1
|
Lambert M, Pedroso LDC, Rosini Silva AA, Messias LHD, Porcari AM, Carvalho PDO, Scariot PPM, dos Reis IGM. Combined Association of Plasma Metabolites with Body Mass Index and Physical Activity Level. BIOLOGY 2024; 13:1074. [PMID: 39765741 PMCID: PMC11673513 DOI: 10.3390/biology13121074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 01/11/2025]
Abstract
Metabolomic analysis of the changes in plasma metabolites in obesity along with physical activity interaction may contribute to disease diagnosis and treatment. We sought to make a comprehensive assessment of the plasma metabolite profile of subjects with a lean (n = 20, BMI = 22.3) or overweight/obese (n = 29, BMI = 29) body mass index (BMI) and low (n = 33, IPAQ = 842) or high (n = 16, IPAQ = 6935) index of physical activity questionnaire (IPAQ), using an untargeted metabolomic approach. Two-way analysis of variance was applied to the data obtained from liquid chromatography-mass spectrometry analyses and resulted in 64 metabolites, mainly responsible for the data variance among the different groups. Finally, a complex network approach reveals the most relevant metabolites. The majority of the relevant metabolites are oxidized species of phospholipids. Most species of phosphatidylcholine and a species of phosphatidylglycerol were found to be decreased in obese subjects, while most species of phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol were increased. Only a single species each of prostaglandin, phosphatidylglycerol, and phosphatidylinositol were modulated by IPAQ, but interaction effects between BMI and IPAQ were found for most of the metabolites in the combination of obese BMI with low IPAQ.
Collapse
Affiliation(s)
- Mayara Lambert
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (M.L.); (L.d.C.P.); (L.H.D.M.); (P.P.M.S.)
| | - Larissa de Castro Pedroso
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (M.L.); (L.d.C.P.); (L.H.D.M.); (P.P.M.S.)
| | - Alex Aparecido Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (A.M.P.); (P.d.O.C.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (M.L.); (L.d.C.P.); (L.H.D.M.); (P.P.M.S.)
| | - Andréia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (A.M.P.); (P.d.O.C.)
| | - Patrícia de Oliveira Carvalho
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (A.M.P.); (P.d.O.C.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (M.L.); (L.d.C.P.); (L.H.D.M.); (P.P.M.S.)
| | - Ivan Gustavo Masselli dos Reis
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (M.L.); (L.d.C.P.); (L.H.D.M.); (P.P.M.S.)
| |
Collapse
|
2
|
Apryatin SA, Trusov NV, Gorbachev AY, Naumov VA, Balakina AS, Mzhel'skaya KV, Gmoshinski IV. Comparative Whole-Transcriptome Profiling of Liver Tissue from Wistar Rats Fed with Diets Containing Different Amounts of Fat, Fructose, and Cholesterol. BIOCHEMISTRY (MOSCOW) 2019; 84:1093-1106. [PMID: 31693469 DOI: 10.1134/s0006297919090128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Differential expression of 30,003 genes was studied in the liver of female Wistar rats fed with isocaloric diets with the excess of fat, fructose, or cholesterol, or their combinations for 62 days using the method of whole-transcriptome profiling on a microchip. Relative mRNA expression levels of the Asah2, Crot, Crtc2, Fmo3, GSTA2, LOC1009122026, LOC102551184, NpY, NqO1, Prom1, Retsat, RGD1305464, Tmem104, and Whsc1 genes were also determined by RT-qPCR. All the tested diets affected differently the key metabolic pathways (KEGGs). Significant changes in the expression of steroid metabolism gene were observed in the liver of animals fed with the tested diets (except the high-fat high fructose diet). Both high-fat and high-fructose diets caused a significant decrease in the expression of squalene synthase (FDFT1 gene) responsible for the initial stage of cholesterol synthesis. On the contrary, in animals fed with the high-cholesterol diet (0.5% cholesterol), expression of the FDFT1 gene did not differ from the control group; however, these animals were characterized by changes in the expression of glucose and glycogen synthesis genes, which could lead to the suppression of glycogen synthesis and gluconeogenesis. At the same time, this group demonstrated different liver tissue morphology in comparison with the animals fed with the high-fructose high-fat diet, manifested as the presence of lipid vacuoles of a smaller size in hepatocytes. The high-fructose and high-fructose high-fat diets affected the metabolic pathways associated with intracellular protein catabolism (endocytosis, phagocytosis, proteasomal degradation, protein processing in the endoplasmic reticulum), tight junctions and intercellular contacts, adhesion molecules, and intracellular RNA transport. Rats fed with the high-fructose high-fat or high-cholesterol diets demonstrated consistent changes in the expression of the Crot, Prom1, and RGD1305464 genes, which reflected a coordinated shift in the regulation of lipid and carbohydrate metabolisms.
