were sacrificed, blood samples were collected through cardiac puncture for serum analysis and the kidneys were harvested and prepared for H& E histological examination. RESULTS Nevirapine caused histoarchitectural damage in the glomerular apparatus with resultant increase in kidney/body weight ratio (p<0.001). Adjuvant treatment with kolaviron attenuated these nephrotoxic effects. Serum anti-oxidant enzyme (SOD and CAT) activities were significantly reduced in kolaviron and vitamin C treated animals, whereas in the nevirapine group these parameters were significantly elevated (P<0.05). However, co-administration of nevirapine and vitamin C did not improve the histoarchitecture of the kidney. CONCLUSION Adjuvant treatment with kolaviron (an anti-oxidant) for 56 days appears to attenuate the nephrotoxicity of nevirapine in this model.
Collapse
Affiliation(s)
- Ugochukwu Offor
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
| | - Sunday Adelaja Ajayi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine. Ekiti State University, Ado-Ekiti, Nigeria
| | - Isaac Ayoola Jegede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
- Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences. Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Salem Kharwa
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
| | - Onyemaechi Okpara Azu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. NelsonR Mandela School of Medicine, University of KwaZulu-Natal, SouthAfrica
- Department of Anatomy, School of Medicine, University of Namibia, Windhoek, Namibia
| |
Collapse
|
17
|
Long M, Yang S, Zhang Y, Li P, Han J, Dong S, Chen X, He J. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:938-946. [PMID: 27761864 DOI: 10.1007/s11356-016-7886-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Zearalenone (ZEN) exerts a major effect on human and animal health and has led to serious worldwide economic problems. In this study, we investigated whether proanthocyanidin (PC) can prevent ZEN-induced testicular oxidative damage in male mice and explored the underlying mechanism. Kunming mice were injected with ZEN (40 mg kg-1) on the 11th day after intragastric administration of PC (75 or 150 mg/kg) for 10 days; the sperm quality of mice was then analysed statistically. Additionally, testicular morphology parameters related to oxidative damage, apoptosis and the expression of endoplasmic reticulum (ER) stress-related genes (GRP78, CHOP and XBP-1) were all measured. Results showed that ZEN exposure significantly reduced the sperm density, improved the sperm aberration rate, increased the MDA level and reduced SOD and GSH-Px activities. Meanwhile, ZEN was attributed to the downregulation of the expressions of the gene and protein of Bcl-2 and upregulation of the expressions of the gene and protein of Bax and caspase-3. ZEN exposure also upregulated the mRNA expression of GRP78, CHOP and XBP-1; however, PC pre-treatment reduced ZEN-induced oxidative damage and tended to maintain normal testicular morphology. Furthermore, PC pre-treatment substantially downregulated the expressions of the GRP78, CHOP and XBP-1 and upregulated the expression of the Bcl-2 gene. In conclusion, PC, due to its anti-oxidative ability, could ameliorate ZEN-induced testicular reproductive toxicity in male mice by decreasing ER stress and testicular cell apoptosis.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jianxin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
18
|
Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway. Nutrients 2016; 8:nu8100656. [PMID: 27775649 PMCID: PMC5084042 DOI: 10.3390/nu8100656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of liver tissue.
Collapse
|
19
|
Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes. Hum Immunol 2016; 77:512-5. [PMID: 27079270 DOI: 10.1016/j.humimm.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
Monocytes produce high levels of inflammatory cytokines including IL-6 and TNF-α that are involved in autoimmunity, inflammatory diseases, cardiovascular disease and obesity. Therapies targeting IL-6 and TNF-α have been utilized in treating chronic inflammatory diseases. Oligonol is a lychee fruit-derived low-molecular form of polyphenol mixture, typically catechin-type monomers and oligomers of proanthocyanidins, which are produced by an oligomerization process. Although previous studies reported anti-inflammatory properties of Oligonol, it is unknown whether and how Oligonol suppresses IL-6 and TNF-α production in human monocytes. The results of our study demonstrate that Oligonol (25μg/ml) decreases the production of IL-6 and TNF-α from human primary monocytes as measured by flow cytometry and ELISA. Such an anti-cytokine effect was likely mediated by the suppression of NF-κB activation without inducing cell death. Our findings raise the possibility of exploring the benefits of Oligonol in controlling inflammatory conditions, especially those associated with monocytes, in humans.
