1
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
2
|
Zhao D, Geng C, Liu X, Jin X, Zhao Z, Liu Y, Alwarappan S. Photoelectrochemical detection of superoxide anions released from mitochondria in HepG2 cells based on the synergistic effect of MnO 2@Co 3O 4 core-shell p-n heterojunction. Biosens Bioelectron 2023; 237:115368. [PMID: 37354714 DOI: 10.1016/j.bios.2023.115368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 06/26/2023]
Abstract
The detection and comparison of the amount of superoxide anion (O2.-) released by different complexes in mitochondrial electron transport chain (ETC) can locate the main electron leakage sites in mitochondria. In order to realize this, we designed an ultrasensitive photoelectrochemical (PEC) sensor by in situ hydrothermal growth of MnO2 nanosheets on Co3O4 nanowires array modified Ti substrate (NWA|Ti). Due to the formation of a core-shell p-n heterojunction with high specific surface area, tight surface contact and plentiful oxygen vacancies (OVs), MnO2@Co3O4 NWA|Ti possesses a strong visible light absorption, high charges transfer and separation ability. The proposed PEC sensor exhibited a wide linear range of 0.1-50000 nM and a low detection limit of 0.025 nM towards H2O2. Due to the rapid conversion of O2.- to H2O2 inside mitochondria, the PEC sensor can indirectly monitor the electron leakage in the ETC. Specifically, four selected mitochondrial inhibitors specifically inhibited the corresponding complex in mitochondria extracted from living HepG2 cells (hepatocellular carcinoma cells), and the H2O2 levels converted from O2.- was measured by the PEC sensor. It is evident that IQ (ubiquinone binding) site of complex I and Qo (ubiquinol oxidation) site of complex III are the key sites at which electron leakage occurred. This study could provide meaningful information for the diagnosis and treatment of certain disease caused by oxidative stress due to the electron leakage.
Collapse
Affiliation(s)
- Dan Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China
| | - Chaoyao Geng
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China.
| | - Xiaoxin Jin
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China
| | - Zijuan Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China
| | - Yuan Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, PR China
| | - Subbiah Alwarappan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
3
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Fu L, Liu H, Chen W, Hooft JM, Øverland M, Cai W, Han D, Zhu X, Yang Y, Jin J, Xie S. Enhancement of liver mitochondrial complex I and energy metabolism induced by enteritis: The key role of gut microbiota derived endotoxins. Front Immunol 2022; 13:981917. [PMID: 36119070 PMCID: PMC9479464 DOI: 10.3389/fimmu.2022.981917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an energy-intensive process and the liver is a key organ in energy regulation. Since the intestine and liver exchange nutrients and metabolites, enteritis can affect the liver. To investigate the correlation between enteritis and liver metabolism, we developed an intestinal inflammation model with concentration-dependent 2,4,6-trinitrobenzene sulfonic acid (TNBS) in gibel carp (Carassius gibelio). The results showed the dysregulation of intestinal tight junction, increased permeability of the gut barrier, and apoptosis of epithelial cells during the development of enteritis. The liver metabolome was analyzed by LC-MS and the live respiration was determined using Oxygraph-2k. The results showed that glycolysis, the TCA cycle and pyrimidine metabolism were affected by intestinal inflammation. In particular, the activity of hepatic mitochondrial respiratory chain complex I was significantly increased. Structure and abundance changes of gut microbiota were analyzed by 16S rRNA sequencing analysis. Pathogenic bacteria in the intestine, as well as plasma LPS, increased significantly. Using a liver cell line, we verified that the dysfunctional metabolism of the liver is related to the dislocation of LPS. All results imply the existence of a connection between enteritis and liver metabolism in gibel carp, and the gut microbiome plays a critical role in this process.
Collapse
Affiliation(s)
- Lele Fu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Haokun Liu,
| | - Wen Chen
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jamie Marie Hooft
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Wanjie Cai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited. Int J Mol Sci 2022; 23:ijms23095111. [PMID: 35563503 PMCID: PMC9106064 DOI: 10.3390/ijms23095111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD+ requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and F1FO-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the F1FO-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the F1FO-ATPase even under CI inhibition.
Collapse
|
6
|
Gureev AP, Sitnikov VV, Pogorelov DI, Vitkalova IY, Igamberdiev AU, Popov VN. The effect of pesticides on the NADH-supported mitochondrial respiration of permeabilized potato mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105056. [PMID: 35430060 DOI: 10.1016/j.pestbp.2022.105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.