Collapse
Affiliation(s)
- S A Apryatin
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia.
| | - N V Trusov
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia
| | - A Yu Gorbachev
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia
| | - V A Naumov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, 117198, Russia
| | - A S Balakina
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia
| | - K V Mzhel'skaya
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia
| | - I V Gmoshinski
- Federal Centre of Nutrition, Biotechnology, and Food Safety, Moscow, 109240, Russia.
| |
Collapse
|
3
|
Rangel-Huerta OD, Pastor-Villaescusa B, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019; 15:93. [PMID: 31197497 PMCID: PMC6565659 DOI: 10.1007/s11306-019-1553-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/18/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is a disorder characterized by a disproportionate increase in body weight in relation to height, mainly due to the accumulation of fat, and is considered a pandemic of the present century by many international health institutions. It is associated with several non-communicable chronic diseases, namely, metabolic syndrome, type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and cancer. Metabolomics is a useful tool to evaluate changes in metabolites due to being overweight and obesity at the body fluid and cellular levels and to ascertain metabolic changes in metabolically unhealthy overweight and obese individuals (MUHO) compared to metabolically healthy individuals (MHO). OBJECTIVES We aimed to conduct a systematic review (SR) of human studies focused on identifying metabolomic signatures in obese individuals and obesity-related metabolic alterations, such as inflammation or oxidative stress. METHODS We reviewed the literature to identify studies investigating the metabolomics profile of human obesity and that were published up to May 7th, 2019 in SCOPUS and PubMed through an SR. The quality of reporting was evaluated using an adapted of QUADOMICS. RESULTS Thirty-three articles were included and classified according to four types of approaches. (i) studying the metabolic signature of obesity, (ii) studying the differential responses of obese and non-obese subjects to dietary challenges (iii) studies that used metabolomics to predict weight loss and aimed to assess the effects of weight loss interventions on the metabolomics profiles of overweight or obese human subjects (iv) articles that studied the effects of specific dietary patterns or dietary compounds on obesity-related metabolic alterations in humans. CONCLUSION The present SR provides state-of-the-art information about the use of metabolomics as an approach to understanding the dynamics of metabolic processes involved in human obesity and emphasizes metabolic signatures related to obesity phenotypes.
Collapse
Affiliation(s)
- Oscar Daniel Rangel-Huerta
- Faculty of Medicine, Department of Nutrition, University of Oslo, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | - Belén Pastor-Villaescusa
- LMU - Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Neuherberg, Germany
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix, Centre for Biomedical Research, University of Granada", Granada, Spain.
- Instituto de Investigación Biosanitaria ibs-Granada, Granada, Spain.
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain.
| |
Collapse
|
4
|
Yang XF, Qiu YQ, Wang L, Gao KG, Jiang ZY. A high-fat diet increases body fat mass and up-regulates expression of genes related to adipogenesis and inflammation in a genetically lean pig. J Zhejiang Univ Sci B 2019; 19:884-894. [PMID: 30387338 DOI: 10.1631/jzus.b1700507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adipocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-1c, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.
Collapse
Affiliation(s)
- Xue-Fen Yang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Qiu
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kai-Guo Gao
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zong-Yong Jiang
- Laboratory of Animal Nutrition and Feed (South China), Ministry of Agriculture / State Key Laboratory of Livestock and Poultry Breeding / Guangdong Key Laboratory of Animal Breeding and Nutrition / Guangdong Public Laboratory of Animal Breeding and Nutrition / Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Expression of syntaxin 8 in visceral adipose tissue is increased in obese patients with type 2 diabetes and related to markers of insulin resistance and inflammation. Arch Med Res 2014; 46:47-53. [PMID: 25523146 DOI: 10.1016/j.arcmed.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2014] [Accepted: 12/09/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Obesity is associated with increased adipose tissue inflammation as well as with the development of type 2 diabetes (T2D). Syntaxin 8 (STX8) is a protein required for the transport of endosomes. In this study we analyzed the relationship of STX8 with the presence of T2D in the context of obesity. METHODS With this purpose, 21 subjects (seven lean [LN], eight obese normoglycemic [OB-NG] and six obese with type 2 diabetes [OB-T2D]) were included in the study. Gene and protein expression levels of STX8 and GLUT4 were analyzed in visceral adipose tissue (VAT). RESULTS mRNA (p = 0.008) and protein (p <0.001) expression levels of STX8 were significantly increased in VAT of OB-T2D patients. Moreover, gene expression levels of SLC2A4 (GLUT4) were downregulated (p = 0.002) in VAT of obese patients. We found that STX8 was positively correlated (p <0.05) with fasting glucose concentrations, plasma glucose 2 h after an OGTT and C-reactive protein. Interestingly, the expression of STX8 was negatively correlated (p <0.05) with the expression of SLC2A4 in VAT. CONCLUSIONS Increased STX8 expression in VAT appears to be associated with the presence of T2D in obese patients through a mechanism that may involve GLUT4.