Collapse
|
20
|
Mishra A, Reddy IJ, Gupta PSP, Mondal S. l-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos ProducedIn Vitro. Reprod Domest Anim 2016; 51:311-21. [DOI: 10.1111/rda.12682] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/04/2016] [Indexed: 01/25/2023]
Affiliation(s)
- A Mishra
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - IJ Reddy
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - PSP Gupta
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - S Mondal
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| |
Collapse
|
21
|
Li S, Xu M, Niu Q, Xu S, Ding Y, Yan Y, Guo S, Li F. Efficacy of Procyanidins against In Vivo Cellular Oxidative Damage: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0139455. [PMID: 26426531 PMCID: PMC4591260 DOI: 10.1371/journal.pone.0139455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
AIMS In this study, the efficacy of proanthocyanidins (PCs) against oxidative damage was systematically reviewed to facilitate their use in various applications. METHODS A meta-analysis was performed by two researchers. Each investigator independently searched electronic databases, including Cochrane, PubMed, Springer, Web of Science, China National Knowledge Infrastructure (CKNI), China Science and Technology Journal Database (CSTJ), and WanFang Data, and analyzed published data from 29 studies on the effects of PCs against oxidative damage. Oxidative stress indexes included superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and total antioxidative capacity (T-AOC). RESULTS Compared with the oxidative damage model group, PCs effectively improved the T-AOC, SOD, GSH, GPx, and CAT levels, and reduced the MDA levels; these differences were statistically significant (P < 0.05). In studies that used the gavage method, SOD (95% CI, 2.33-4.00) and GPx (95% CI, 2.10-4.05) were 3.16-fold and 3.08-fold higher in the PC group than in the control group, respectively. In studies that used the feeding method, SOD (95% CI, 0.32-1.74) and GPx (95% CI, -0.31 to 1.65) were 1.03-fold and 0.67-fold higher in the PC group than in the control group, respectively. Statistically significant differences in the effects of PCs (P < 0.00001) were observed between these two methods. MDA estimated from tissue samples (95% CI, -5.82 to -2.60) was 4.32-fold lower in the PC group than in the control group. In contrast, MDA estimated using serum samples (95% CI, -4.07 to -2.06) was 3.06-fold lower in the PC group than in the control group. The effect of PCs on MDA was significantly greater in tissue samples than in serum samples (P = 0.02). CONCLUSION PCs effectively antagonize oxidative damage and enhance antioxidant capacity. The antagonistic effect may be related to intervention time, intervention method, and the source from which the indexes are estimated.
Collapse
Affiliation(s)
- Shugang Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Mengchuan Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Shangzhi Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Yusong Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Yizhong Yan
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Shuxia Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, China
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| |
Collapse
|
22
|
Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:185. [PMID: 26077338 PMCID: PMC4490649 DOI: 10.1186/s12906-015-0709-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Background Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells. Methods HepG2 cells were treated with palmitate for 24 h to induce cellular hepatic steatosis and insulin resistance. The cells were then treated with Oligonol at subtoxic concentrations and examined for lipid metabolism, cytokine production, and insulin signaling using quantitative RT-PCR and western blot analysis. Results Oligonol treatment reversed the palmitate-induced intracellular lipid accumulation, down regulated the expression of lipogenic genes, and up-regulated genes for fatty acid degradation. Oligonol restored insulin sensitivity, as was determined by the phosphorylation states of IRS-1. Oligonol also inhibited STAT3-SOCS3 signaling and increased AMPK phosphorylation in HepG2 cells. Conclusion Oligonol treatment improved palmitate-induced cellular steatosis and insulin resistance in HepG2 cells with concomitant reduction of inflammatory cytokines and decrease in STAT3-SOCS3 and AMPK-mTOR pathways. Oligonol may have beneficial effects in lipid metabolism and insulin resistance in the liver.
Collapse
|
23
|
Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:895272. [PMID: 25295069 PMCID: PMC4177819 DOI: 10.1155/2014/895272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023]
Abstract
Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and δ (C/EBPδ) in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR) signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR and forkhead box protein O1 (Foxo1). These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.
Collapse
|
24
|
Lee JB, Shin YO. Oligonol supplementation affects leukocyte and immune cell counts after heat loading in humans. Nutrients 2014; 6:2466-77. [PMID: 24962480 PMCID: PMC4073162 DOI: 10.3390/nu6062466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/09/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL)-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK) cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating) and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating) immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating) and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating) relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively) and immediately after heating (p < 0.001) in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001) and B cells (p < 0.001) were significantly higher 1 h after heating in comparison to those in the placebo group. These results demonstrate that supplementation with oligonol for 1 week may enhance the immune function under heat and suggest a potential useful adjunct to chemotherapy in malignant diseases.
