1
|
Lu M, Zhu H, Cheng J, Sheng W, Wang Y, Lin X, Shen G, Zhang Y, Zhang X, Deng J, He X, Wang X, Liu W, Zhao P, Xia Q, Dong Z. How Do Butterflies Use Silk to Attach their Pupae to Trees? ACS Biomater Sci Eng 2024; 10:4855-4864. [PMID: 39038266 DOI: 10.1021/acsbiomaterials.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Butterflies constitute approximately 10% of lepidopteran insects, and along with silkworms, they can produce silk; however, this feature is often ignored. In the present study, we observed two primary methods used by butterflies to hang pupae on trees using silk: pupa adheraena (Danaus chrysippus) and pupa contigua (Papilio polytes). Anchoring the abdominal ends of pupae with a silk pad was the most common method used in both cases, whereas wrapping silk around the body using a silk girdle was a method unique to pupa contigua. The connection between the cremaster and silk pad was observed to be similar to that between the hook and loop of a Velcro fastener, except that the cremaster hook is anchor-shaped rather than being a single hook. Such a connection will remain secure, ensuring the safety of the pupae during exposure to wind and rain. Through determining the mechanical properties of silk, the performance of butterfly silk was found to be weaker than that of silkworm silk. Therefore, the P. polytes silk girdle adopts the strategy of merging a dozen silk threads to improve its strength and toughness, thereby making it difficult to break. In addition, we explained how the protein sequence and structure of butterfly silk impact its performance. In conclusion, we discovered that butterfly pupae develop unique body features to establish secure bonds with silk. This enables them to effectively undergo metamorphosis and endure harsh weather conditions and surroundings.
Collapse
Affiliation(s)
- Mengyao Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Hongtao Zhu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Jing Cheng
- College of Basic Medical Science, Qilu Medical University, Zibo 255213, China
| | - Wei Sheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yawen Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Xi Lin
- Carl Zeiss (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Xiaolu Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Jinqing Deng
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xianjun He
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Wenyue Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Wu J, Lei J, Chen M, Sun Y, Jianwen H, Li S, Gang L, Zhang M, Yixin S, Zhang F, Zhengshi Z, Fan Z. Synthesis and Characterization of Photo-Cross-Linkable Silk Fibroin Methacryloyl Hydrogel for Biomedical Applications. ACS OMEGA 2023; 8:30888-30897. [PMID: 37663496 PMCID: PMC10468767 DOI: 10.1021/acsomega.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Photo-cross-linkable hydrogels have recently gained increased interest in the field of biomedical applications. In this study, silk fibroin was derivatized with methacrylic anhydride (MA) to obtain silk fibroin methacryloyl (SFMA), forming hydrogel under UV light exposure in 1 min. The SFMA sol-gel transition did not involve significant structural change at the early stage. Then, the formation of the irreversible β-sheet was confirmed after 24 h. The resulting SFMA hydrogel showed a homogeneous porous structure with pore sizes ranging from 400 to 700 μm, depending on the content. In addition, these hydrogels demonstrated a lower swelling capacity, higher rheological properties and compressive modulus, and slow degradation behavior at higher content, likely due to the higher degree of cross-linking. An experiment with cells indicated the good cell compatibility of these hydrogels, as revealed by Cell Counting Kit-8 (CCK-8) assays. As a tissue-engineered material, this photo-cross-linkable SFMA is expected to have a wide range of applications in the biomedical field.