Collapse
|
6
|
Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med 2014; 34:1647-54. [PMID: 25319795 DOI: 10.3892/ijmm.2014.1958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2014] [Accepted: 09/15/2014] [Indexed: 11/06/2022] Open
Abstract
Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Aneta Majewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Joanna Karolina Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Artur Dzwonek
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| |
Collapse
|
7
|
Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm Res 2014. [PMID: 25248334 DOI: 10.1007/s11095–014–1526–9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. METHODS Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. RESULTS CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression of Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfα, Mcp-1 and Ccr2 encoding inflammatory proteins. CONCLUSION Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Room 450 Pharmacy South, 250 West Green Street, Athens, Georgia, 30602, USA
| | | | | |
Collapse
|
8
|
Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm Res 2014; 32:1200-9. [PMID: 25248334 DOI: 10.1007/s11095-014-1526-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. METHODS Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. RESULTS CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression of Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfα, Mcp-1 and Ccr2 encoding inflammatory proteins. CONCLUSION Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Room 450 Pharmacy South, 250 West Green Street, Athens, Georgia, 30602, USA
| | | | | |
Collapse
|
9
|
Hennig EE, Mikula M, Goryca K, Paziewska A, Ledwon J, Nesteruk M, Woszczynski M, Walewska-Zielecka B, Pysniak K, Ostrowski J. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice. J Cell Mol Med 2014; 18:1762-72. [PMID: 24913135 PMCID: PMC4196652 DOI: 10.1111/jcmm.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022] Open
Abstract
One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland; Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Partridge CG, Fawcett GL, Wang B, Semenkovich CF, Cheverud JM. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice. BMC Genomics 2014; 15:99. [PMID: 24499025 PMCID: PMC4028868 DOI: 10.1186/1471-2164-15-99] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome.
Collapse
Affiliation(s)
- Charlyn G Partridge
- Department of Anatomy and Neurobiology, Washington University in St, Louis, St, Louis, MO, USA.
| | | | | | | | | |
Collapse
|
11
|
Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol 2014; 139:277-89. [PMID: 23318879 DOI: 10.1016/j.jsbmb.2012.12.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/21/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a diverse class of non-steroidal compounds that have an affinity for estrogen receptors α and β, for the peroxisome proliferator-activated receptor (PPAR) family and for the aryl hydrocarbon receptor. Examples of phytoestrogens include prenylated flavonoids, isoflavones, coumestans and lignans. Many phytoestrogens counteract the cellular derailments that are responsible for the development of metabolic syndrome. Here we propose a mechanism of action which is based on five pillars/principles. First, phytoestrogens are involved in the downregulation of pro-inflammatory cytokines, such as COX-2 and iNOS, by activating PPAR and by inhibiting IκB activation. Second, they increase reverse cholesterol transport, which is mediated by PPARγ. Third, phytoestrogens increase insulin sensitivity, which is mediated via PPARα. Fourth, they exert antioxidant effects by activating antioxidant genes through KEAP. Fifth, phytoestrogens increase energy expenditure by affecting AMP-activated kinase signaling cascades, which are responsible for the inhibition of adipogenesis. In addition to these effects, which have been demonstrated in vivo and in clinical trials, other effects, such as eNOS activation, may also be important. Some plant extracts from soy, red clover or licorice can be described as panPPAR activators. Fetal programming for metabolic syndrome has been hypothesized; thus, the consumption of dietary phytoestrogens during pregnancy may be relevant. Extracts from soy, red clover or licorice oil have potential as plant-derived medicines that could be used to treat polycystic ovary syndrome, a disease linked to hyperandrogenism and obesity, although clinical trials have not yet been conducted. Phytoestrogens may help prevent metabolic syndrome, although intervention studies will be always be ambiguous, because physical activity and reduced calorie consumption also have a significant impact. Nevertheless, extracts rich in phytoestrogens may be an alternative treatment or may complement conventional treatment for diseases linked with metabolic syndrome. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Alois Jungbauer
- Christian Doppler Laboratory of Receptor Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| | | |
Collapse
|
12
|
Affiliation(s)
- Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA
| |
Collapse
|
13
|
Lin Q, Huang Y, Booth CJ, Haase VH, Johnson RS, Celeste Simon M, Giordano FJ, Yun Z. Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J Am Heart Assoc 2013; 2:e000548. [PMID: 24326162 PMCID: PMC3886757 DOI: 10.1161/jaha.113.000548] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Background Obesity can cause structural and functional abnormalities of the heart via complex but largely undefined mechanisms. Emerging evidence has shown that obesity results in reduced oxygen concentrations, or hypoxia, in adipose tissue. We hypothesized that the adipocyte hypoxia‐signaling pathway plays an essential role in the development of obesity‐associated cardiomyopathy. Methods and Results Using a mouse model in which the hypoxia‐inducible factor (HIF) pathway is activated by deletion of the von Hippel–Lindau gene specifically in adipocytes, we found that mice with adipocyte–von Hippel–Lindau deletion developed lethal cardiac hypertrophy. HIF activation in adipocytes results in overexpression of key cardiomyopathy‐associated genes in adipose tissue, increased serum levels of several proinflammatory cytokines including interleukin‐1β and monocyte chemotactic protein‐1, and activation of nuclear factor–κB and nuclear factor of activated T cells in the heart. Interestingly, genetic deletion of Hif2a, but not Hif1a, was able to rescue cardiac hypertrophy and abrogate adipose inflammation. Conclusion We have discovered a previously uncharacterized mechanism underlying a critical and direct role of the adipocyte HIF‐2 transcription factor in the development of adipose inflammation and pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qun Lin
