1
|
Yan J, Li Z, Shu Y, Chen H, Wang T, Li X, Zhang Y, Li L, Zhang Y. The Unveiled Novel regulator of Adeno-associated virus production in HEK293 cells. Gene 2025; 938:149122. [PMID: 39581356 DOI: 10.1016/j.gene.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The field of gene therapy using Adeno-associated viral (AAV) vector delivery is rapidly advancing in the biotherapeutics industry. Despite its successes, AAV manufacturing remains a challenge due to limited production yields. The triple plasmid transfection of HEK293 cells represents the most extensively utilized system for AAV production. The regulatory factors and mechanisms underlying viral production in HEK293 cells are largely unknown. In this study, we isolated high-titer AAV production clones from a parental HEK293 population using a single limiting dilution step, and subsequently elucidating their underlying molecular mechanisms through whole transcriptome analysis. LncRNA TCONS_00160397 was upregulated in clones and shown to promoted HEK293 cells proliferation and improved the titer of AAV production. Mechanistically, results from proteomics and metabolomics indicated that TCONS_00160397 regulated the ABC transporters pathway. These findings furnish a rich repository of knowledge and actionable targets for the rational optimization of HEK293-based producer lines, thereby paving the way for tangible improvements in AAV vector output and expediting the broad implementation of gene therapies.
Collapse
Affiliation(s)
- Junyu Yan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ziqian Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yue Shu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hui Chen
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Tianxingzi Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xin Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuhang Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - LiLi Li
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
2
|
Ladd B, Gräslund T, Chotteau V. Harnessing cell aggregates for enhanced adeno-associated virus manufacturing: Cultivation strategies and scale-up considerations. Biotechnol Prog 2025:e3522. [PMID: 39846514 DOI: 10.1002/btpr.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated. It was, however, found that the spent medium of the HCDP inhibited the transfection of HEK293T cell aggregates, which was confirmed when testing with single-cell suspension culture. The formation of aggregates in shaken multi-well plates was also investigated to develop a screening system using the average power input as a scale-down criterion, which revealed that cell aggregates could be generated in 12-well plates, however with a larger size than in a STR. Taking into account the reported higher rAAV production of adherent cells in comparison with single cells for triple-plasmid transfection, HEK293T cell aggregates can possibly surpass single-cell suspension in space-time rAAV yield. The formation of HEK293T cell aggregates in a STR system offers a promising approach for scaling up and intensifying rAAV production by triple-plasmid transfection, in comparison with traditional 2D scale-up methods.
Collapse
Affiliation(s)
- Brian Ladd
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Torbjörn Gräslund
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
3
|
Allisha J, Das J, Dunnigan T, Sharfstein ST, Datta P. Stipulations of cell and gene therapy and the ties to biomanufacturing. Biotechnol Prog 2025:e3521. [PMID: 39846483 DOI: 10.1002/btpr.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits. Second, advancements in applied and translational research, including how clinical trials are designed, performed, evaluated, and analyzed, have transformed the technology into a potential therapeutic product. Third, advancements in scaling up the production of CGT products have been critical in delivering the product for preclinical studies, clinical trials, and approved treatments. In parallel, regulatory requirements have continuously evolved, with lessons learned from translational studies and biomanufacturing. These combined efforts have transformed CGT products from a promising concept into a reality with the potential to treat a wide range of diseases. However, continued R&D and regulatory oversight are crucial to further improve the safety, efficacy, and accessibility of CGT products.