Collapse
Affiliation(s)
- Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Vadim V Sitnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Daniil I Pogorelov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Inna Yu Vitkalova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Vasily N Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| |
Collapse
|
7
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
8
|
Selivanov VA, Zagubnaya OA, Nartsissov YR, Cascante M. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model. PLoS One 2021; 16:e0255164. [PMID: 34343196 PMCID: PMC8330910 DOI: 10.1371/journal.pone.0255164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022] Open
Abstract
Glutamate plays diverse roles in neuronal cells, affecting cell energetics and reactive oxygen species (ROS) generation. These roles are especially vital for neuronal cells, which deal with high amounts of glutamate as a neurotransmitter. Our analysis explored neuronal glutamate implication in cellular energy metabolism and ROS generation, using a kinetic model that simulates electron transport details in respiratory complexes, linked ROS generation and metabolic reactions. The analysis focused on the fact that glutamate attenuates complex II inhibition by oxaloacetate, stimulating the latter's transformation into aspartate. Such a mechanism of complex II activation by glutamate could cause almost complete reduction of ubiquinone and deficiency of oxidized form (Q), which closes the main stream of electron transport and opens a way to massive ROS generating transfer in complex III from semiquinone radicals to molecular oxygen. In this way, under low workload, glutamate triggers the respiratory chain (RC) into a different steady state characterized by high ROS generation rate. The observed stepwise dependence of ROS generation on glutamate concentration experimentally validated this prediction. However, glutamate's attenuation of oxaloacetate's inhibition accelerates electron transport under high workload. Glutamate-oxaloacetate interaction in complex II regulation underlies the observed effects of uncouplers and inhibitors and acceleration of Ca2+ uptake. Thus, this theoretical analysis uncovered the previously unknown roles of oxaloacetate as a regulator of ROS generation and glutamate as a modifier of this regulation. The model predicted that this mechanism of complex II activation by glutamate might be operative in situ and responsible for excitotoxicity. Spatial-time gradients of synthesized hydrogen peroxide concentration, calculated in the reaction-diffusion model with convection under a non-uniform local approximation of nervous tissue, have shown that overproduction of H2O2 in a cell causes excess of its level in neighbor cells.
Collapse
Affiliation(s)
- Vitaly A. Selivanov
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Olga A. Zagubnaya
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Yaroslav R. Nartsissov
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Coenzyme Q 10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants (Basel) 2021; 10:antiox10020236. [PMID: 33557229 PMCID: PMC7913973 DOI: 10.3390/antiox10020236] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.
Collapse
|
10
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
11
|
Samet JM, Chen H, Pennington ER, Bromberg PA. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med 2020; 151:26-37. [PMID: 31877355 PMCID: PMC7803379 DOI: 10.1016/j.freeradbiomed.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.
Collapse
Affiliation(s)
- James M Samet
- Environmental Public Health Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Kleiner G, Barca E, Ziosi M, Emmanuele V, Xu Y, Hidalgo-Gutierrez A, Qiao C, Tadesse S, Area-Gomez E, Lopez LC, Quinzii CM. CoQ 10 supplementation rescues nephrotic syndrome through normalization of H 2S oxidation pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3708-3722. [PMID: 30251690 DOI: 10.1016/j.bbadis.2018.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Nephrotic syndrome (NS), a frequent chronic kidney disease in children and young adults, is the most common phenotype associated with primary coenzyme Q10 (CoQ10) deficiency and is very responsive to CoQ10 supplementation, although the pathomechanism is not clear. Here, using a mouse model of CoQ deficiency-associated NS, we show that long-term oral CoQ10 supplementation prevents kidney failure by rescuing defects of sulfides oxidation and ameliorating oxidative stress, despite only incomplete normalization of kidney CoQ levels and lack of rescue of CoQ-dependent respiratory enzymes activities. Liver and kidney lipidomics, and urine metabolomics analyses, did not show CoQ metabolites. To further demonstrate that sulfides metabolism defects cause oxidative stress in CoQ deficiency, we show that silencing of sulfide quinone oxido-reductase (SQOR) in wild-type HeLa cells leads to similar increases of reactive oxygen species (ROS) observed in HeLa cells depleted of the CoQ biosynthesis regulatory protein COQ8A. While CoQ10 supplementation of COQ8A depleted cells decreases ROS and increases SQOR protein levels, knock-down of SQOR prevents CoQ10 antioxidant effects. We conclude that kidney failure in CoQ deficiency-associated NS is caused by oxidative stress mediated by impaired sulfides oxidation and propose that CoQ supplementation does not significantly increase the kidney pool of CoQ bound to the respiratory supercomplexes, but rather enhances the free pool of CoQ, which stabilizes SQOR protein levels rescuing oxidative stress.