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
González-Muniesa P, Marrades MP, Martínez JA, Moreno-Aliaga MJ. Differential proinflammatory and oxidative stress response and vulnerability to metabolic syndrome in habitual high-fat young male consumers putatively predisposed by their genetic background. Int J Mol Sci 2013; 14:17238-55. [PMID: 23975165 PMCID: PMC3794726 DOI: 10.3390/ijms140917238] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
The current nutritional habits and lifestyles of modern societies favor energy overloads and a diminished physical activity, which may produce serious clinical disturbances and excessive weight gain. In order to investigate the mechanisms by which the environmental factors interact with molecular mechanisms in obesity, a pathway analysis was performed to identify genes differentially expressed in subcutaneous abdominal adipose tissue (SCAAT) from obese compared to lean male (21–35 year-old) subjects living in similar obesogenic conditions: habitual high fat dietary intake and moderate physical activity. Genes involved in inflammation (ALCAM, CTSB, C1S, YKL-40, MIF, SAA2), extracellular matrix remodeling (MMP9, PALLD), angiogenesis (EGFL6, leptin) and oxidative stress (AKR1C3, UCHL1, HSPB7 and NQO1) were upregulated; whereas apoptosis, signal transcription (CITED 2 and NR3C1), cell control and cell cycle-related genes were downregulated. Interestingly, the expression of some of these genes (C1S, SAA2, ALCAM, CTSB, YKL-40 and tenomodulin) was found to be associated with some relevant metabolic syndrome features. The obese group showed a general upregulation in the expression of inflammatory, oxidative stress, extracellular remodeling and angiogenic genes compared to lean subjects, suggesting that a given genetic background in an obesogenic environment could underlie the resistance to gaining weight and obesity-associated manifestations.
Collapse
Affiliation(s)
- Pedro González-Muniesa
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; E-Mails: (P.G.-M.); (M.P.M.); (J.A.M.)
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, 29029 Madrid, Spain
| | - María Pilar Marrades
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; E-Mails: (P.G.-M.); (M.P.M.); (J.A.M.)
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; E-Mails: (P.G.-M.); (M.P.M.); (J.A.M.)
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, 29029 Madrid, Spain
| | - María Jesús Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; E-Mails: (P.G.-M.); (M.P.M.); (J.A.M.)
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, 29029 Madrid, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600 (ext. 806558); Fax: +34-948-425-740
| |
Collapse
|
16
|
Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res 2013; 30:1447-57. [PMID: 23371517 DOI: 10.1007/s11095-013-0986-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023]
Abstract
PURPOSE To examine the effect of farnesoid X receptor (FXR) activation by its synthetic agonist, 3-[2-[2-Chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064) on diet-induced obesity and hepatic steatosis. METHODS Fifteen week-old C57BL/6 mice fed with high-fat diet (HFD) or high-fat, high-cholesterol diet were treated by twice weekly injection of GW4064 (50 mg/kg) intraperitoneally or DMSO (carrier solution) for 6 weeks. Body weight, body composition and food intake were monitored weekly. Serum glucose and insulin levels and lipid content in the liver were measured at the end of study. Additionally, genes involved in lipogenesis, gluconeogenesis and inflammation were analyzed by real time PCR. CD36 protein level was detected by western blot. RESULTS Activation of FXR by GW4064 suppressed weight gain in C57BL/6 mice fed with either HFD or high-fat and high-cholesterol diet. GW4064 treatment of mice significantly repressed diet-induced hepatic steatosis as evidenced by lower triglyceride and free fatty acid level in the liver. Analysis of genes involved in lipid metabolism showed GW4064 markedly reduced lipid transporter Cd36 gene expression without affecting expression of genes that are directly involved in lipogenesis. GW4064 treatment attenuated hepatic inflammation while having no effect on white adipose tissue. In addition, activation of FXR by GW4064 avoided diet-induced hyperinsulinemia and hyperglycemia through decreasing the transcript levels of phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pase), two key enzymes in gluconeogenesis. CONCLUSIONS The results verify the important function of FXR in diet-induced obesity and suggest that FXR agonists are promising therapeutic agents for obesity-associated metabolic disorders.
Collapse
|
17
|
Vincent A, Louveau I, Gondret F, Lebret B, Damon M. Mitochondrial function, fatty acid metabolism, and immune system are relevant features of pig adipose tissue development. Physiol Genomics 2012; 44:1116-24. [PMID: 23012395 DOI: 10.1152/physiolgenomics.00098.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms underlying the genetic control of fat development in humans and livestock species still require characterization. To gain insights on gene expression patterns associated with genetic propensity for adiposity, we compared subcutaneous adipose tissue (SCAT) transcriptomics profiles from two contrasted pig breeds for body fatness. Samples were obtained from Large White (LW; lean phenotype) and Basque pigs (B; low growth and high fat content) at 35 kg (n = 5 per breed) or 145 kg body weight (n = 10 per breed). Using a custom adipose tissue microarray, we found 271 genes to be differentially expressed between the two breeds at both stages, out of which 123 were highly expressed in LW pigs and 148 genes were highly expressed in B pigs. Functional enrichment analysis based on gene ontology (GO) terms highlighted gene groups corresponding to the mitochondrial energy metabolism in LW pigs, whereas immune response was found significantly enriched in B pigs. Genes associated with lipid metabolism, such as ELOVL6, a gene involved in fatty acid elongation, had a lower expression in B compared with LW pigs. Furthermore, despite enlarged adipocyte diameters and higher plasma leptin concentration, B pigs displayed reduced lipogenic enzyme activities compared with LW pigs at 145 kg. Altogether, our results suggest that the development of adiposity was associated with a progressive worsening of the metabolic status, leading to a low-grade inflammatory state, and may thus be of significant interest for both livestock production and human health.