Collapse
Affiliation(s)
- Justin Allisha
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Juthika Das
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas Dunnigan
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Susan T Sharfstein
- Department of Nanoscale Science and Engineering and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Payel Datta
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
4
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
5
|
Goral VN, Hong Y, Scibek JJ, Sun Y, Romeo LE, Rao A, Manning D, Zhou Y, Schultes JA, Tjong V, Pikula D, Krebs KA, Ferrie AM, Kramel S, Weber JL, Upton TM, Fang Y, Melkoumian Z. Innovative fixed bed bioreactor platform: Enabling linearly scalable adherent cell biomanufacturing with real-time biomass prediction from nutrient consumption. Biotechnol J 2024; 19:e2300635. [PMID: 39167554 DOI: 10.1002/biot.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 08/23/2024]
Abstract
Scalable single-use adherent cell-based biomanufacturing platforms are essential for unlocking the full potential of cell and gene therapies. The primary objective of this study is to design and develop a novel fixed bed bioreactor platform tailored specifically for scaling up adherent cell culture. The bioreactor comprises a packed bed of vertically stacked woven polyethylene terephthalate mesh discs, sandwiched between two-fluid guide plates. Leveraging computational fluid dynamics modeling, we optimized bioreactor design to achieve uniform flow with minimal shear stress. Residence time distribution measurements demonstrated excellent flow uniformity with plug flow characteristics. Periodic media sampling coupled with offline analysis revealed minimal gradients of crucial metabolites (glucose, glutamine, lactate, and ammonia) across the bioreactor during cell growth. Furthermore, the bioreactor platform demonstrated high performance in automated cell harvesting, with ≈96% efficiency and ≈98% viability. It also exhibited linear scalability in both operational parameters and performance for cell culture and adeno-associated virus vector production. We developed mathematical models based on oxygen uptake rates to accurately predict cell growth curves and estimate biomass in real-time. This study demonstrates the effectiveness of the developed fixed-bed bioreactor platform in enabling scalable adherent cell-based biomanufacturing with high productivity and process control.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yulong Hong
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Jeffery J Scibek
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yujian Sun
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Lori E Romeo
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Abhijit Rao
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Daniel Manning
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Yue Zhou
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Joel A Schultes
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Vinalia Tjong
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Dragan Pikula
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Kathleen A Krebs
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Ann M Ferrie
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Stefan Kramel
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Jennifer L Weber
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Todd M Upton
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Ye Fang
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| | - Zara Melkoumian
- Corning Life Sciences, Corning Incorporated, Corning, New York, USA
| |
Collapse
|
6
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
7
|
Lin YC, Lu M, Cai W, Hu WS. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol 2024; 108:385. [PMID: 38896252 PMCID: PMC11186941 DOI: 10.1007/s00253-024-13203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
8
|
Johari YB, Pohle TH, Whitehead J, Scarrott JM, Liu P, Mayer A, James DC. Molecular design of controllable recombinant adeno-associated virus (AAV) expression systems for enhanced vector production. Biotechnol J 2024; 19:e2300685. [PMID: 38900035 DOI: 10.1002/biot.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is the leading vector for the delivery of gene therapies. However, low viral genome (VG) titers are common and the proportion of "full" capsids containing the therapeutic gene payload can be highly variable. The coordinated molecular design of plasmids encoding viral components and Helper functions remains a major challenge for rAAV manufacturing. Here we present the design of improved Rep/Cap and Helper plasmids for rAAV2/8 production, (i) a Rep/Cap expression vector harboring independently controllable rep and cap genes and (ii) an improved Helper plasmid harboring E4 gene deletion variants. First, an optimized Rep/Cap vector utilized a truncated p5 promoter, a p5 cis-regulatory element at the 3' end in combination with a heterologous promoter to drive Cap expression and an additional copy of the rep52/40 gene to overexpress short Rep proteins. We demonstrate that Rep78 is essential for efficient rAAV2/8 production in HEK293 cells, and a higher ratio of short Rep to long Rep proteins enhances genome packaging. Second, we identified regulators and open reading frames within the Helper plasmid that contribute to increased rAAV2/8 production. While L4-33k/22k is integral to optimal production, the use of E4orf6-6/7 subset significantly enhanced VG titer. Together, an optimal combination of engineered Rep/Cap and Helper plasmid variants increased VG titer by 3.1-fold. This study demonstrates that configuring and controlling the expression of the different AAV genetic elements contributes toward high rAAV production and product quality (full/empty capsid ratio).
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
- Syngensys Ltd., Sheffield, UK
| | - Jared Whitehead
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
- Syngensys Ltd., Sheffield, UK
| |
Collapse
|
9
|
Coplan L, Zhang Z, Ragone N, Reeves J, Rodriguez A, Shevade A, Bak H, Tustian AD. High-yield recombinant adeno-associated viral vector production by multivariate optimization of bioprocess and transfection conditions. Biotechnol Prog 2024; 40:e3445. [PMID: 38450973 DOI: 10.1002/btpr.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are one of the most used vehicles for gene therapy, with five rAAV therapeutics commercially approved by the FDA. To improve product yield, we optimized the suspension production process of rAAV8 vectors carrying a proprietary transgene using a commercially available transfection reagent, FectoVIR-AAV. Using a miniaturized automated 250 mL scale bioreactor system, we generated models of vector genome (vg) titer, capsid (cp) titer, and Vg:Cp percentage from two multivariate design of experiment studies, one centered around bioreactor operating parameters, and another based on the transfection conditions. Using the optimized process returned from these models, the vector genome titer from the bioreactor was improved to beyond 1 × 1012 vg/mL. Five critical parameters were identified that had large effects on the pre-purification vector quantity-the transfection pH, production pH, complexation time, viable cell density at transfection, and transfection reagent to DNA ratio. The optimized process was further assessed for its performance extending to six AAV serotypes, namely AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 carrying a transgene encoding for green fluorescent protein (GFP). Five of the six serotypes returned higher vector genome titers than the control condition. These data suggest that the choice of transfection reagent is a major factor in improving vector yield. The multivariate design of experiment approach is a powerful way to optimize production processes, and the optimized process from one AAV vector can to some extent be generalized to other serotypes and transgenes to accelerate development timelines of new programs.