Collapse
Affiliation(s)
- Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Marcello Ziosi
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Yimeng Xu
- Department of Pathology, Columbia University Medical Center, New York, NY, United States
| | | | - Changhong Qiao
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY, United States
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Luis C Lopez
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, United States.
| |
Collapse
|
13
|
Baccolo G, Stamerra G, Coppola DP, Orlandi I, Vai M. Mitochondrial Metabolism and Aging in Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:1-33. [PMID: 30072089 DOI: 10.1016/bs.ircmb.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial functionality is one of the main factors involved in cell survival, and mitochondrial dysfunctions have been identified as an aging hallmark. In particular, the insurgence of mitochondrial dysfunctions is tightly connected to mitochondrial metabolism. During aging, both mitochondrial oxidative and biosynthetic metabolisms are progressively altered, with the development of malfunctions, in turn affecting mitochondrial functionality. In this context, the relation between mitochondrial pathways and aging is evolutionarily conserved from single-celled organisms, such as yeasts, to complex multicellular organisms, such as humans. Useful information has been provided by the yeast Saccharomyces cerevisiae, which is being increasingly acknowledged as a valuable model system to uncover mechanisms underlying cellular longevity in humans. On this basis, we review the impact of specific aspects of mitochondrial metabolism on aging supported by the contributions brought by numerous studies performed employing yeast. Initially, we will focus on the tricarboxylic acid cycle and oxidative phosphorylation, describing how their modulation has consequences on cellular longevity. Afterward, we will report information regarding the importance of nicotinamide adenine dinucleotide (NAD) metabolism during aging, highlighting its relation with mitochondrial functionality. The comprehension of these key points regarding mitochondrial metabolism and their physiological importance is an essential first step for the development of therapeutic interventions that point to increase life quality during aging, therefore promoting "healthy aging," as well as lifespan itself.
Collapse
Affiliation(s)
- Giacomo Baccolo
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | - Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
14
|
de Oliveira MR, da Costa Ferreira G, Peres A, Bosco SMD. Carnosic Acid Suppresses the H 2O 2-Induced Mitochondria-Related Bioenergetics Disturbances and Redox Impairment in SH-SY5Y Cells: Role for Nrf2. Mol Neurobiol 2017; 55:968-979. [PMID: 28084591 DOI: 10.1007/s12035-016-0372-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022]
Abstract
The phenolic diterpene carnosic acid (CA, C20H28O4) exerts antioxidant, anti-inflammatory, anti-apoptotic, and anti-cancer effects in mammalian cells. CA activates the nuclear factor erythroid 2-related factor 2 (Nrf2), among other signaling pathways, and restores cell viability in several in vitro and in vivo experimental models. We have previously reported that CA affords mitochondrial protection against various chemical challenges. However, it was not clear yet whether CA would prevent chemically induced impairment of the tricarboxylic acid cycle (TCA) function in mammalian cells. In the present work, we found that a pretreatment of human neuroblastoma SH-SY5Y cells with CA at 1 μM for 12 h prevented the hydrogen peroxide (H2O2)-induced impairment of the TCA enzymes (aconitase, α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH)) and abolished the inhibition of the complexes I and V and restored the levels of ATP by a mechanism associated with Nrf2. CA also exhibited antioxidant abilities by enhancing the levels of reduced glutathione (GSH) and decreasing the content oxidative stress markers (cellular 8-oxo-2'-deoxyguanosine (8-oxo-dG), and mitochondrial malondialdehyde (MDA), protein carbonyl, and 3-nitrotyrosine). Silencing of Nrf2 by small interfering RNA (siRNA) abrogated the protective effects elicited by CA in mitochondria of SH-SY5Y cells. Therefore, CA prevented the H2O2-triggered mitochondrial impairment by an Nrf2-dependent mechanism. The specific role of Nrf2 in ameliorating the function of TCA enzymes function needs further research.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Departamento de Química/ICET, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa , 2367 , Cuiaba, MT, 78060-900, Brazil.
| | - Gustavo da Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra Peres
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | | |
Collapse
|
15
|
Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34:813-826. [DOI: 10.1016/j.biotechadv.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
16
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
17
|
The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1093-104. [PMID: 26964795 DOI: 10.1016/j.bbadis.2016.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations.