Collapse
Affiliation(s)
- Jianhua Wu
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
- Department
of Trauma Orthopedics, The Affiliated Hospital
of Guizhou Medical University, Guiyang 550004, China
| | - Jiang Lei
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Ming Chen
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Yusheng Sun
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Hou Jianwen
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Suanao Li
- Medical
College of Soochow University, Soochow University, Suzhou 215123, China
| | - Liu Gang
- Department
of Trauma Orthopedics, The Affiliated Hospital
of Guizhou Medical University, Guiyang 550004, China
| | - Mingyang Zhang
- Medical
College of Soochow University, Soochow University, Suzhou 215123, China
| | - Shen Yixin
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Feng Zhang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Zhang Zhengshi
- Department
of Spinal Surgery, Traditional Chinese Medicine
Hospital of Kunshan Affiliated to Nanjing TCM University, Kunshan 215300, China
| | - Zhihai Fan
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| |
Collapse
|
3
|
Mao J, Cao H, Liu J, Zhou X, Fan Q, Wang J. Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Goswami A, Devi D. Structural insight on the liquid silk from the middle silk gland of non-mulberry silkworm Antheraea assamensis. J Biomol Struct Dyn 2023; 41:1128-1139. [PMID: 34939896 DOI: 10.1080/07391102.2021.2017347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study highlights the preliminary characterization of liquid silk from the middle silk gland (MSG) along with the in-silico analysis of the sericin protein of a less explored non mulberry silkworm Antheraea assamensis which is endemic to the North Eastern region of India. Various biophysical methods have been applied to elucidate the conformational patterns of the liquid silk present inside the MSG without removing the sericin layer. This will help us to know the actual features of the in vivo transitional status of the silk in the MSG which travel towards the anterior silk gland (ASG) prior to spinning. The SDS PAGE analysis represented the existence of the both fibroin and sericin bands in the sample. The structural pattern of the MSG liquid silk as revealed by various methods denoted the occurrence of β-sheet component along with some random coil and β-turn components which in turn suggests the transitional state of the liquid silk attributed to the existence of both the crystalline and amorphous contents. The thermo gravimetric study and the aggregation behavior analysis results proposed the occurrence of intermolecular hydrogen bonding between the sericin and fibroin in the MSG. This study will sensitize the better understanding of the behavior of the liquid silk in the MSG of non-mulberry silkworm A. assamensis and will open avenues for various application-based studies of this silk.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anurupa Goswami
- Seribiotech Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Assam, India
| | - Dipali Devi
- Seribiotech Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Assam, India
| |
Collapse
|
5
|
Asakura T, Naito A. Structure of silk I (Bombyx mori silk fibroin before spinning) in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Int J Biol Macromol 2022; 216:282-290. [PMID: 35788005 DOI: 10.1016/j.ijbiomac.2022.06.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Nowadays, much attention has been paid to Bombyx mori silk fibroin (SF) by many researchers because of excellent physical properties and biocompatibility. These superior properties originate from the structure of SF and therefore, the structural analysis is a key to clarify the superiority. Here we concentrated on silk I structure (SF structure before spinning). We showed that silk I* (the structure of (GAGAGS)n which is a main part of SF) is a repeated type II β-turn, neither α-helix nor random coil, from the conformation-dependent 13C NMR chemical shift data. This conclusion is different from that obtained using IR by many researchers. Next, the formation of silk I* structure was investigated at molecular level using 13C solid-state NMR spectroscopy. Three kinds of 13C INEPT, CP/MAS and DD/MAS NMR spectra were observed for SF, [3-13C] Ser- and [3-13C] Tyr-SF, the crystalline fraction obtained by chymotrypsin treatment of SF and their model peptide with silk I structures in the dry and hydrated states. Especially, the presence of the sequences containing Tyr, (((GX)m1GY)m2 where X = A or V) with random coil conformations adjacent to (GAGAGS)n is an essence to get water-soluble SF and the formation of silk I* structure of (GAGAGS)n.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan.
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Santos FV, Yoshioka SA, Branciforti MC. Large‐area thin films of silk fibroin prepared by two methods with formic acid as solvent and glycerol as plasticizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francisco Vieira Santos
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| | | | - Marcia Cristina Branciforti
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| |
Collapse
|
7
|
Wan Q, Yang M, Hu J, Lei F, Shuai Y, Wang J, Holland C, Rodenburg C, Yang M. Mesoscale structure development reveals when a silkworm silk is spun. Nat Commun 2021; 12:3711. [PMID: 34140492 PMCID: PMC8211695 DOI: 10.1038/s41467-021-23960-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/29/2021] [Indexed: 11/14/2022] Open
Abstract
Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.