Collapse
Affiliation(s)
- Louis Coplan
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Zhe Zhang
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Nicole Ragone
- Research Operations, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - John Reeves
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Audrey Rodriguez
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Aishwarya Shevade
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Andrew D Tustian
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
10
|
Lu M, Lee Z, Hu WS. Multi-omics kinetic analysis of recombinant adeno-associated virus production by plasmid transfection of HEK293 cells. Biotechnol Prog 2024; 40:e3428. [PMID: 38289617 DOI: 10.1002/btpr.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 04/19/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used vectors for gene therapy. It is commonly produced by transfection of HEK293 cells with three plasmids each containing the vector genome including gene of interest (GOI), helper functions, and rep and cap genes for genome replication and capsid formation. To meet the potential clinical needs, the productivity of the production system needs to be enhanced. A better process characterization of the production system will further advance our insights into ways to enhance productivity. Here, we employed transcriptomic analysis to quantify the dynamics of different isoforms of viral transcripts and to assess the shift of cellular physiology, and deployed targeted proteomic analysis for absolute quantification of viral proteins and tandem mass tags (TMTs) for assessing cellular responses at the protein level. Functional analysis at transcriptome and proteome levels identified defense and immune response, unfolded protein response, p53 signaling as enriched. The small molecule additive intervention study based on functional analysis showed the potential of such omics-guided productivity enhancement. Together, multi-omics analysis advanced understanding of rAAV production and provided insight into enhancing rAAV production by plasmid transfection.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
12
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
13
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
14
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
15
|
Fiol CR, Collignon ML, Welsh J, Rafiq QA. Optimizing and developing a scalable, chemically defined, animal component-free lentiviral vector production process in a fixed-bed bioreactor. Mol Ther Methods Clin Dev 2023; 30:221-234. [PMID: 37528866 PMCID: PMC10388200 DOI: 10.1016/j.omtm.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Lentiviral vectors (LVVs) play a critical role in gene delivery for ex vivo gene-modified cell therapies. However, the lack of scalable LVV production methods and the high cost associated with them may limit their use. In this work, we demonstrate the optimization and development of a scalable, chemically defined, animal component-free LVV production process using adherent human embryonic kidney 293T cells in a fixed-bed bioreactor. The initial studies focused on the optimization of the culture process in 2D static cultures. Process changes such as decreasing cell seeding density on day 0 from 2.5 × 104 to 5 × 103 cells/cm2, delaying the transient transfection from 24 to 120 h post-seeding, reducing plasmid DNA to 167 ng/cm2, and adding 5 mM sodium butyrate 6 h post-transfection improved functional LVV titers by 26.9-fold. The optimized animal component-free production process was then transferred to the iCELLis Nano bioreactor, a fixed-bed bioreactor, where titers of 1.2 × 106 TU/cm2 were achieved when it was operated in perfusion. In this work, comparable functional LVV titers were obtained with FreeStyle 293 Expression medium and the conventional Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum both at small and large scale.
Collapse
Affiliation(s)
- Carme Ripoll Fiol
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT London, UK
| | - Marie-Laure Collignon
- Department of Scientific and Laboratory Services (SLS), Pall Corporation, Reugelstraat 2, 3320 Hoegaarden, Belgium
| | - John Welsh
- Department of Research and Development (R&D), Pall Corporation, 5 Harbourgate Business Park, Southampton Road, PO6 4BQ Portsmouth, UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
16
|
Asaad W, Volos P, Maksimov D, Khavina E, Deviatkin A, Mityaeva O, Volchkov P. AAV genome modification for efficient AAV production. Heliyon 2023; 9:e15071. [PMID: 37095911 PMCID: PMC10121408 DOI: 10.1016/j.heliyon.2023.e15071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The adeno-associated virus (AAV) is one of the most potent vectors in gene therapy. The experimental profile of this vector shows its efficiency and accepted safety, which explains its increased usage by scientists for the research and treatment of a wide range of diseases. These studies require using functional, pure, and high titers of vector particles. In fact, the current knowledge of AAV structure and genome helps improve the scalable production of AAV vectors. In this review, we summarize the latest studies on the optimization of scalable AAV production through modifying the AAV genome or biological processes inside the cell.