Collapse
Affiliation(s)
- Annie Vincent
- INRA, Unité Mixte de Recherche 1348 Pegase, Saint-Gilles, France
| | | | | | | | | |
Collapse
|
18
|
Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr Res 2012; 32:218-28. [PMID: 22464809 DOI: 10.1016/j.nutres.2012.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/31/2022]
Abstract
Chitooligosaccharide (CO) has been reported to have potential antiobestic effects in a few studies, but the antiobesity properties of CO and its related mechanisms in models of dietary obesity remain unclear. We investigated the effect of CO on body weight gain, size of adipocytes, adipokines, and lipid profiles in high-fat (HF) diet-induced obese mice and on the gene expression in adipose tissue using a complementary DNA microarray approach to test the hypothesis that CO supplementation would alleviate HF diet-induced obesity by the alteration of adipose tissue-specific gene expression. Male C57BL/6N mice were fed a normal diet (control), HF diet, or CO-supplemented HF diet (1% or 3%) for 5 months. Compared with the HF diet mice, mice fed the 3% CO-supplemented diet gained 15% less weight but did not display any change in food and energy intake. Chitooligosaccharide supplementation markedly improved serum and hepatic lipid profiles. Histologic examination showed that epididymal adipocyte size was smaller in mice fed the HF + 3% CO. Microarray analysis showed that dietary CO supplementation modulated adipogenesis-related genes such as matrix metallopeptidases 3, 12, 13, and 14; tissue inhibitor of metalloproteinase 1; and cathepsin k in the adipose tissues. Twenty-five percent of the CO-responsive genes identified are involved in immune responses including the inflammatory response and cytokine production. These results suggest that CO supplementation may help ameliorate HF diet-induced weight gain and improve serum and liver lipid profile abnormalities, which are associated, at least in part, with altered adipose tissue gene expression involved in adipogenesis and inflammation.
Collapse
|
19
|
Ma Y, Liu D. Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One 2012; 7:e38734. [PMID: 22723881 PMCID: PMC3377726 DOI: 10.1371/journal.pone.0038734] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN) in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of Pparγ2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1β, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cheung WW, Mao P. Recent advances in obesity: genetics and beyond. ISRN ENDOCRINOLOGY 2012; 2012:536905. [PMID: 22474595 PMCID: PMC3313574 DOI: 10.5402/2012/536905] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 11/11/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
The prevalence of obesity, which is a heritable trait that arises from the interactions of multiple genes and lifestyle factors, continues to increase worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past several years, various genetic epidemiological approaches have been utilized to identify genetic loci for obesity. Recent evidence suggests that development of obesity involves hormones and neurotransmitters (such as leptin, cocaine- and amphetamine-regulated transcript (CART), and ghrelin) that regulate appetite and energy expenditure. These hormones act on specific centers in the brain that regulate the sensations of satiety. Mutations in these hormones or their receptors can lead to obesity. Aberrant circadian rhythms and biochemical pathways in peripheral organs or tissues have also been implicated in the pathology of obesity. More interestingly, increasing evidence indicates a potential relation between obesity and central nervous system disorders (such as cognitive deficits). This paper discusses recent advances in the field of genetics of obesity with an emphasis on several established loci that influence obesity. These recently identified loci may hold the promise to substantially improve our insights into the pathophysiology of obesity and open up new therapeutic strategies to combat growing obesity epidemic facing the human population today.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peizhong Mao
- Division of Neuroscience, Oregon National Primate Research Center, Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
21
|
Ikeda Y, Hama S, Kajimoto K, Okuno T, Tsuchiya H, Kogure K. Quantitative comparison of adipocytokine gene expression during adipocyte maturation in non-obese and obese rats. Biol Pharm Bull 2011; 34:865-70. [PMID: 21628885 DOI: 10.1248/bpb.34.865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Adipocytokines secreted from adipocytes have been extensively analyzed due to their role as key factors in various complications of obesity, including arterial sclerosis, liver steatosis, insulin resistance, and diabetes. Several in vivo and in vitro studies have suggested that adipocyte maturation is related to fluctuations in adipocytokine secretion. However, the relationship between adipocyte maturation and adipocytokine levels has not been fully elucidated. Therefore, we sought to clarify the link between adipocytokine gene expression and adipocyte maturation through systematic analysis. We quantified mRNA for six adipocytokine genes: adiponectin, resistin, leptin, plasminogen activator inhibitor 1 (PAI-1), heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), and visfatin, in adipose tissue, in primary cultured adipocytes obtained from an obese Zucker rat, and in the preadipocyte cell line 3T3-L1. Moreover, to elucidate the role of adipocytokines in adipocyte maturation, adipocytokine expression levels were analyzed during maturation. Although fluctuations in adipocytokine gene expression were heterogeneous, gene expression was highly similar during maturation of primary cultured adipocytes from obese and non-obese rats, suggesting that the maturation process is independent from processes that lead to obesity. Moreover, the expression patterns of adiponectin, resistin and leptin mRNA in 3T3-L1 cells were highly similar to those in primary cultured adipocytes, indicating that these adipocytokines could be common maturation markers for primary cultured adipocytes obtained from obese and non-obese rats, and for preadipocyte cell lines.