Collapse
Affiliation(s)
- Jeong Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 366-1, Ssangyong-dong, Cheonan, 331-946, Korea.
| | - Young Oh Shin
- Department of Health Care, Global Graduate School, Soonchunhyang University, 646, Eupnae-ri, Shinchang-myun, Asan-si, Chungnam 336-745, Korea.
| |
Collapse
|
25
|
Puiggròs F, Salvadó MJ, Bladé C, Arola L. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies. Crit Rev Food Sci Nutr 2014; 54:277-91. [PMID: 24188302 DOI: 10.1080/10408398.2011.565456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.
Collapse
Affiliation(s)
- Francesc Puiggròs
- a Nutrigenomics Group, Department of Biochemistry and Biotechnology , Universitat Rovira i Virgili , Tarragona , Spain
| | | | | | | |
Collapse
|
26
|
Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T, Okumura T, Nishizawa M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 2014; 9:e93818. [PMID: 24705335 PMCID: PMC3976307 DOI: 10.1371/journal.pone.0093818] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ryota Yamanishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatoshi Mori
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromitsu Murase
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toru Machida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
27
|
Shin YO, Lee JB, Song YJ, Min YK, Yang HM. Oligonol supplementation attenuates body temperature and the circulating levels of prostaglandin E2 and cyclooxygenase-2 after heat stress in humans. J Med Food 2013; 16:318-23. [PMID: 23566058 DOI: 10.1089/jmf.2012.2543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonol, a phenolic production from lychee, has been reported to exhibit anti-oxidative and anti-inflammatory effects. This study investigated the effect of Oligonol supplementation on circulating levels of prostaglandin E2 (PGE2) and cyclooxygenase (COX)-2, as well as body temperature, after heat stress in 17 healthy human male volunteers (age, 21.6±2.1 years). All experiments were performed in an automated climate chamber (26.0°C±0.5°C, relative humidity 60%±3.0%, air velocity less than 1 m/sec) between 2 and 5 p.m. Subjects ingested an Oligonol (100 mg)-containing beverage or placebo beverage before half-body immersion into hot water (42°C±0.5°C for 30 min). Tympanic and skin temperatures were measured and mean body temperatures were calculated. Serum concentrations of PGE2 and COX-2 were analyzed before, immediately after, and 60 min after immersion. Oligonol intake significantly prevented elevation of tympanic (temperature difference: 0.17°C at Post, P<.05; 0.17°C at Re-60, P<.05) and mean body temperatures (temperature difference: 0.18°C at Post, P<.05; 0.15°C at Re-60, P<.05), and lowered concentrations of serum PGE2 (increased by 13.3% vs. 29.6% at Post, P<.05) and COX-2 (increased by 15.6% vs. 21.8% at Post, P<.05), compared to placebo beverage. Our result suggests that Oligonol has the potential to suppress increases in body temperature under heat stress, and this is associated with decreases in serum levels of PGE2 and COX-2.
Collapse
Affiliation(s)
- Young Oh Shin
- Department of Healthcare, Global Graduate School, Soonchunhyang University, Asan, Korea
| | | | | | | | | |
Collapse
|
28
|
Choudhari AS, Suryavanshi SA, Kaul-Ghanekar R. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive). PLoS One 2013; 8:e70127. [PMID: 23922932 PMCID: PMC3724825 DOI: 10.1371/journal.pone.0070127] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022] Open
Abstract
Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+) leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer.
Collapse
Affiliation(s)
- Amit S. Choudhari
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, India
| | - Snehal A. Suryavanshi
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, India
| | - Ruchika Kaul-Ghanekar
- Cell and Translational Research Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University Medical College Campus, Dhankawadi, Pune, India
| |
Collapse
|
29
|
Agackiran Y, Gul H, Gunay E, Akyurek N, Memis L, Gunay S, Sirin YS, Ide T. The Efficiency of Proanthocyanidin in an Experimental Pulmonary Fibrosis Model: Comparison with Taurine. Inflammation 2012; 35:1402-10. [DOI: 10.1007/s10753-012-9453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Xu Z, Du P, Meiser P, Jacob C. Proanthocyanidins: Oligomeric Structures with Unique Biochemical Properties and Great Therapeutic Promise. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proanthocyanidins represent a unique class of oligomeric and polymeric secondary metabolites found ubiquitously and in considerable amounts in plants and some algae. These substances exhibit a range of rather surprising physical and chemical properties which, once applied to living organisms, are translated into a multitude of biological activities. The latter include antioxidant properties, cancer chemoprevention, anti-inflammatory and anti-diabetic effects as well as some exceptional, yet highly interesting activities, such as anti-nutritional and antimicrobial activity. Despite the wide range of activities and possible medical/agricultural applications of proanthocyanidins, many questions still remain, including issues related to bioavailability, metabolism and the precise biochemical, extra- and intracellular targets and mode(s) of action of these highly potent materials. Among the various physical and chemical interactions of such substances, strong binding to proteins appears to form the basis of many of their biological activities. Once easy-to-use synthetic methods to produce appropriate quantities of pure proanthocyanidins are available, it will be possible to identify the prime biological targets of these oligomers, study oligomer-protein interactions in more detail and develop possible practical applications in medicine and agriculture.