Collapse
|
17
|
Ton C, Stabile V, Carey E, Maraikar A, Whitmer T, Marrone S, Afanador NL, Zabrodin I, Manomohan G, Whiteman M, Hofmann C. Development and scale-up of rVSV-SARS-CoV-2 vaccine process using single use bioreactor. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00782. [PMID: 36687766 PMCID: PMC9841742 DOI: 10.1016/j.btre.2023.e00782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the Coronavirus Disease 2019 (COVID-19) has spread through the globe at an alarming speed. The disease has become a global pandemic affecting millions of people and created public health crises worldwide. Among many efforts to urgently develop a vaccine against this disease, we developed an industrial-scale closed, single use manufacturing process for V590, a vaccine candidate for SARS-CoV-2. V590 is a recombinant vesicular stomatitis virus (rVSV) genetically engineered to express SARS-CoV-2 glycoprotein. In this work, we describe the development and optimization of serum-free microcarrier production of V590 in Vero cells in a closed system. To achieve the maximum virus productivity, we optimized pH and temperature during virus production in 3 liters (L) bioreactors. Virus productivity was improved (by ∼1 log) by using pH 7.0 and temperature at 34.0 °C. The optimal production condition was successfully scaled up to a 2000 L Single Use Bioreactor (SUB), producing a maximum virus titer of ∼1.0e+7 plaque forming units (PFU)/mL. Further process intensification and simplification, including growing Vero cells at 2 gs per liter (g/L) of Cytodex-1 Gamma microcarriers and eliminating the media exchange (MX) step prior to infection helped to increase virus productivity by ∼2-fold.
Collapse
Affiliation(s)
- Christopher Ton
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States,Corresponding author.
| | - Victoria Stabile
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Elizabeth Carey
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Adam Maraikar
- Bioprocess Clinical Manufacturing & Technology, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Travis Whitmer
- Bioprocess Drug Substance Commercialization, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Samantha Marrone
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Nelson Lee Afanador
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Igor Zabrodin
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, 19486, United States
| | - Greeshma Manomohan
- Currently at GlaxoSmithKline plc, King of Prussia, Pennsylvania, 19406, United States
| | - Melissa Whiteman
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Carl Hofmann
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
18
|
Thampi P, Samulski RJ, Grieger JC, Phillips JN, McIlwraith CW, Goodrich LR. Gene therapy approaches for equine osteoarthritis. Front Vet Sci 2022; 9:962898. [PMID: 36246316 PMCID: PMC9558289 DOI: 10.3389/fvets.2022.962898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.
Collapse
Affiliation(s)
- Parvathy Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua C. Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jennifer N. Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States,*Correspondence: Laurie R. Goodrich
| |
Collapse
|
19
|
Effect of alcohol on productivity and quality of adeno-associated virus 2 in HEK293 cells. J Biosci Bioeng 2022; 134:338-347. [PMID: 36031536 DOI: 10.1016/j.jbiosc.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Investigation of enhancers to improve recombinant adeno-associated virus 2 (rAAV2) productivity by human embryonic kidney 293 cells (HEK293) suspension culture showed that the addition of ethanol improved the productivity and packaged genome integrity of rAAV2. Further optimization showed that adding ethanol in the range of 0.09%-1.11% (v/v) during rAAV2 production effectively improved rAAV2 productivity and quality. In addition, ethanol addition improved cell viability. Furthermore, proteome and pathway analysis of the cells during rAAV2 production showed that the addition of ethanol resulted in the upregulation of pathways related to intercellular signaling, gene expression, cell morphology, intercellular maintenance, and others. In contrast, pathways related to cell death, immunity, and reactions to infection were downregulated. These changes in pathway regulation were responsible for the improvement in rAAV2 productivity, packaged genome integrity, and cell viability during rAAV2 production. The results of this study can be applied to the production of viral vectors for in vivo gene therapy in an inexpensive and safe manner.
Collapse
|
20
|
Proof-of-Concept of Continuous Transfection for Adeno-Associated Virus Production in Microcarrier-Based Culture. Processes (Basel) 2022. [DOI: 10.3390/pr10030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adeno-associated virus vectors (AAV) are reported to have a great potential for gene therapy, however, a major bottleneck for this kind of therapy is the limitation of production capacity. Higher specific AAV vector yield is often reported for adherent cell systems compared to cells in suspension, and a microcarrier-based culture is well established for the culture of anchored cells on a larger scale. The purpose of the present study was to explore how microcarrier cultures could provide a solution for the production of AAV vectors based on the triple plasmid transfection of HEK293T cells in a stirred tank bioreactor. In the present study, cells were grown and expanded in suspension, offering the ease of this type of operation, and were then anchored on microcarriers in order to proceed with transfection of the plasmids for transient AAV vector production. This process was developed in view of a bioreactor application in a 200 mL stirred-tank vessel where shear stress aspects were studied. Furthermore, amenability to a continuous process was studied. The present investigation provided a proof-of-concept of a continuous process based on microcarriers in a stirred-tank bioreactor.