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Azorín-Ortuño M, Yáñez-Gascón MJ, González-Sarrías A, Larrosa M, Vallejo F, Pallarés FJ, Lucas R, Morales JC, Tomás-Barberán FA, García-Conesa MT, Espín JC. Effects of long-term consumption of low doses of resveratrol on diet-induced mild hypercholesterolemia in pigs: a transcriptomic approach to disease prevention. J Nutr Biochem 2011; 23:829-37. [PMID: 21852083 DOI: 10.1016/j.jnutbio.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases (CVDs) have risen to alarming proportions, and there is a need for therapeutic and preventive measures. The polyphenol resveratrol (RES) protects against CVDs, but in vivo molecular mechanisms responsible for protection are not yet understood. Peripheral blood mononuclear cells (PBMNCs) are involved in the development of atherosclerosis and metabolic disorders. The identification of PBMNCs genes responding to dietary compounds might help to understand the mechanisms underlying the effects of polyphenols. We determined gene expression differences between PBMNCs from pigs fed a high-fat diet manifesting a mild increase of cholesterol and pigs fed a high-fat diet containing low doses of RES. Although the consumption of RES did not modify the levels of cholesterol, microarray analyses indicated that some of the differentially expressed genes, collagens (COL1A, COL3A), lipoprotein lipase (LPL) and fatty-acid binding proteins (FABPs) involved in CVDs and lipid metabolism were up-regulated by the high-fat diet and down-regulated by RES. Reverse transcriptase polymerase chain reaction confirmed that RES and RES-containing grape extract prevented the induction of FABP4 in PBMNCs in female pigs fed a high-fat diet. Low micromolar concentrations of RES and its metabolite dihydroresveratrol exerted a minor but significant reducing effect on the induction of FABP4 expression in human macrophages treated with oxidized low-density lipoprotein. Our results show that the consumption of low doses of RES modulates the expression of genes related to lipid metabolism and metabolic disorders that are affected by a high-fat diet and suggest that some of the circulating RES metabolites may contribute to these effects.
Collapse
Affiliation(s)
- María Azorín-Ortuño
- Department Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Das SK, Sharma NK, Hasstedt SJ, Mondal AK, Ma L, Langberg KA, Elbein SC. An integrative genomics approach identifies activation of thioredoxin/thioredoxin reductase-1-mediated oxidative stress defense pathway and inhibition of angiogenesis in obese nondiabetic human subjects. J Clin Endocrinol Metab 2011; 96:E1308-13. [PMID: 21593104 PMCID: PMC3146788 DOI: 10.1210/jc.2011-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Obesity is a complex disease that involves both genetic and environmental perturbations to gene networks in adipose tissue and is proposed as a trigger for metabolic sequelae. OBJECTIVE We hypothesized that expression of adipose tissue transcripts in gene networks for adaptive response would correlate with the percent fat mass (PFAT) in healthy nondiabetic subjects to maintain metabolic equilibrium and would overlap with genes modulated in response to elevated fatty acid. DESIGN, SETTINGS, AND PATIENTS Genome-wide transcript profiles were determined in sc adipose tissue of 136 nondiabetics and in palmitate-induced cells. Genotype information and gene expression data in nondiabetic subjects were integrated to characterize the function of 41 obesity-associated polymorphisms. RESULTS Genes involved in inflammation-immune response, endoplasmic reticulum stress, and cell-extracellular matrix interactions were significantly correlated with PFAT. The NRF2 (nuclear factor erythroid 2-related factor-2)-mediated oxidative stress response pathway was strongly enriched among genes correlated with PFAT in adipose and also emerged as the most enriched pathway among genes differentially expressed by palmitate in vitro. Thioredoxin reductase-1 (TXNRD1) was the most strongly correlated gene (ρ = 0.65). Genes coregulated with TXNRD1 expression indicated a significant interaction network of genes involved in thioredoxin-mediated oxidative stress defense mechanisms and angiogenesis. Pro- and antiangiogenic factors were negatively and positively correlated, respectively, with obesity. Eight obesity genome-wide association study single-nucleotide polymorphisms (SNP) were associated with expression of 10 local transcripts. SNP rs6861681 was the strongest cis-eQTL (expression quantitative trait loci) for CPEB4 (P = 3.02 × 10⁻⁹). CONCLUSIONS Our study suggests a novel interaction of up-regulated TXN-TXNRD1 system-mediated oxidative stress defense mechanisms and down-regulated angiogenesis pathways as an adaptive response in obese nondiabetic subjects. A subset of obesity-associated SNP regulated expression of transcripts as cis-eQTL.