Collapse
|
18
|
Gómez-Murcia V, Torrecillas A, de Godos AM, Corbalán-García S, Gómez-Fernández JC. Both idebenone and idebenol are localized near the lipid-water interface of the membrane and increase its fluidity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1071-81. [PMID: 26926421 DOI: 10.1016/j.bbamem.2016.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Idebenone is a synthetic analog of coenzyme Q; both share a quinone moiety but idebenone has a shorter lipophilic tail ending with a hydroxyl group. Differential scanning calorimetry experiments showed that both idebenone and idebenol widened and shifted the phase transition of 1,2-dipalmitoylphosphatidylcholine (DPPC) to a lower temperature and a phase separation with different concentrations of these molecules was observed. Also small angle X-ray diffraction and wide angle X-ray diffraction revealed that both, idebenone and idebenol, induced laterally separated phases in fluid membranes when included in DPPC membranes. Electronic profiles showed that both forms, idebenone and idebenol, reduced the thickness of the fluid membrane. (2)H NMR measurements showed that the order of the membrane decreased at all temperatures in the presence of idebenone or idebenol, the greatest disorder being observed in the segments of the acyl chains close to the lipid-water interface. (1)H NOESY MAS NMR spectra were obtained using 1-palmitoyl-2-oleoyl-phosphatidylcholine membranes and results pointed to a similar location in the membrane for both forms, with the benzoquinone or benzoquinol rings and their terminal hydroxyl group of the hydrophobic chain located near the lipid/water interface of the phospholipid bilayer and the terminal hydroxyl group of the hydrophobic chain of both compounds located at the lipid/water interface. Taken together, all these different locations might explain the different physiological behavior shown by the idebenone/idebenol compared with the ubiquinone-10/ubiquinol-10 pair in which both compounds are differently localized in the membrane.
Collapse
Affiliation(s)
- Victoria Gómez-Murcia
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, IMIB-Arrixaca, Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, IMIB-Arrixaca, Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, IMIB-Arrixaca, Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, IMIB-Arrixaca, Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, IMIB-Arrixaca, Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
19
|
Prati F, Bergamini C, Molina MT, Falchi F, Cavalli A, Kaiser M, Brun R, Fato R, Bolognesi ML. 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. J Med Chem 2015; 58:6422-34. [DOI: 10.1021/acs.jmedchem.5b00748] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Federica Prati
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Teresa Molina
- Instituto de Química Médica (IQM-CSIC), c/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Federico Falchi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marcel Kaiser
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Romana Fato
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6/Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
20
|
De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 2015; 83:167-77. [PMID: 25708779 DOI: 10.1016/j.freeradbiomed.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Mattia Musto
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| |
Collapse
|
21
|
Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol 2015; 4:289-95. [PMID: 25625583 PMCID: PMC4803797 DOI: 10.1016/j.redox.2015.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Coenzyme Q10 is a ubiquitous component of cellular membranes and belongs to the class of benzoquinones that mainly differ with regards to the length and composition of their hydrophobic tail. The characteristic quinone group can accept electrons from various biological sources and is converted by a one electron transfer to the unstable semiquinone or by a two electron transfer to the more stable hydroquinone. This feature makes CoQ10 the bona fide cellular electron transfer molecule within the mitochondrial respiratory chain and also makes it a potent cellular antioxidant. These activities serve as justification for its popular use as food supplement. Another quinone with similarities to the naturally occurring CoQ10 is idebenone, which shares its quinone moiety with CoQ10, but at the same time differs from CoQ10 by the presence of a much shorter, less lipophilic tail. However, despite its similarity to CoQ10, idebenone cannot be isolated from any natural sources but instead was synthesized and selected as a pharmacologically active compound in the 1980s by Takeda Pharmaceuticals purely based on its pharmacological properties. Several recent clinical trials demonstrated some therapeutic efficacy of idebenone in different indications and as a consequence, many practitioners question if the freely available CoQ10 could not be used instead. Here, we describe the molecular and pharmacological features of both molecules that arise from their structural differences to answer the question if idebenone is merely a CoQ10 analogue as frequently perpetuated in the literature or a pharmaceutical drug with entirely different features. The benzoquinones CoQ10 and idebenone have vastly different solubility. Both molecules need to get activated by cellular reductases. Due to their solubility both molecules are in different cellular compartments. Therefore, both quinones are activated by different enzymes. Thus, their solubility strongly determines their biological activities.
Collapse
|
22
|
Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr 2014; 47:111-8. [PMID: 25262284 DOI: 10.1007/s10863-014-9571-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Ubiquinone, commonly called coenzyme Q10 (CoQ), is a lipophilic electron carrier and endogenous antioxidant found in all cellular membranes. In the mitochondrial inner membrane it transfers electrons to complex III of the electron transport chain. The short chain CoQ analogue idebenone is in clinical trials for a number of diseases that exhibit a mitochondrial etiology. Nevertheless, evidence that idebenone ameliorates neurological symptoms in human disease is inconsistent. Although championed as an antioxidant, idebenone can also act as a pro-oxidant by forming an unstable semiquinone at complex I. The antioxidant function of idebenone is critically dependent on two-electron reduction to idebenol without the creation of unstable intermediates. Recently, cytoplasmic NAD(P)H quinone oxidoreductase 1 (NQO1) was identified as a major enzyme catalyzing idebenone reduction. While reduction allows idebenone to act as an antioxidant, evidence also suggests that NQO1 enables idebenone to shuttle reducing equivalents from cytoplasmic NAD(P)H to mitochondrial complex III, bypassing any upstream damage to the electron transport chain. In this mini-review we discuss how idebenone can influence mitochondrial function within the context of cytoprotection. Importantly, in the brain NQO1 is expressed primarily by glia rather than neurons. As NQO1 is an inducible enzyme regulated by oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, optimizing NQO1 expression in appropriate cell types within a specific disease context may be key to delivering on idebenone's therapeutic potential.