Collapse
|
21
|
Dobrowsky T, Gianni D, Pieracci J, Suh J. AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Selvaraj N, Wang CK, Bowser B, Broadt T, Shaban S, Burns J, Saptharishi N, Pechan P, Golebiowski D, Alimardanov A, Yang N, Mitra G, Vepachedu R. Detailed Protocol for the Novel and Scalable Viral Vector Upstream Process for AAV Gene Therapy Manufacturing. Hum Gene Ther 2021; 32:850-861. [PMID: 33397196 PMCID: PMC8418526 DOI: 10.1089/hum.2020.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vector-based gene therapy has been adapted for use in more than 100 clinical trials. This is mainly because of its excellent safety profile, ability to target a wide range of tissues, stable transgene expression, and significant clinical benefit. However, the major challenge is to produce a high-titer, high-potency vector to achieve a better therapeutic effect. Even though the three plasmid-based transient transfection method is currently being used for AAV production in many clinical trials, there are complications associated with scalability and it is not cost-effective. Other methods require either large-scale production of two herpes simplex viruses, rHSV-RepCap and rHSV-GOI (gene of interest), with high titers, or a stable cell line with high titer wild-type adenovirus infection. Both of these options make the process even more complex. To address this issue, we have developed a stable cell line-based production with the use of only one rHSV-RepCap virus. Using this new methodology in small-scale production, we achieved ∼1-6 E + 04 vg/cell of AAV9 in the top producer clones. Large-scale production in 10-CS (10-Cell Stack) of one of the top producing clones resulted in ∼1-2 E + 13 vg/10-CS with 50% of full capsid ratio after purification. This method could potentially be adapted to suspension cells. The major advantage of this novel methodology is that by using the rHSV-RepCap virus, high titer AAV can be produced with any GOI containing a stable adherent or suspension producer cell line. The use of this AAV production platform could be beneficial for the treatment of many diseases.
Collapse
Affiliation(s)
- Nagarathinam Selvaraj
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chao-Kuei Wang
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brian Bowser
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Trevor Broadt
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Samir Shaban
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jenna Burns
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nirmala Saptharishi
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter Pechan
- Solid Biosciences, Cambridge, Massachusetts, USA
| | | | - Asaf Alimardanov
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Nora Yang
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - George Mitra
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ramarao Vepachedu
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
23
|
Abaandou L, Quan D, Shiloach J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021; 10:cells10071667. [PMID: 34359846 PMCID: PMC8304725 DOI: 10.3390/cells10071667] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The HEK293 cell line has earned its place as a producer of biotherapeutics. In addition to its ease of growth in serum-free suspension culture and its amenability to transfection, this cell line’s most important attribute is its human origin, which makes it suitable to produce biologics intended for human use. At the present time, the growth and production properties of the HEK293 cell line are inferior to those of non-human cell lines, such as the Chinese hamster ovary (CHO) and the murine myeloma NSO cell lines. However, the modification of genes involved in cellular processes, such as cell proliferation, apoptosis, metabolism, glycosylation, secretion, and protein folding, in addition to bioprocess, media, and vector optimization, have greatly improved the performance of this cell line. This review provides a comprehensive summary of important achievements in HEK293 cell line engineering and on the global engineering approaches and functional genomic tools that have been employed to identify relevant genes for targeted engineering.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Department of Chemistry and Biochemistry, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - David Quan
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
| | - Joseph Shiloach
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Correspondence:
| |
Collapse
|
24
|
Nguyen TN, Sha S, Hong MS, Maloney AJ, Barone PW, Neufeld C, Wolfrum J, Springs SL, Sinskey AJ, Braatz RD. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev 2021; 21:642-655. [PMID: 34095346 PMCID: PMC8143981 DOI: 10.1016/j.omtm.2021.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Manufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.