Collapse
Affiliation(s)
- Swapan K Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Cieslak J, Bartz M, Stachowiak M, Skowronska B, Majewska KA, Harasymczuk J, Stankiewicz W, Fichna P, Switonski M. Effect of three common SNPs in 5'-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents. Mol Biol Rep 2011; 39:3951-5. [PMID: 21755292 PMCID: PMC3294210 DOI: 10.1007/s11033-011-1174-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 12/15/2022]
Abstract
Genes encoding adipokines are considered as candidates for human obesity. In this study we analyzed the expression of leptin (LEP) and adiponectin (ADIPOQ) genes in relation to common 5′-flanking or 5′UTR variants: -2548G>A (LEP), 19A>G (LEP) and -11377C>G (ADIPOQ) in Polish obese children and adolescents. Relative transcription levels in the subcutaneous adipose tissue (real time RT–PCR) and serum protein concentrations (RIA) were measured in 48 obese subjects with known genotypes at three polymorphic sites and in five non-obese controls. None of the studied polymorphisms altered significantly the expression. Significantly elevated relative transcription levels of the LEP gene (P < 0.05) and serum leptin concentrations (P < 0.01) were recorded in obese patients, when compared with the non-obese controls, but such differences were not found for the ADIPOQ gene. Interestingly, the leptin to adiponectin protein concentration ratio (L/A) was approximately sevenfold higher in obese children and adolescents when compared with the non-obese controls (P < 0.001). Taking into consideration the observed relationship between the genotypes and the gene expression level we suggest that these SNPs are not conclusive markers for predisposition to obesity in Polish children and adolescents. On the other hand, we confirmed that the leptin to adiponectin gene expression ratio (L/A) is an informative index characterizing obesity.
Collapse
Affiliation(s)
- J Cieslak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Won I, Kim YJ, Kim SJ, Kim EH, Hahm KB. Nutrigenomic approach to tackle the unpleasant journey to Helicobacter pylori-associated gastric carcinogenesis. J Dig Dis 2011; 12:157-64. [PMID: 21615868 DOI: 10.1111/j.1751-2980.2011.00492.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
While dietary habits or nutritional intake continue to rank as significant factors influencing the incidence of cancer, there have been considerable scientific uncertainties about who will benefit, but who about will not benefit from nutrition. This might be due to inadequate knowledge about an individual's genetic background, the cumulative effect of nutrients on genetic expression profiles, ambiguous clinical differences between beneficiaries and non-beneficiaries and the lack of information about active protein induction. During the past 200 years of nutrition research, we have experienced revolutionary advances in both chemistry and genomics. According to the high expectations for tailored medicine, a nutrigenomic approach harboring tremendous potential to change the future of dietary guideline and personal recommendations will provide an essential basis for personalized dietary recommendations to prevent common multifactorial diseases decades before their overt clinical manifestation. In the current review, we introduce our efforts to discover Helicobacter pylori (H. pylori)-related disease biomarkers applicable for diagnostic, predictive and therapeutic purposes using several kinds of technology. For instance, based on publications showing the in vitro and in vivo efficacy of Korean red ginseng on mitigating H. pylori-associated gastric atrophy, a nutrigenomic approach allows us to confirm that Korean red ginseng prevents H. pylori-associated gastric cancer in predictable ways.
Collapse
Affiliation(s)
- Insik Won
- Department of Gastroenterology, Gachon Graduate School of Medicine-Gil Medical Center, 7-45 Songdo-dong, Yeonsu-gu, Incheon, Korea
| | | | | | | | | |
Collapse
|
26
|
Ma H, Schadt EE, Kaplan LM, Zhao H. COSINE: COndition-SpecIfic sub-NEtwork identification using a global optimization method. ACTA ACUST UNITED AC 2011; 27:1290-8. [PMID: 21414987 DOI: 10.1093/bioinformatics/btr136] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
MOTIVATION The identification of condition specific sub-networks from gene expression profiles has important biological applications, ranging from the selection of disease-related biomarkers to the discovery of pathway alterations across different phenotypes. Although many methods exist for extracting these sub-networks, very few existing approaches simultaneously consider both the differential expression of individual genes and the differential correlation of gene pairs, losing potentially valuable information in the data. RESULTS In this article, we propose a new method, COSINE (COndition SpecIfic sub-NEtwork), which employs a scoring function that jointly measures the condition-specific changes of both 'nodes' (individual genes) and 'edges' (gene-gene co-expression). It uses the genetic algorithm to search for the single optimal sub-network which maximizes the scoring function. We applied COSINE to both simulated datasets with various differential expression patterns, and three real datasets, one prostate cancer dataset, a second one from the across-tissue comparison of morbidly obese patients and the other from the across-population comparison of the HapMap samples. Compared with previous methods, COSINE is more powerful in identifying truly significant sub-networks of appropriate size and meaningful biological relevance. AVAILABILITY The R code is available as the COSINE package on CRAN: http://cran.r-project.org/web/packages/COSINE/index.html.