Collapse
Affiliation(s)
- Sausan Jaber
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 5-34, Baltimore, MD, 21201, USA
| | | |
Collapse
|
23
|
Campisi A, Acquaviva R, Bonfanti R, Raciti G, Amodeo A, Mastrojeni S, Ragusa S, Iauk L. Antioxidant properties of Berberis aetnensis C. Presl (Berberidaceae) roots extract and protective effects on astroglial cell cultures. ScientificWorldJournal 2014; 2014:315473. [PMID: 25177720 PMCID: PMC4142662 DOI: 10.1155/2014/315473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 01/27/2023] Open
Abstract
Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Roberta Bonfanti
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Andrea Amodeo
- Department of Biomedical Sciences, Microbiology Section, University of Catania, Via Androne 81, 95125 Catania, Italy
| | - Silvana Mastrojeni
- Department of Biomedical Sciences, Microbiology Section, University of Catania, Via Androne 81, 95125 Catania, Italy
| | - Salvatore Ragusa
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Liliana Iauk
- Department of Biomedical Sciences, Microbiology Section, University of Catania, Via Androne 81, 95125 Catania, Italy
| |
Collapse
|
24
|
Prati F, Uliassi E, Bolognesi ML. Two diseases, one approach: multitarget drug discovery in Alzheimer's and neglected tropical diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00069b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multitarget drug discovery may represent a promising therapeutic approach to treat Alzheimer's and neglected tropical diseases.
Collapse
Affiliation(s)
- F. Prati
- Department of Drug Discovery & Development
- Istituto Italiano di Tecnologia
- Genova
- Italy
- Department of Pharmacy & Biotechnology
| | - E. Uliassi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| | - M. L. Bolognesi
- Department of Pharmacy & Biotechnology
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
25
|
Pieretti S, Haanstra JR, Mazet M, Perozzo R, Bergamini C, Prati F, Fato R, Lenaz G, Capranico G, Brun R, Bakker BM, Michels PAM, Scapozza L, Bolognesi ML, Cavalli A. Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl Trop Dis 2013; 7:e2012. [PMID: 23350008 PMCID: PMC3547856 DOI: 10.1371/journal.pntd.0002012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 12/03/2012] [Indexed: 11/21/2022] Open
Abstract
Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands. The multitarget approach can represent a promising strategy for the discovery of innovative drug candidates against neglected tropical diseases. However, multitarget drug discovery can be very demanding, because of the highly time-consuming step related to the fine balancing of the biological activities against selected targets. An innovative workflow for discovering multitarget drugs can be envisioned: i) design and synthesis of natural-like compounds; ii) test them using phenotypic cell-based assays; iii) fishing potential targets by means of chemical proteomics. This workflow might rapidly provide new hit candidates that can be further progressed to the hit-to-lead and lead optimization steps of the drug discovery process. The two latter steps can benefit from information on the molecular target(s), which may be identified by chemical proteomics. Herein, we report on the elucidation of the mode of action of a new series of anti-trypanosomal naphthoquinone compounds, previously tested using cell-based assays, by means of chemical proteomics, classical biochemistry, molecular and system biology.
Collapse
Affiliation(s)
- Simone Pieretti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Department of Biochemistry, University of Bologna, Bologna, Italy
| | - Jurgen R. Haanstra
- Department of Pediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Muriel Mazet
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium
| | - Remo Perozzo
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | - Federica Prati
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Romana Fato
- Department of Biochemistry, University of Bologna, Bologna, Italy
| | - Giorgio Lenaz
- Department of Biochemistry, University of Bologna, Bologna, Italy
| | | | - Reto Brun
- Swiss Tropical Institute, Basel, Switzerland
| | - Barbara M. Bakker
- Department of Pediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- * E-mail: (MLB); (AC)
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail: (MLB); (AC)
| |
Collapse
|
26
|
Goldschmidt R, Arce PM, Khdour OM, Collin VC, Dey S, Jaruvangsanti J, Fash DM, Hecht SM. Effects of cytoprotective antioxidants on lymphocytes from representative mitochondrial neurodegenerative diseases. Bioorg Med Chem 2012; 21:969-78. [PMID: 23313093 DOI: 10.1016/j.bmc.2012.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 01/03/2023]
Abstract
Two new aza analogues of the neuroprotective agent idebenone have been synthesized and characterized. Their antioxidant activity, and ability to augment ATP levels have been evaluated in several different cell lines having suboptimal mitochondrial function. Both compounds were found to be good ROS scavengers, and to protect the cells from oxidative stress induced by glutathione depletion. The compounds were more effective than idebenone in neurodegenerative disease cells. These novel pyrimidinol derivatives were also shown to augment ATP levels in coenzyme Q(10)-deficient human lymphocytes. The more lipophilic side chains attached to the pyrimidinol redox core in these compounds resulted in less inhibition of the electron transport chain and improved antioxidant activity.