Collapse
Affiliation(s)
- Tam N.T. Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
26
|
Wu Y, Han Z, Duan M, Jiang L, Tian T, Jin D, Wang Q, Xu F. Popularizing Recombinant Baculovirus-derived OneBac System for Laboratory Production of all Recombinant Adeno-associated Virus Vector Serotypes. Curr Gene Ther 2021; 21:167-176. [PMID: 33461466 DOI: 10.2174/1566523221666210118111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) has been widely used as an efficient transgenic vector in biomedical research, as well as gene therapy. Serotype-associated transduction efficiency, tissue- or cell-type tropism and immunological profile are major considerations in the various applications of rAAVs. There are increasing needs for different serotypes of rAAV, either naturally isolated or artificially engineered. However, affordable and scalable production of a desired serotype of rAAV remains very difficult, especially for researchers lacking relevant experience. OBJECTIVE On the basis of our previously established single recombinant baculovirus expression vector (BEV)-derived OneBac system, we have optimized the process and expanded the rAAV production range to the full range of serotypes rAAV1-13. METHODS Firstly, the AAV Cap gene was optimized to translate by ribosome leaky scanning and the gene of interest (GOI) was cloned into the pFD/Cap-(ITR-GOI)-Rep2 shuttle plasmid. Following the classical Bac-to-Bac method, sufficient BEV stock containing all rAAV packaging elements can be quickly obtained. Finally, we can repeatedly scale up the production of rAAVs in one week by using a single BEV to infect suspension-cultured Sf9 cells. The rAAV1-13 shows relatively high yields ranging from 5×104 to 4×105 VG/cell. More than 1×1015 VG purified rAAVs can be easily obtained from 5 L suspension-cultured Sf9 cells. RESULTS As expected, rAAV serotypes 1-13 show different potencies for in vitro transduction and cell-type tropisms. CONCLUSION In summary, the single BEV-derived OneBac system should prove popular for laboratory scaling-up production of any serotype of rAAV.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingzhu Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tiantian Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dingyu Jin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qitian Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
27
|
Lesch HP, Valonen P, Karhinen M. Evaluation of the Single-Use Fixed-Bed Bioreactors in Scalable Virus Production. Biotechnol J 2020; 16:e2000020. [PMID: 32971565 DOI: 10.1002/biot.202000020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/04/2020] [Indexed: 11/11/2022]
Abstract
The accelerating development of gene therapy from research towards clinical trials and beyond has elevated the demand for practical viral vector-manufacturing solutions. The use of disposable upstream technology is gaining traction in clinical manufacturing. Packed-bed or fixed-bed reactors, where column is packed with immobilized biocatalyst particles providing surface to constrain the cells in a particular region of the reactor, have been widely used in bioprocessing applications since mid-1900s. However, the world's first single-use, fully integrated, high cell density, fixed-bed bioreactor was launched only approximately a decade ago. By now, several single-use, fixed-bed technology solutions have been developed in a small scale. Scaling-up the manufacturing can be challenging and for commercial-scale manufacturing, there is practically only one single-use, good manufacturing practice-compliant option available. This study reviews the latest, fully disposable, fixed-bed bioreactors; compares the virus production in the different systems; and discusses important manufacturing cost-related topics. It is predicted that single-use, fixed-bed bioreactors will receive even more attention in the field of viral vector manufacturing and commercialization, especially with the need for higher virus titers and virus yields.
Collapse
Affiliation(s)
- Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, FI-70210, Finland.,FinVector, Kuopio, 70210, Finland
| | | | | |
Collapse
|
28
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Lentiviral Vector Production from a Stable Packaging Cell Line Using a Packed Bed Bioreactor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:1-13. [PMID: 32995355 PMCID: PMC7490643 DOI: 10.1016/j.omtm.2020.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Self-inactivating lentiviral vectors (LVVs) are used regularly for genetic modification of cells, including T cells and hematopoietic stem cells for cellular gene therapy. As vector demand grows, scalable and controllable methods are needed for production. LVVs are typically produced in HEK293T cells in suspension bioreactors using serum-free media or adherent cultures with serum. The iCELLis® is a packed-bed bioreactor for adherent or entrained cells with surface areas from 0.53 to 500 m2. Media are pumped through the fixed bed and overflows, creating a thin film that is replenished with oxygen and depleted of CO2 as media return to the reservoir. We describe the optimization and scale-up of the production of GPRTG-EF1α-hγc-OPT LVV using a stable packaging cell line in the iCELLis Nano 2-cm to the 10-cm bed height low compaction bioreactors (0.53 and 2.6 m2 surface area) and compare to the productivity and efficacy of GPRTG-EF1α-hγc-OPT LVV manufactured under current Good Manufacturing Practice (cGMP) using 10-layer cell factories for the treatment of X-linked severe combined immunodeficiency. By optimizing fetal bovine serum (FBS) concentration, pH post-induction, and day of induction, we attain viral yields of more than 2 × 107 transducing units/mL. We compared transduction efficiency between LVVs produced from the iCELLis Nano and cell factories on healthy, purified CD34+ cells and found similar results.