Collapse
Affiliation(s)
- Haisu Ma
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
27
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|
28
|
Affiliation(s)
- Amelia Marti
- Department of Food Science and Nutrition, Physiology and Toxicology, Pharmacy School, University of Navarra, Pamplona, Navarra, Spain
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- * Department of Food Science, Nutrition, Physiology and Toxicology, Pharmacy School, University of Navarra, Irunlarrea 1, 31001 Pamplona, Navarra, Spain,
| | - Jose Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- IMDEA Alimentacion
- Department of Epidemiology, Atherothrombosis and Imaging, CNIC, Madrid, Spain
| |
Collapse
|
29
|
Mathur SK, Jain P, Mathur P. Microarray evidences the role of pathologic adipose tissue in insulin resistance and their clinical implications. J Obes 2011; 2011:587495. [PMID: 21603273 PMCID: PMC3092611 DOI: 10.1155/2011/587495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/01/2010] [Accepted: 02/21/2011] [Indexed: 12/20/2022] Open
Abstract
Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large number of genes in an array. This technique has several potential applications in understanding pathologic adipose tissue. They are: (1) transcriptomic differences between various depots of adipose tissue, adipose tissue from obese versus lean individuals, high insulin resistant versus low insulin resistance, brown versus white adipose tissue, (2) transcriptomic profiles of various stages of adipogenesis, (3) effect of diet, cytokines, adipokines, hormones, environmental toxins and drugs on transcriptomic profiles, (4) influence of adipokines on transcriptomic profiles in skeletal muscle, hepatocyte, adipose tissue etc., and (5) genetics of gene expression. The microarray evidences of molecular basis of obesity and insulin resistance are presented here. Despite the limitations, microarray has potential clinical applications in finding new molecular targets for treatment of insulin resistance and classification of adipose tissue based on future risk of insulin resistance syndrome.
Collapse
Affiliation(s)
- Sandeep Kumar Mathur
- Department of Endocrinology, S. M. S. Medical College, India
- *Sandeep Kumar Mathur:
| | - Priyanka Jain
- Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India
| | - Prashant Mathur
- Department of Pharmacology, S. M. S. Medical College, J. L. Marg, Jaipur 302004, India
| |
Collapse
|
30
|
Kim E. Insulin resistance at the crossroads of metabolic syndrome: systemic analysis using microarrays. Biotechnol J 2010; 5:919-29. [PMID: 20669253 DOI: 10.1002/biot.201000048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Recently, it has been suggested that insulin resistance is a better predictor of metabolic syndrome than obesity. Numerous studies have been conducted to identify insulin resistance susceptibility genes in various model systems. This review focuses on recent findings in microarray analyses, which have indicated that (i) in the liver, genes involved in lipid synthesis and gluconeogenesis are increased in an animal model of insulin resistance that leads into liver steatosis and hyperglycemia; (ii) in adipose tissues, genes involved in fatty acid synthesis and adipogenesis are down-regulated both in insulin-resistant humans and in animals; and (iii) in muscle, overall gene expression, including genes involved in fatty acid oxidation and biosynthesis, is either decreased or unresponsive compared to that of insulin-sensitive control human subjects or animals. Considering the multifaceted effects of insulin resistance in various tissues, aiming at multi-targets rather than a single target will be a more promising strategy for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Food Sciences and Nutrition, Catholic University of Daegu, Gyeongsan, Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
31
|
Marrades MP, González-Muniesa P, Martínez JA, Moreno-Aliaga MJ. A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity. Obes Facts 2010; 3:312-8. [PMID: 20975297 PMCID: PMC6452131 DOI: 10.1159/000321451] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between the differential expression of genes related to lipid metabolism in subcutaneous adipose tissue and metabolic syndrome features in lean and obese subjects with habitual high fat intake. METHODS Microarray and RT-PCR analysis were used to analyze and validate differential gene expression in subcutaneous abdominal adipose tissue samples from lean and obese phenotype subjects. RESULTS Several genes and transcripts involved in lipolysis were down-regulated, such as AKAP1, PRKAR2B, Gi and CIDEA, whereas NPY1R and CES1 were up-regulated, when comparing obese to lean subjects. Similarly, transcripts associated with cholesterol and lipoprotein metabolism showed a differential expression, with APOE and ABCA being decreased and VLDLR being increased in obese versus lean subjects. In addition, positive correlations were found between different markers of the metabolic syndrome and CES1 and NPY1R mRNA expressions, while APOE showed an inverse association with some of them. CONCLUSION Different expression patterns in transcripts encoding for proteins involved in lipolysis and lipoprotein metabolism were found between lean and obese subjects. Moreover, the dysregulation of genes such as CES1 and APOE seems to be associated with some physiopathological markers of insulin resistance and cardiovascular risk factors in obesity.
Collapse
Affiliation(s)
| | | | | | - María J. Moreno-Aliaga
- *Dr. María J. Moreno-Aliaga, Department of Nutrition, Food Sciences, Physiology and Toxicology., University of Navarra, 31008 Pamplona, Spain, Tel. +34 948 4256–00, Fax -49,
| |
Collapse
|
32
|
Kim Y, Choi Y, Park T. Hepatoprotective effect of oleuropein in mice: Mechanisms uncovered by gene expression profiling. Biotechnol J 2010; 5:950-60. [DOI: 10.1002/biot.201000068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|