Collapse
Affiliation(s)
- Ruth Goldschmidt
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 2012; 32:11250-8. [PMID: 22895709 DOI: 10.1523/jneurosci.0907-12.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial oxidative stress and damage have been implicated in the etiology of temporal lobe epilepsy, but whether or not they have a functional impact on mitochondrial processes during epilepsy development (epileptogenesis) is unknown. One consequence of increased steady-state mitochondrial reactive oxygen species levels is protein post-translational modification (PTM). We hypothesize that complex I (CI), a protein complex of the mitochondrial electron transport chain, is a target for oxidant-induced PTMs, such as carbonylation, leading to impaired function during epileptogenesis. The goal of this study was to determine whether oxidative modifications occur and what impact they have on CI enzymatic activity in the rat hippocampus in response to kainate (KA)-induced epileptogenesis. Rats were injected with a single high dose of KA or vehicle and evidence for CI modifications was measured during the acute, latent, and chronic stages of epilepsy. Mitochondrial-specific carbonylation was increased acutely (48 h) and chronically (6 week), coincident with decreased CI activity. Mass spectrometry analysis of immunocaptured CI identified specific metal catalyzed carbonylation to Arg76 within the 75 kDa subunit concomitant with inhibition of CI activity during epileptogenesis. Computational-based molecular modeling studies revealed that Arg76 is in close proximity to the active site of CI and carbonylation of the residue is predicted to induce substantial structural alterations to the protein complex. These data provide evidence for the occurrence of a specific and irreversible oxidative modification of an important mitochondrial enzyme complex critical for cellular bioenergetics during the process of epileptogenesis.
Collapse
|
28
|
Analysis of the structural and mechanistic factors in antioxidants that preserve mitochondrial function and confer cytoprotection. Bioorg Med Chem 2012; 20:5188-201. [DOI: 10.1016/j.bmc.2012.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/31/2022]
|
29
|
Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone Loaded Solid Lipid Nanoparticles Interact with Biomembrane Models: Calorimetric Evidence. Mol Pharm 2012; 9:2534-41. [DOI: 10.1021/mp300149w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Montenegro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Sara Ottimo
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Giovanni Puglisi
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Francesco Castelli
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
30
|
Belliere J, Devun F, Cottet-Rousselle C, Batandier C, Leverve X, Fontaine E. Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death. J Bioenerg Biomembr 2012; 44:207-12. [PMID: 22246424 DOI: 10.1007/s10863-012-9406-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The permeability transition pore (PTP) is a mitochondrial inner membrane channel involved in cell death. The inhibition of PTP opening has been proved to be an effective strategy to prevent cell death induced by oxidative stress. Several ubiquinone analogs are known to powerfully inhibit PTP opening with an effect depending on the studied cell line. Here, we have studied the effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)) and ubiquinone 10 (Ub(10)) on PTP regulation, H(2)O(2) production and cell viability in U937 cells. We found that Ub(0) induced both PTP opening and H(2)O(2) production. Ub(5) did not regulate PTP opening yet induced H(2)O(2) production. Ub(10) potently inhibited PTP opening yet induced H(2)O(2) production. Both Ub(0) and Ub(5) induced cell death, whereas Ub(10) was not toxic. Moreover, Ub(10) prevented tert-butyl hydroperoxide-induced PTP opening and subsequent cell death. We conclude that PTP-inhibitor ubiquinone analogs are able to prevent PTP opening-induced cell death only if they are not toxic per se, which is the case when they have no or low pro-oxidant activity.
Collapse
|
31
|
Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 2012; 4:3-12. [PMID: 22278880 PMCID: PMC3292901 DOI: 10.18632/aging.100423] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/28/2022]
Abstract
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.