Collapse
Affiliation(s)
- Quan Wan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mei Yang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiaqi Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Fang Lei
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yajun Shuai
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Chris Holland
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Cornelia Rodenburg
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Structure of Silk I ( Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix. Molecules 2021; 26:molecules26123706. [PMID: 34204550 PMCID: PMC8234240 DOI: 10.3390/molecules26123706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, considerable attention has been paid to Bombyx mori silk fibroin by a range of scientists from polymer chemists to biomaterial researchers because it has excellent physical properties, such as strength, toughness, and biocompatibility. These appealing physical properties originate from the silk fibroin structure, and therefore, structural determinations of silk fibroin before (silk I) and after (silk II) spinning are a key to make wider applications of silk. There are discrepancies about the silk I structural model, i.e., one is type II β-turn structure determined using many solid-state and solution NMR spectroscopies together with selectively stable isotope-labeled model peptides, but another is α-helix or partially α-helix structure speculated using IR and Raman methods. In this review, firstly, the process that led to type II β-turn structure by the authors was introduced in detail. Then the problems in speculating silk I structure by IR and Raman methods were pointed out together with the problem in the assignment of the amide I band in the spectra. It has been emphasized that the conformational analyses of proteins and peptides from IR and Raman studies are not straightforward and should be very careful when the proteins contain β-turn structure using many experimental data by Vass et al. In conclusion, the author emphasized here that silk I structure should be type II β-turn, not α-helix.
Collapse
|
9
|
Kwak TJ, Jung H, Allen BD, Demirel MC, Chang WJ. Dielectrophoretic separation of randomly shaped protein particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Facile preparation of effective flame retardant silk fabric by the metal salt adsorption approach. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Lovati AB, Lopa S, Bottagisio M, Talò G, Canciani E, Dellavia C, Alessandrino A, Biagiotti M, Freddi G, Segatti F, Moretti M. Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Front Bioeng Biotechnol 2020; 8:563203. [PMID: 33195126 PMCID: PMC7604365 DOI: 10.3389/fbioe.2020.563203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone–implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.
Collapse
Affiliation(s)
- Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Elena Canciani
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | | | | | | | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
12
|
Composition and in silico structural analysis of fibroin from liquid silk of non-mulberry silkworm Antheraea assamensis. Int J Biol Macromol 2020; 163:1947-1958. [PMID: 32910960 DOI: 10.1016/j.ijbiomac.2020.08.232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022]
Abstract
Silk is spun from the liquid precursor known as liquid silk secreted from the posterior part and stored in the silk gland lumen with occurrence of many momentary events. The liquid silk in the silk gland is transformed to the spun silk fibre. In this study the elucidation of the protein components of liquid silk from the posterior part of the silk gland (PSG) of saturniid silkworm Antheraea assamensis along with its structural characterization has been reported. The 3D model of the N-terminal amorphous portion with some repeat crystalline motifs (19-255) of core protein fibroin has also been constructed. 1D and 2D electrophoresis revealed the homo-dimeric structure of the silk protein. Secondary structure analysis by Circular dichroism, FTIR spectroscopy showed α helical structural component as predominant conformation in the liquid silk. The crystalline structure investigated through X ray diffraction (XRD) analysis also revealed the presence of less ordered amorphous α helical conformation in the liquid silk. The 3D structural model proposed of the residues from 19 to 255 has revealed structural stability throughout the molecular dynamics simulation process. This study will provide the detailed structural information and in silico analysis of the core protein present in the liquid silk of PSG.