Collapse
Affiliation(s)
- Zhanjie Xu
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1., D-66123 Saarbruecken, Germany
- Ursapharm Arzneimittel GmbH, D-66129 Saarbrücken, Germany
| | - Peng Du
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1., D-66123 Saarbruecken, Germany
| | - Peter Meiser
- Ursapharm Arzneimittel GmbH, D-66129 Saarbrücken, Germany
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1., D-66123 Saarbruecken, Germany
| |
Collapse
|
31
|
Bak MJ, Jun M, Jeong WS. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H(2)O(2)-treated hepG2 cells and CCl(4)-treated mice. Int J Mol Sci 2012; 13:2314-2330. [PMID: 22408456 PMCID: PMC3292025 DOI: 10.3390/ijms13022314] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the antioxidant mechanisms of red ginseng essential oil (REO) in cells as well as in an animal model. REO was prepared by a supercritical CO(2) extraction of waste-products generated after hot water extraction of red ginseng. In HepG2 cells, REO diminished the H(2)O(2)-mediated oxidative stress and also restored both the activity and expression of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Administration of REO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. In mice, the CCl(4)-mediated elevation of serum aspartate transaminase and alanine transaminase as well as the induction of hepatic lipid peroxidation were decreased by REO administration. REO treatments also resulted in up-regulation of the antioxidant enzyme expression in the liver. Moreover, increased phosphorylations of MAPKs were inhibited after REO administration. Overall, REO seems to protect the liver from oxidative stress through the activation and induction of antioxidant enzymes via inhibition of MAPKs pathways.
Collapse
Affiliation(s)
- Min-Ji Bak
- Institute for Phytochemical-Drug Interactions, Department of Food & Life Sciences, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea; E-Mail:
| | - Mira Jun
- Department of Food Science & Nutrition, Dong-A University, Busan 604-714, Korea; E-Mail:
| | - Woo-Sik Jeong
- Institute for Phytochemical-Drug Interactions, Department of Food & Life Sciences, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea; E-Mail:
| |
Collapse
|
32
|
Lipinski B. Hydroxyl radical and its scavengers in health and disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:809696. [PMID: 21904647 PMCID: PMC3166784 DOI: 10.1155/2011/809696] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/07/2011] [Indexed: 01/04/2023]
Abstract
It is generally believed that diseases caused by oxidative stress should be treated with antioxidants. However, clinical trials with such antioxidants as ascorbic acid and vitamin E, failed to produce the expected beneficial results. On the other hand, important biomolecules can be modified by the introduction of oxygen atoms by means of non-oxidative hydroxyl radicals. In addition, hydroxyl radicals can reduce disulfide bonds in proteins, specifically fibrinogen, resulting in their unfolding and scrambled refolding into abnormal spatial configurations. Consequences of this reaction are observed in many diseases such as atherosclerosis, cancer and neurological disorders, and can be prevented by the action of non-reducing substances. Moreover, many therapeutic substances, traditionally classified as antioxidants, accept electrons and thus are effective oxidants. It is described in this paper that hydroxyl radicals can be generated by ferric ions without any oxidizing agent. In view of the well-known damaging effect of poorly chelated iron in the human body, numerous natural products containing iron binding agents can be essential in the maintenance of human health. However, beneficial effects of the great number of phytochemicals that are endowed with hydroxyl radical scavenging and/or iron chelating activities should not be considered as a proof for oxidative stress.
Collapse
Affiliation(s)
- Boguslaw Lipinski
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Effect of oligonol intake on cortisol and cytokines, and body temperature after leg immersion into hot water. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
34
|
Farombi EO, Owoeye O. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2533-55. [PMID: 21776245 PMCID: PMC3138040 DOI: 10.3390/ijerph8062533] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
Recently, considerable attention has been focused on dietary and medicinal phytochemicals that inhibit, reverse or retard diseases caused by oxidative and inflammatory processes. Vernonia amygdalina is a perennial herb belonging to the Asteraceae family. Extracts of the plant have been used in various folk medicines as remedies against helminthic, protozoal and bacterial infections with scientific support for these claims. Phytochemicals such as saponins and alkaloids, terpenes, steroids, coumarins, flavonoids, phenolic acids, lignans, xanthones, anthraquinones, edotides and sesquiterpenes have been extracted and isolated from Vernonia amygdalina. These compounds elicit various biological effects including cancer chemoprevention. Garcinia kola (Guttiferae) seed, known as "bitter kola", plays an important role in African ethnomedicine and traditional hospitality. It is used locally to treat illnesses like colds, bronchitis, bacterial and viral infections and liver diseases. A number of useful phytochemicals have been isolated from the seed and the most prominent of them is the Garcinia bioflavonoids mixture called kolaviron. It has well-defined structure and an array of biological activities including antioxidant, antidiabetic, antigenotoxic and hepatoprotective properties. The chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoids have been attributed to their abilities to scavenge free radicals, induce detoxification, inhibit stress response proteins and interfere with DNA binding activities of some transcription factors.