Collapse
Affiliation(s)
| | - James M. Flynn
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, Cassereau J, Ferre M, Milea D, Amati-Bonneau P, Bonneau D, Procaccio V, Reynier P, Loiseau D. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes 2011; 4:557. [PMID: 22192149 PMCID: PMC3285568 DOI: 10.1186/1756-0500-4-557] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is caused by mutations in the complex I subunits of the respiratory chain. Although patients have been treated with idebenone since 1992, the efficacy of the drug is still a matter of debate. METHODS We evaluated the effect of idebenone in fibroblasts from LHON patients using enzymatic and polarographic measurements. RESULTS Complex I activity was 42% greater in treated fibroblasts compared to controls (p = 0.002). Despite this complex I activity improvement, the effects on mitochondrial respiration were contradictory, leading to impairment in some cases and stimulation in others. CONCLUSION These results indicate that idebenone is able to compensate the complex I deficiency in LHON patient cells with variable effects on respiration, indicating that the patients might not be equally likely to benefit from the treatment.
Collapse
|
33
|
Giorgio V, Petronilli V, Ghelli A, Carelli V, Rugolo M, Lenaz G, Bernardi P. The effects of idebenone on mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:363-9. [PMID: 22086148 PMCID: PMC3265671 DOI: 10.1016/j.bbabio.2011.10.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/17/2022]
Abstract
We have studied the effects of idebenone on mitochondrial function in cybrids derived from one normal donor (HQB17) and one patient harboring the G3460A/MT-ND1 mutation of Leber's Hereditary Optic Neuropathy (RJ206); and in XTC.UC1 cells bearing a premature stop codon at aminoacid 101 of MT-ND1 that hampers complex I assembly. Addition of idebenone to HQB17 cells caused mitochondrial depolarization and NADH depletion, which were inhibited by cyclosporin (Cs) A and decylubiquinone, suggesting an involvement of the permeability transition pore (PTP). On the other hand, addition of dithiothreitol together with idebenone did not cause PTP opening and allowed maintenance of the mitochondrial membrane potential even in the presence of rotenone. Addition of dithiothreitol plus idebenone, or of idebenol, to HQB17, RJ206 and XTC.UC1 cells sustained membrane potential in intact cells and ATP synthesis in permeabilized cells even in the presence of rotenone and malonate, and restored a good level of coupled respiration in complex I-deficient XTC.UC1 cells. These findings demonstrate that idebenol can feed electrons at complex III. If the quinone is maintained in the reduced state, a task that in some cell types appears to be performed by dicoumarol-sensitive NAD(P)H:quinone oxidoreductase 1 [Haefeli et al. (2011) PLoS One 6, e17963], electron transfer to complex III may allow reoxidation of NADH in complex I deficiencies.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Saada A. The use of individual patient's fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Mol Genet Metab 2011; 104:39-47. [PMID: 21835663 DOI: 10.1016/j.ymgme.2011.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/12/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases, are a prevalent but diverse group of inherited disorders affecting the oxidative phosphorylation (OXPHOS) system. Vast amount of information with respect to pathomechanism and the assembly of the various OXPHOS complexes has been accumulated by studying the different variants of these diseases. Conversely, the investigation of therapeutic strategies has been hampered by this extreme variability. Individual patient's fibroblast may therefore provide a suitable platform in the search for personalized treatments, of nuclear encoded defects, when the phenotype is expressed in multiple tissues. Examples and different approaches in the search for treatment options, while using fibroblasts from patients with nuclear encoded OXPHOS defects as model systems, are summarized and discussed.
Collapse
Affiliation(s)
- Ann Saada
- Department of Genetics and Metabolic Diseases and the Monique and Jacques Roboh, Hadassah-Hebrew University Medical Center, POB 1200, 91120 Jerusalem, Israel.
| |
Collapse
|
35
|
Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 2011; 435:679-88. [PMID: 21338338 DOI: 10.1042/bj20101908] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.
Collapse
|
36
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lindemer BJ, Bongard RD, Hoffmann R, Baumgardt S, Gonzalez FJ, Merker MP. Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2011; 300:L773-80. [PMID: 21296895 DOI: 10.1152/ajplung.00394.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quinones duroquinone (DQ) and coenzyme Q(1) (CoQ(1)) and quinone reductase inhibitors have been used to identify reductases involved in quinone reduction on passage through the pulmonary circulation. In perfused rat lung, NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as the predominant DQ reductase and NQO1 and mitochondrial complex I as the CoQ(1) reductases. Since inhibitors have nonspecific effects, the goal was to use Nqo1-null (NQO1(-)/(-)) mice to evaluate DQ as an NQO1 probe in the lung. Lung homogenate cytosol NQO1 activities were 97 ± 11, 54 ± 6, and 5 ± 1 (SE) nmol dichlorophenolindophenol reduced·min(-1)·mg protein(-1) for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs, respectively. Intact lung quinone reduction was evaluated by infusion of DQ (50 μM) or CoQ(1) (60 μM) into the pulmonary arterial inflow of the isolated perfused lung and measurement of pulmonary venous effluent hydroquinone (DQH(2) or CoQ(1)H(2)). DQH(2) efflux rates for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs were 0.65 ± 0.08, 0.45 ± 0.04, and 0.13 ± 0.05 (SE) μmol·min(-1)·g dry lung(-1), respectively. DQ reduction in NQO1(+/+) lungs was inhibited by 90 ± 4% with dicumarol; there was no inhibition in NQO1(-/-) lungs. There was no significant difference in CoQ(1)H(2) efflux rates for NQO1(+/+) and NQO1(-/-) lungs. Differences in DQ reduction were not due to differences in lung dry weights, wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total DQ recoveries. The data provide genetic evidence implicating DQ as a specific NQO1 probe in the perfused rodent lung.