Collapse
|
13
|
Anh Tuan H, Hirai S, Inoue S, A. H. Mohammed A, Akioka S, Ngo Trinh T. Fabrication of Silk Resin with High Bending Properties by Hot-Pressing and Subsequent Hot-Rolling. MATERIALS 2020; 13:ma13122716. [PMID: 32549228 PMCID: PMC7345461 DOI: 10.3390/ma13122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/01/2023]
Abstract
This research reports the processability and mechanical properties of silk resins prepared by hot-pressing followed by hot-rolling and then analyzes their thermal and structural properties. The results show that regenerated silk (RS) resins are better suited for hot-rolling than Eri and Bombyx mori silk resins (untreated silk). When hot-rolling at 160 °C with a 50% of reduction ratio, maximum bending strength and Young’s modulus of RS resin reaches 192 MPa and 10.2 GPa, respectively, after pretreatment by immersion in 40 vol% ethanol, and 229 MPa and 12.5 GPa, respectively, after pretreatment by immersion in boiling water. Increased strength of the material is attributed to the increased content of aggregated strands and intramolecular linking of β sheets (attenuated total reflectance Fourier-transform infrared spectroscopy) and higher crystallinity (X-ray diffraction analysis). After hot-pressing and hot-rolling, RS resins have a stable decomposition temperature (297 °C).
Collapse
Affiliation(s)
- Hoang Anh Tuan
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
- Technology and Alloys of casting Department, Research Institute of Technology for Machinery, Vietnam Engine and Agricultural Machinery Corporation-Joint Stock Company, No 25 Vu Ngoc Phan, Hanoi 100000, Vietnam
- Correspondence: (H.A.T.); (S.H.)
| | - Shinji Hirai
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
- Correspondence: (H.A.T.); (S.H.)
| | - Shota Inoue
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Alharbi A. H. Mohammed
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Shota Akioka
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran 050–8585, Japan; (S.I.); (A.A.H.M.); (S.A.)
| | - Tung Ngo Trinh
- Function Polymers and Nano Materials Laboratory, Institute of Chemistry, Vietnam Academy of Science and Technology, No.08 Hoang Quoc Viet, Hanoi 100000, Vietnam;
| |
Collapse
|
14
|
On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers (Basel) 2020; 12:polym12061294. [PMID: 32516911 PMCID: PMC7361871 DOI: 10.3390/polym12061294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin from Bombyx mori caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein’s secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches. The infrared spectrum of silk fibroin fibers shows that they are composed of 58% β-sheet, 9% turns, and 33% irregular and/or turn-like structures. When fibroin was dissolved in ionic liquids, its amide I band resembled that of soluble silk and no β-sheet absorption was detected. Silk fibroin nanoparticles regenerated from the ionic liquid solution exhibited an amide I band that resembled that of the silk fibers but had a reduced β-sheet content and a corresponding higher content of turns, suggesting an incomplete turn-to-sheet transition during the regeneration process. Both the analysis of the experimental infrared spectrum and spectrum calculations suggest a particular type of β-sheet structure that was involved in this deficiency, whereas the two other types of β-sheet structure found in silk fibroin fibers were readily formed.
Collapse
|
15
|
Xu J, Wang Y, Ding M, Song G, Wu M, Kang Z, Wang J. Sequence-structure characterization of recombinant polypeptides derived from silk fibroin heavy chain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110831. [PMID: 32279784 DOI: 10.1016/j.msec.2020.110831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
The molecular conformation of a biomedical material plays a major role in the stability, bioactivity and controlled release of drugs. In order to identify the impact of fragments derived from Bombyx mori silk fibroin on their structures and to develop a new strategy for controlling drug release, we designed several hydrophobic-hydrophilic recombinants (GS16F1, GS16F4, and GS16F8), and investigated their molecular conformations and conformational changes induced by different storage temperatures and pH values. The results showed that the α-helix characteristic peaks were prominent in the fresh freeze-dried powder with increasing F1 repeats. During storage at 4 °C, 37 °C or 60 °C, the β-turns (especially in GS16F8) and α-helixes turned into β-sheets. The β-sheet content in the polypeptides increased with increasing temperature and F1 repeats. Following induction by different pH values, their molecular conformations changed significantly, but not the same as that of powder storage. The content of β-sheets was GS16F1 > GS16F4 > GS16F8 near the isoelectric point of each polypeptide. With increasing pH value, the β-sheet content of GS16F1 decreased more slowly compared with GS16F4 and GS16F8. These results were satisfactory for structural regulation in the field of drug controlled release research.