Collapse
Affiliation(s)
- Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria; E-Mail:
| |
Collapse
|
35
|
Nishizawa M, Hara T, Miura T, Fujita S, Yoshigai E, Ue H, Hayashi Y, Kwon AH, Okumura T, Isaka T. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother Res 2011; 25:1486-93. [PMID: 21780209 DOI: 10.1002/ptr.3430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/05/2023]
Abstract
Flavanol-rich lychee fruit extract (FRLFE) is a processed lychee fruit extract that is higher in flavanols (monomers, dimers and trimers) than its unprocessed counterpart. FRLFE exerts antioxidant activities in vitro and is expected to protect against inflammation and tissue damage. However, the physiological effects of FRLFE intake have not been explored in vivo. The aim of this study was to examine the effects of FRLFE supplementation on inflammation and tissue damage in young athletes during intense physical training. Twenty healthy male long-distance runners at a university were randomly assigned to receive FRLFE or placebo in a double-blind manner. Blood and serum parameters associated with inflammation, tissue damage and oxidative stress were evaluated before (pre-training), during (mid-training) and after (post-training) a 2-month training period. Some parameters, including the white blood cell count, were significantly modified by FRLFE supplementation. Compared with the placebo group, the change in the serum interleukin-6 level between pre- and mid-training were significantly lower in the FRLFE group, while the change in the transforming growth factor-β level between pre- and post-training was significantly greater in the FRLFE group. These findings suggest that FRLFE supplementation may suppress inflammation or tissue damage caused by high-intensity exercise training.
Collapse
Affiliation(s)
- Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shibukawa T, Ohira Y, Shimadzu M, Obata E. Absorption of Nitrogen Dioxide by the Polyphenol Solution. KAGAKU KOGAKU RONBUN 2011. [DOI: 10.1252/kakoronbunshu.37.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takumi Shibukawa
- Division of Chemical and Materials Engineering, Graduate School of Engineering, Muroran Institute of Technology
| | - Yuichi Ohira
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
| | - Masamitsu Shimadzu
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
| | - Eiji Obata
- Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology
| |
Collapse
|
37
|
Gangehei L, Ali M, Zhang W, Chen Z, Wakame K, Haidari M. Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1047-1056. [PMID: 20554190 DOI: 10.1016/j.phymed.2010.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/19/2010] [Accepted: 03/30/2010] [Indexed: 05/29/2023]
Abstract
The emergence of resistance to anti-influenza drugs calls for the search for new antiviral molecules with different resistance profiles. Polyphenolic compounds are found in various plants and have antiviral and antioxidative properties. We tested the hypothesis that oligonol, a lychee fruit-derived low molecular weight polyphenol, possesses anti-influenza effects by inhibiting phosphorylation of extracellular-signal-regulated kinases (ERK). Real time PCR, plaque assay, and immunofluorescence techniques were used to study the effects of oligonol on proliferation of influenza virus. Oligonol inhibits influenza virus proliferation by blocking attachment of the virus to MDCK cells and by suppression of nuclear export of influenza virus ribonucleoprotein (RNP). Infection of MDCK cells with influenza virus leads to an increase in production of reactive oxygen species (ROS) and induction of a ROS-dependent ERK phosphorylation. Inhibition of ERK activation by a dominant negative mutant of ERK or N-acetyl-cysteine (NAC) leads to inhibition of influenza RNP nuclear export. Phorbol 12-myristate 13-acetate (PMA) induces ROS production, ERK phosphorylation and enhances influenza proliferation in MDCK cells. Oligonol and NAC inhibit PMA-induced ERK phosphorylation and ROS production. Our studies suggest that the underlying mechanism for the inhibitory effect of oligonol on influenza virus RNP nuclear export is blocking of ROS-dependent induction of ERK phosphorylation.