Collapse
Affiliation(s)
- Brian J Lindemer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cela O, Piccoli C, Scrima R, Quarato G, Marolla A, Cinnella G, Dambrosio M, Capitanio N. Bupivacaine uncouples the mitochondrial oxidative phosphorylation, inhibits respiratory chain complexes I and III and enhances ROS production: Results of a study on cell cultures. Mitochondrion 2010; 10:487-96. [DOI: 10.1016/j.mito.2010.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/26/2010] [Accepted: 05/17/2010] [Indexed: 11/24/2022]
|
39
|
Inhibition of mitochondrial function reduces DNA repair in human mononuclear cells. Leuk Res 2010; 35:219-25. [PMID: 20619454 DOI: 10.1016/j.leukres.2010.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/30/2010] [Accepted: 06/10/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mitochondria provide ATP and Ca(2+) needed for DNA repair, but also produce reactive oxygen species (ROS), which may damage DNA. AIM To investigate the effect of mitochondrial function inhibition on DNA repair. METHOD Five mitochondrial inhibitors acting at various sites of electron transport were studied. Human peripheral blood mononuclear cells, spontaneous and H(2)O(2)-induced DNA repair, as well as %-double-stranded-DNA, were measured. RESULTS All mitochondrial inhibitors suppressed spontaneous and H(2)O(2)-induced DNA repair. However, their effect on %-double-stranded-DNA differed, which is partly related to ROS suppression. CONCLUSION Mitochondrial inhibition may enhance efficacy and reduce toxicity of radiation and cytotoxic drugs therapy.
Collapse
|
40
|
Pignatello R, Acquaviva R, Campisi A, Raciti G, Musumeci T, Puglisi G. Effects of liposomal encapsulation on the antioxidant activity of lipophilic prodrugs of idebenone. J Liposome Res 2010; 21:46-54. [DOI: 10.3109/08982101003735996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Rodriguez-Cuenca S, Cochemé HM, Logan A, Abakumova I, Prime TA, Rose C, Vidal-Puig A, Smith AC, Rubinsztein DC, Fearnley IM, Jones BA, Pope S, Heales SJR, Lam BYH, Neogi SG, McFarlane I, James AM, Smith RAJ, Murphy MP. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med 2010; 48:161-72. [PMID: 19854266 DOI: 10.1016/j.freeradbiomed.2009.10.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/02/2009] [Accepted: 10/17/2009] [Indexed: 12/01/2022]
Abstract
The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice.
Collapse
Affiliation(s)
- Sergio Rodriguez-Cuenca
- Department of Clinical Biochemistry, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Meyer MW, Gockeln R, Hoy L, Meyer A, Erb C. Comparison of Intraocular Pressure Measurements with the Digital Tonometer TGDc-01 ‘PRA’ and the Goldmann Applanation Tonometer. Ophthalmic Res 2004; 36:250-4. [PMID: 15583430 DOI: 10.1159/000081204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND To compare intraocular pressure (IOP) measurements obtained with the digital tonometer TGDc-01 'PRA' with those from a Goldmann applanation tonometer (GAT). METHODS The IOP in 176 eyes of 88 healthy volunteers was measured prospectively in a sitting position. One single measurement, generated by the TGDc-01 PRA, was compared with a single reading from the GAT. RESULTS Mean IOP values were 13.0 +/- 3.7 mm Hg for the TGDc-01 PRA (range, 4-22 mm Hg) and 14.9 +/- 3.2 mm Hg for the GAT (range, 8-27 mm Hg). The mean difference was 1.9 mm Hg with a standard deviation of 2.77 mm Hg, and this was statistically significant (p < 0.001, paired t test). CONCLUSIONS In comparison to the GAT, the TGDc-01 PRA underestimated IOP on an average of 1.9 mm Hg. Only 50.6% of all measurements were within the +/-2 mm Hg difference range. Thus, the TGDc-01 PRA has no high coincidence degree with the GAT. Both methods were not equivalent.
Collapse
Affiliation(s)
- Michael W Meyer
- Department of Ophthalmology, Medical School Hannover, Germany.
| | | | | | | | | |
Collapse
|