Collapse
Affiliation(s)
- Jingjing Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China
| | - Yining Wang
- Division of Bioscience, University College London, London, WC1E 6BT, UK
| | - Mengyao Ding
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China
| | - Guangzhou Song
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China
| | - Mingyang Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China
| | - Zhao Kang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China
| | - Jiannan Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
16
|
Liang Y, Allardyce BJ, Kalita S, Uddin MG, Shafei S, Perera D, Remadevi RCN, Redmond SL, Batchelor WJ, Barrow CJ, Dilley RJ, Schniepp HC, Wang X, Rajkhowa R. Protein Paper from Exfoliated Eri Silk Nanofibers. Biomacromolecules 2020; 21:1303-1314. [DOI: 10.1021/acs.biomac.0c00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujia Liang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | | | - Sanjeeb Kalita
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Mohammad Gias Uddin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Sajjad Shafei
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Dinidu Perera
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | | | - Sharon Leanne Redmond
- Ear Science Institute Australia and Ear Sciences Centre, School of Medicine, University of Western Australia, Nedlands, Western Australia 6008, Australia
| | - Warren Jeffrey Batchelor
- Bioresource Processing Institute of Australia, Department of Chemical Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Colin J. Barrow
- Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Medicine, University of Western Australia, Nedlands, Western Australia 6008, Australia
| | - Hannes C. Schniepp
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
17
|
Wang J, Guan J, Hawkins N, Vollrath F. Analysing the structure and glass transition behaviour of silks for archaeology and conservation. J R Soc Interface 2019; 15:rsif.2017.0883. [PMID: 29436511 DOI: 10.1098/rsif.2017.0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/18/2018] [Indexed: 11/12/2022] Open
Abstract
Silk is an iconic material in many cultures. Silk archaeology and conservation is affected by silk production technology as well as subsequent environmental effects such as humidity, temperature, UV radiation and ageing. The complex interactions and various effects on silk materials affect the practical use of silk, for example, in the conservation of ancient manuscripts. This study examines the various influences of silk provenance and processing, adhesive coatings and chemical treatments as well as natural and artificial ageing of the silk material. We use infrared spectroscopy (FTIR) and dynamic mechanical thermal analysis to investigate the glass transition behaviours in a range of archaeological and control silk samples. This allows us to establish structural differences in century-old museum silks and predict the effects of silk ageing and degradation.
Collapse
Affiliation(s)
- Jianlan Wang
- Shanghai Institute of Visual Arts, Shanghai, China
| | - Juan Guan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Nicholas Hawkins
- Oxford Silk Group, Department of Zoology, University of Oxford, Oxford, UK
| | - Fritz Vollrath
- Oxford Silk Group, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols. Int J Biol Macromol 2018; 118:1726-1735. [PMID: 30017976 DOI: 10.1016/j.ijbiomac.2018.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Silk fibroin hydrogel is an interesting natural material in various biomedical applications. However, the self-assembled gelation takes a long time. In this work, different alcohol types are used as gelation enhancers for aqueous silk fibroin solution. Monohydric alcohols having carbon chain length from C1 to C4 and polyhydric alcohols with the number of mono- to tri- hydroxyl groups were used as the enhancers which are effective for rapid gelation. The addition of monohydric alcohol distinctively reduced the gelation time, comparing to the polyhydric alcohol. The gelation process is directly dependent on the polarity of alcohol and hydrophobicity. The alcohol mediated gelation imparts strong viscoelastic property and enhanced compressive modulus of resulting hydrogels. This is due to the effective formation of self-assembled beta sheet network of the silk fibroin chains facilitates the gelation process.