Collapse
Affiliation(s)
- Leila Gangehei
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
38
|
Chatelain K, Phippen S, McCabe J, Teeters CA, O'Malley S, Kingsley K. Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011:467691. [PMID: 18955355 PMCID: PMC3138501 DOI: 10.1093/ecam/nen047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/02/2008] [Indexed: 12/15/2022]
Abstract
Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.
Collapse
Affiliation(s)
- Kourt Chatelain
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hayama K, Ishibashi H, Kitadate K, Yamazaki M, Abe S. [Therapeutic effect of oligonol, a low-molecular polyphenol formulation derived from lychee fruits on murine oral candidiasis]. ACTA ACUST UNITED AC 2010; 51:137-42. [PMID: 20716852 DOI: 10.3314/jjmm.51.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We assessed the potential of oligonol, a low molecular polyphenol formulation prepared from lychee fruits, for treatment of oral candidiasis using a murine model. Oligonol at concentration of more than 313 microg/ml inhibited the mycelial growth of Candida albicans in vitro. When 50 microl of oligonol (20 mg/ml ) was administered three times into the oral cavity of orally Candida -infected mice, the number of viable Candida cells in the oral cavity was reduced significantly and the score of lesions on the tongue recovered on day 2. These findings suggest that oligonol could have potential as a food component supporting anti- Candida treatment.
Collapse
|
40
|
Lee JB, Shin YO, Min YK, Yang HM. The effect of Oligonol intake on cortisol and related cytokines in healthy young men. Nutr Res Pract 2010; 4:203-7. [PMID: 20607065 PMCID: PMC2895700 DOI: 10.4162/nrp.2010.4.3.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/31/2022] Open
Abstract
This study investigated the effects of Oligonol intake on cortisol, interleukin (IL)-1β, and IL-6 concentrations in the serum at rest and after physical exercise loading. Nineteen healthy sedentary male volunteers participated in this study. The physical characteristics of the subjects were: a mean height of 174.2 ± 2.7 cm, a mean weight of 74.8 ± 3.6 kg and a mean age of 22.8 ± 1.3 years. Each subject received 0.5 L water with Oligonol (100 mg/day) (n = 10) or a placebo (n = 9) daily for four weeks. The body composition, the white blood cell (WBC) and differential counts as well as the serum cortisol, IL-1β, and IL-6 concentrations were measured before and after Oligonol intake. The cortisol concentration and serum levels of IL-1β and IL-6 after Oligonol intake were significantly decreased compared to before treatment (P < 0.01, respectively). In addition, the rate of increase of these factors after exercise was decreased compared to the placebo group. There was no change in the WBC and differential cell counts. These results suggest that oral Oligonol intake for four weeks had a significant effect on inhibition of inflammatory markers in healthy young men.
Collapse
Affiliation(s)
- Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, 366-1 Ssang yong-dong, Cheonan 331-946, Korea
| | | | | | | |
Collapse
|
41
|
Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T, Kizaki T, Izawa T, Ishida H, Ohno H. Oligonol, a new lychee fruit-derived low-molecular form of polyphenol, enhances lipolysis in primary rat adipocytes through activation of the ERK1/2 pathway. Phytother Res 2010; 23:1626-33. [PMID: 19548254 DOI: 10.1002/ptr.2846] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of Oligonol, a phenolic product from lychee fruit polyphenol (LFP) containing catechin-type monomers and lower oligomers of proanthocyanidin, on lipolysis in primary adipocytes was investigated in order to examine the possible mechanism underlying the regulation of in vivo metabolism in fat. Oligonol significantly increased lipolysis, which was accompanied by both activation of extracellular signaling-related kinase 1/2 (ERK1/2) and down-regulation of perilipin protein expression, without an increase in intracellular cAMP production. The increase in lipolysis with Oligonol was prevented completely by pretreatment with either PD98059 or U0126, selective ERK1/2 inhibitors, which also prevented the reduction in the expression of perilipin protein. Tumor necrosis factor-alpha also down-regulated the expression of perilipin protein. However, there was no significant alteration in the expression of Galphai protein with Oligonol. These findings indicate that Oligonol enhances lipolysis in primary adipocytes, independent of cAMP production, but its effect is dependent on activation of the ERK1/2 pathway, leading to down-regulation of perilipin protein expression.