Collapse
|
30
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
31
|
Strobel B, Zuckschwerdt K, Zimmermann G, Mayer C, Eytner R, Rechtsteiner P, Kreuz S, Lamla T. Standardized, Scalable, and Timely Flexible Adeno-Associated Virus Vector Production Using Frozen High-Density HEK-293 Cell Stocks and CELLdiscs. Hum Gene Ther Methods 2020; 30:23-33. [PMID: 30693792 PMCID: PMC6388714 DOI: 10.1089/hgtb.2018.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adeno-associated virus (AAV) vectors currently represent the most attractive platform for viral gene therapy and are also valuable research tools to study gene function or establish disease models. Consequently, many academic labs, core facilities, and biotech/pharma companies meanwhile produce AAVs for research and early clinical development. Whereas fast, universal protocols for vector purification (downstream processing) are available, AAV production using adherent HEK-293 cells still requires time-consuming passaging and extensive culture expansion before transfection. Moreover, most scalable culture platforms require special equipment or extensive method development. To tackle these limitations in upstream processing, this study evaluated frozen high-density cell stocks as a ready-to-seed source of producer cells, and further investigated the multilayered CELLdisc culture system for upscaling. The results demonstrate equal AAV productivity using frozen cell stock–derived cultures compared to conventionally cultured cells, as well as scalability using CELLdiscs. Thus, by directly seeding freshly thawed cells into CELLdiscs, AAV production can be easily upscaled and efficiently standardized to low-passage, high-viability cells in a timely flexible manner, potentially dismissing time-consuming routine cell culture work. In conjunction with a further optimized iodixanol protocol, this process enabled supply to a large-animal study with two high-yield AAV2 capsid variant batches (0.6–1.2 × 1015 vector genomes) in as little as 4 weeks.
Collapse
Affiliation(s)
- Benjamin Strobel
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gudrun Zimmermann
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christine Mayer
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ruth Eytner
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Philipp Rechtsteiner
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Kreuz
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
32
|
Kiesslich S, Vila-Chã Losa JP, Gélinas JF, Kamen AA. Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X™ hydro fixed-bed. J Biotechnol 2020; 310:32-39. [DOI: 10.1016/j.jbiotec.2020.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
|
33
|
Gélinas JF, Azizi H, Kiesslich S, Lanthier S, Perdersen J, Chahal PS, Ansorge S, Kobinger G, Gilbert R, Kamen AA. Production of rVSV-ZEBOV in serum-free suspension culture of HEK 293SF cells. Vaccine 2019; 37:6624-6632. [DOI: 10.1016/j.vaccine.2019.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
34
|
Sustainability in the biopharmaceutical industry: Seeking a holistic perspective. Biotechnol Adv 2019; 37:698-707. [DOI: 10.1016/j.biotechadv.2019.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 02/08/2023]
|
35
|
Krüger-Haag A, Lehmann C, Schmidt E, Sonntag F, Hörer M, Kochanek S. Evaluation of life cycle defective adenovirus mutants for production of adeno-associated virus vectors. J Gene Med 2019; 21:e3094. [PMID: 31037799 DOI: 10.1002/jgm.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adeno-associated virus-based vectors are efficient and safe drug candidates for different in vivo gene therapy applications. With increasing numbers of clinical studies based on AAV2 vectors that include not only rare, but also common diseases as a therapeutic target, there is an increased demand for the development of improved production technologies. METHODS In the present study, we compared two life cycle defective adenovirus mutants as helper viruses for AAV2 vector production. They had deletions either in the gene coding for the preterminal protein (pTP) that is expressed early in the viral life cycle and is essential for genome replication or in the gene coding for the 100K protein, a protein with many functions, one of which is involved in virus assembly. AAV2 vector production efficiencies were evaluated by analyzing genome-containing particles using a real-time polymerase chain reaction and functional units were investigated by transduction assays. RESULTS Somewhat contrary to our expectations, the ∆100K mutant virus showed only a moderate efficiency as a helper virus for AAV2 vector production, whereas the replication-deficient ∆pTP mutant supported AAV2 production almost as efficiently as adenovirus wild-type. We also showed that a temperature shift to 32°C together with extended incubation times improved AAV2 vector productivity. CONCLUSIONS The present study indicates the advantages of using a ∆pTP mutant adenovirus rather than adenovirus wild-type as a helper virus for AAV2 production and also indicates that temperature shifts to lower temperatures may improve AAV2 vector production rates.
Collapse
Affiliation(s)
| | - Caroline Lehmann
- Department of Gene Therapy, Ulm University, Ulm, Germany.,Sartorius Stedim Cellca GmbH, Laupheim, Germany
| | - Erika Schmidt
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | | | | | | |
Collapse
|
36
|
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:351-399. [PMID: 28289769 DOI: 10.1007/10_2016_53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.
Collapse
Affiliation(s)
- Barb Thorne
- Thorne Bio-Consulting LLC, Sammamish, WA, USA
| | | | | | | |
Collapse
|
37
|
Joshi PR, Cervera L, Ahmed I, Kondratov O, Zolotukhin S, Schrag J, Chahal PS, Kamen AA. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an Insect Cell-One Baculovirus System. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:279-289. [PMID: 30886878 PMCID: PMC6404649 DOI: 10.1016/j.omtm.2019.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016–1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%–30% genomic and 70%–80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.