Collapse
Affiliation(s)
- Junetsu Ogasawara
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang XH, Yokoo H, Nishioka H, Fujii H, Matsuda N, Hayashi T, Hattori Y. Beneficial effect of the oligomerized polyphenol oligonol on high glucose-induced changes in eNOS phosphorylation and dephosphorylation in endothelial cells. Br J Pharmacol 2010; 159:928-38. [PMID: 20128797 DOI: 10.1111/j.1476-5381.2009.00594.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyperglycaemia is known to reduce nitric oxide (NO) bioavailability by modulating endothelial NO synthase (eNOS) activity, and polyphenols are believed to have cardiovascular benefit. One possible mechanism could be through interaction with eNOS. EXPERIMENTAL APPROACH The effects of the oligomerized polyphenol oligonol on eNOS phosphorylation status and activity were examined in porcine aortic endothelial cells cultured in high glucose concentrations. KEY RESULTS Exposure to high glucose concentrations strongly inhibited eNOS phosphorylation at Ser-1177 and dephosphorylation at Thr-495 in bradykinin (BK)-stimulated cells. These inhibitory effects of high glucose were significantly prevented by treatment with oligonol. Akt and p38 mitogen-activated protein kinase (MAPK) were activated in BK-stimulated cells. High glucose inhibited Akt activation but enhanced p38 MAPK activation, both of which were reversed by oligonol treatment. The phosphatidylinositol 3-kinase inhibitor wortmannin blocked the reversal by oligonol of phosphorylation at Ser-1177, but not dephosphorylation at Thr-495, in BK-stimulated cells exposed to high glucose. The effect of oligonol on BK dephosphorylation under high glucose was mimicked by protein kinase C (PKC) epsilon-neutralizing peptides. These data suggest that the effects of oligonol on high glucose-induced attenuation of eNOS Ser-1177 phosphorylation and Thr-495 dephosphorylation may be regulated by Akt activation and PKCepsilon inhibition respectively. Oligonol also prevented high glucose-induced attenuation of BK-stimulated NO production. CONCLUSIONS AND IMPLICATIONS Oligonol prevented the impairment of eNOS activity induced by high glucose through reversing altered eNOS phosphorylation status. This mechanism may underlie the beneficial cardiovascular health effects of this oligomerized polyphenol.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Xu Y, Li S, Chen R, Li G, Barish PA, You W, Chen L, Lin M, Ku B, Pan J, Ogle WO. Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 2009; 94:447-53. [PMID: 19857512 DOI: 10.1016/j.pbb.2009.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 09/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
Proanthocyanidin is a phenolic product present in plants which has antioxidant, antinociceptive and neuroprotective properties, without inducing significant toxicological effects. The present study tested the hypothesis that low molecular proanthocyanidin from grapes that has optimized bioavailability, would exert antidepressant-like activities in behavioral despair tests. The results suggested that oral administration proanthocyanidin at doses of 25 and 50mg/kg for 7days significantly reduced the duration of immobility in both the tail suspension and forced swimming tests. The doses that affected the immobile response did not affect locomotor activity. In addition, the neurochemical and neuropharmacological assays showed that proanthocyanidin produced a marked increase of 5-HT levels at 25 and 50mg/kg in three brain regions, the frontal cortex, hippocampus and hypothalamus. Noradrenaline and dopamine levels were also increased when higher dose of proanthocyanidin (50mg/kg) administration both in the frontal cortex and hippocampus. These effects were similar to those observed for the classical antidepressant imipramine (10mg/kg, i.p.). Moreover, Our study suggested that proanthocyanidin (12.5, 25 and 50mg/kg) dose dependently inhibited monoamine oxidase-A (MAO-A) activity, while MAO-B inhibitory activity was also found at higher doses (25 and 50mg/kg) after 7days administration. MAO-A selective inhibitor, moclobemide (20mg/kg, i.g.) produced MAO-A inhibition of 70.5% in the mouse brain. These findings suggest that the antidepressant-like effects of proanthocyanidin may involve the central monoaminergic neurotransmitter systems.
Collapse
Affiliation(s)
- Ying Xu
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. Mcknight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Amelioration of abdominal obesity by low-molecular-weight polyphenol (Oligonol) from lychee. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
45
|
Yadav M, Jain S, Bhardwaj A, Nagpal R, Puniya M, Tomar R, Singh V, Parkash O, Prasad GBKS, Marotta F, Yadav H. Biological and medicinal properties of grapes and their bioactive constituents: an update. J Med Food 2009; 12:473-84. [PMID: 19627194 DOI: 10.1089/jmf.2008.0096] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The grape is one of the most valued conventional fruits, worldwide. Although most of the parts of the grapevine are useful, primarily, the grape is considered as a source of unique natural products not only for the development of valuable medicines against a number of diseases, but also for manufacturing various industrial products. Over the last few decades, apart from the chemistry of grape compounds, considerable progress has been made towards exploring the biological activities of various grape-derived constituents. Today, it is well established that in addition to serving as food, the grape is a major source of several phytochemicals. The main biologically active and well-characterized constituent from the grape is resveratrol, which is known for various medicinal properties in human diseases. This review discusses the roles of various grape-derived phytochemicals in relation to various diseases.
Collapse
|
46
|
Herrera E, Jiménez R, Aruoma OI, Hercberg S, Sánchez-García I, Fraga C. Aspects of antioxidant foods and supplements in health and disease. Nutr Rev 2009; 67 Suppl 1:S140-4. [DOI: 10.1111/j.1753-4887.2009.00177.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
47
|
Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 2009; 59:306-11. [DOI: 10.1016/j.phrs.2009.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/19/2022]
|
48
|
Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 2009; 99 E Suppl 1:ES3-52. [PMID: 18503734 DOI: 10.1017/s0007114508965752] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.
Collapse
|
49
|
Neuwirt H, Arias MC, Puhr M, Hobisch A, Culig Z. Oligomeric proanthocyanidin complexes (OPC) exert anti-proliferative and pro-apoptotic effects on prostate cancer cells. Prostate 2008; 68:1647-54. [PMID: 18663730 DOI: 10.1002/pros.20829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Oligomeric proanthocyanidin complexes (OPC) are extracted from grape seeds or maritime pine bark and have been used for enhancement of capillary stability and lymphatic drainage. Since a role for OPC in cancer prevention was postulated, we asked whether they have an effect on prostate cancer cells. METHODS Cell proliferation was determined by (3)H-thymidine assay and cell cycle status was analyzed on a flow cytometer. Expression of regulators of proliferation and apoptosis was determined by Western blot. RESULTS We found that androgen-responsive cells LNCaP are more sensitive to OPC in terms of inhibition of proliferation in comparison to androgen receptor-negative PC3 or DU145 cells. Treatment with OPC resulted in a decrease in the percentage of LNCaP cells in the S phase and an increase in the percentage of cells in sub G1 phase. The anti-proliferative and pro-apoptotic effect of OPC in the LNCaP cell line was associated with down-regulation of expression of the androgen receptor. Interestingly, similar regulatory effects of OPC, such as inhibition of expression of cyclin-dependent kinases and cyclins and stimulation of tumor suppressors p21 and p27, were seen in LNCaP and PC3 cells. Favorable changes in the Bcl-2/Bax ratio were observed in LNCaP and PC3 cells after the treatment with OPC. OPC caused an increase of phosphorylated mitogen-activated protein kinase p44 and p42, thus suggesting induction of cellular differentiation. CONCLUSIONS We conclude that OPC is a candidate that fulfills criteria for chemopreventive strategies in prostate cancer that might be established in following in vivo studies.
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Urology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
50
|
Kundu JK, Hwang DM, Lee JC, Chang EJ, Shin YK, Fujii H, Sun B, Surh YJ. Inhibitory effects of oligonol on phorbol ester-induced tumor promotion and COX-2 expression in mouse skin: NF-kappaB and C/EBP as potential targets. Cancer Lett 2008; 273:86-97. [PMID: 18848748 DOI: 10.1016/j.canlet.2008.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/15/2008] [Accepted: 07/28/2008] [Indexed: 12/18/2022]
Abstract
Plant polyphenols possess anti-oxidant and anti-inflammatory activities and are hence potential candidates for preventing cancer. The present study was aimed at evaluating the anti-inflammatory and anti-tumor promoting activity of oligonol, a formulation of catechin-type oligomers, in mouse skin stimulated with a proto-type tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pretreatment of mouse skin with oligonol significantly inhibited TPA-induced expression of cyclooxygenase-2 (COX-2). Oligonol diminished nuclear translocation and DNA binding of nuclear factor-kappaB (NF-kappaB) via blockade of phosphorylation and subsequent degradation of IkappaB alpha in TPA-treated mouse skin. Moreover, oligonol suppressed TPA-induced DNA binding of CCAAT/enhancer-binding protein (C/EBP) in mouse skin. Oligonol pretreatment also attenuated the phosphorylation and/or catalytic activities of extracellular signal-regulated protein kinase-1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinase. Moreover, p38 MAP kinase inhibitor SB203580, but not the MEK inhibitor U0126, negated TPA-induced DNA binding of C/EBP. In addition, oligonol reduced the incidence and the multiplicity of papillomas and squamous cell carcinomas in 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and TPA-promoted mouse skin, and prolonged the survival of tumor-bearing mice. Pretreatment with oligonol diminished the levels of proliferating cell nuclear antigen and expression of COX-2 in papillomas and carcinomas, respectively, as compared to DMBA plus TPA treatment alone. Taken together, the above findings suggest that oligonol inhibits TPA-induced COX-2 expression by blocking the activation of NF-kappaB and C/EBP via modulation of MAP kinases and suppresses chemically induced mouse skin tumorigenesis.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|