Collapse
Affiliation(s)
- Pranav R.H. Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Laura Cervera
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Ibrahim Ahmed
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Oleksandr Kondratov
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joseph Schrag
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Parminder S. Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Amine A. Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Corresponding author: Amine Kamen, Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
38
|
Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther 2018; 29:749-762. [PMID: 28707952 PMCID: PMC6066196 DOI: 10.1089/hum.2017.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Dysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.5 kb dysferlin cDNA. Previous work studied the efficacy of this treatment through intramuscular and regional delivery routes. To maximize clinical efficacy, dysferlin-deficient mice were treated systemically to target all muscles through the vasculature for efficacy and safety studies. Mice were evaluated at multiple time points between 4 and 13 months post treatment for dysferlin expression and functional improvement using magnetic resonance imaging and magnetic resonance spectroscopy and membrane repair. A systemic dose of 6 × 1012 vector genomes resulted in widespread gene expression in the muscles. Treated muscles showed a significant decrease in central nucleation, collagen deposition, and improvement of membrane repair to wild-type levels. Treated gluteus muscles were significantly improved compared to placebo-treated muscles and were equivalent to wild type in volume, intra- and extramyocellular lipid accumulation, and fat percentage using magnetic resonance imaging and magnetic resonance spectroscopy. Dual-vector treatment allows for production of full-length functional dysferlin with no toxicity. This confirms previous safety data and validates translation of systemic gene delivery for dysferlinopathy patients.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patricia C. Sondergaard
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan W. Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Eric R. Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ellyn L. Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D. Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol 2017; 102:1045-1054. [PMID: 29204900 PMCID: PMC5778157 DOI: 10.1007/s00253-017-8670-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 103 to 105 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization. Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.
Collapse
Affiliation(s)
- Juan Jose Aponte-Ubillus
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA.
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA.
| | - Daniel Barajas
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| | - Joseph Peltier
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| | - Cameron Bardliving
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA
| | - Parviz Shamlou
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA
| | - Daniel Gold
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| |
Collapse
|
40
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Schnödt M, Büning H. Improving the Quality of Adeno-Associated Viral Vector Preparations: The Challenge of Product-Related Impurities. Hum Gene Ther Methods 2017; 28:101-108. [PMID: 28322595 DOI: 10.1089/hgtb.2016.188] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have emerged as one of the most popular gene transfer systems in both research and clinical gene therapy. As AAV vectors are derived from a stealth, nonpathogenic virus and lack active integrase activity, these vectors are frequently applied for in vivo gene therapy of liver, muscle, and other postmitotic tissues. Although long-term transgene expression from AAV vector episomes is reported from these tissues, the episomal nature of AAV-once regarded as disadvantage-has become an attractive feature for gene-editing approaches targeting proliferating cells. In response to the high demand, AAV vector production is receiving special attention. Besides particle yields and biological activity, the most important concern is improving vector purity. The most difficult task in this regard is removal of defective particles, that is, capsids that are either empty or contain DNA other than the full-length vector genomes. Herein, we characterize and discuss these so-called product-related impurities, methods for their detection, as well as strategies to avoid or reduce their formation.
Collapse
Affiliation(s)
- Maria Schnödt
- 1 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany .,2 German Center for Infection Research , Bonn-Cologne and Hannover-Braunschweig (partner sites), Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany
| | - Hildegard Büning
- 1 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany .,2 German Center for Infection Research , Bonn-Cologne and Hannover-Braunschweig (partner sites), Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
42
|
Robert MA, Chahal PS, Audy A, Kamen A, Gilbert R, Gaillet B. Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600193] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Marc-André Robert
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | | | - Alexandre Audy
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | - Amine Kamen
- Department of Bioengineering; McGill University; Montréal QC Canada
| | | | - Bruno Gaillet
- Département de génie chimique; Université Laval; Québec QC Canada
| |
Collapse
|
43
|
van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25:R42-52. [PMID: 26519140 PMCID: PMC4802372 DOI: 10.1093/hmg/ddv451] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1-2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing.
Collapse
Affiliation(s)
- Johannes C M van der Loo
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA and
| | | |
Collapse
|
44
|
Emmerling VV, Fischer S, Stiefel F, Holzmann K, Handrick R, Hesse F, Hörer M, Kochanek S, Otte K. Temperature-sensitive miR-483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells. Biotechnol Bioeng 2015; 113:830-41. [DOI: 10.1002/bit.25853] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Verena V. Emmerling
- Department of Gene Therapy; Ulm University; Ulm Germany
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
| | - Simon Fischer
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Fabian Stiefel
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | | | - René Handrick
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Friedemann Hesse
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Markus Hörer
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
- VBBio Consultant; Auf dem Berg 17; Laupheim Germany
| | | | - Kerstin Otte
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| |
Collapse
|