Collapse
|
19
|
Taddei P, Di Foggia M, Martinotti S, Ranzato E, Carmagnola I, Chiono V, Tsukada M. Silk fibres grafted with 2-hydroxyethyl methacrylate (HEMA) and 4-hydroxybutyl acrylate (HBA) for biomedical applications. Int J Biol Macromol 2018; 107:537-548. [DOI: 10.1016/j.ijbiomac.2017.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
|
20
|
da Silva RR, Cavicchioli M, Lima LR, Otoni CG, Barud HS, Santagneli SH, Tercjak A, Amaral AC, Carvalho RA, Ribeiro SJL. Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27905-27917. [PMID: 28715169 DOI: 10.1021/acsami.7b06061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we explored the fabrication of flexible and transparent hybrids of silk fibroin (SF) and epoxy-modified siloxane for photonic applications. It is well-known that regenerated SF solutions can form free-standing films with high transparency. Although SF has a restricted number of chemically reactive side groups, the main issues of as-cast pristine SF films regard the high solubility into aqueous media, brittleness, and low thermal stability. The design of SF films with enhanced functionality but high transparency triggers new opportunities on a broader range of applications in biophotonics. Here we present a simple, functional, yet remarkably versatile hybrid material derived from silica sol-gel process based on SF protein and (3-glycidyloxypropyl)trimethoxysilane (GPTMS), an organically modified silicon-alkoxide owning a reactive terminal epoxy group. Specifically, we investigated the effect of the addition of GPTMS into SF solutions on the processability, morphology, crystallinity, and mechanical and optical properties of the resulting hybrid films. Highly transparent (ca. 90%) and flexible free-standing hybrid films were achieved. Cell viability assays revealed that the hybrid films are noncytotoxic to rat osteoblast cells even at high GPTMS content (up to 70 wt %). The hybrid films showed enhanced thermal stability and were rich in organic (epoxy) and inorganic (silanol) functional groups according to the content of GPTMS. We also evaluated the successful preparation of high-quality optical red emissive SF hybrid films by loading YVO4:Eu3+ nanoparticles at low concentration (<5 wt %). A meaningful description of the hybrid film structure is reported from the combination of scanning electron and atomic force microscopies, vibrational spectroscopy, solid-state NMR, and X-ray diffraction analyses.
Collapse
Affiliation(s)
- Robson R da Silva
- Institute of Chemistry, São Paulo State University , Araraquara, São Paulo 14801-970, Brazil
| | - Maurício Cavicchioli
- Institute of Chemistry, São Paulo State University , Araraquara, São Paulo 14801-970, Brazil
| | - Laís R Lima
- Institute of Chemistry, São Paulo State University , Araraquara, São Paulo 14801-970, Brazil
| | - Caio G Otoni
- National Nanotechnology Laboratory for Agribusiness, EMBRAPA-CNPDIA , São Carlos, São Paulo 13560-970, Brazil
| | - Hernane S Barud
- Centro Universitário de Araraquara - UNIARA , Araraquara, São Paulo 14801-320, Brazil
| | - Silvia H Santagneli
- Institute of Chemistry, São Paulo State University , Araraquara, São Paulo 14801-970, Brazil
| | - Agnieszka Tercjak
- Group "Materials + Technologies" (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU) , Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - André C Amaral
- Centro Universitário de Araraquara - UNIARA , Araraquara, São Paulo 14801-320, Brazil
| | - Renata A Carvalho
- Centro Universitário de Araraquara - UNIARA , Araraquara, São Paulo 14801-320, Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University , Araraquara, São Paulo 14801-970, Brazil
| |
Collapse
|
21
|
Orientational Mapping Augmented Sub-Wavelength Hyper-Spectral Imaging of Silk. Sci Rep 2017; 7:7419. [PMID: 28785090 PMCID: PMC5547124 DOI: 10.1038/s41598-017-07502-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Molecular alignment underpins optical, mechanical, and thermal properties of materials, however, its direct measurement from volumes with micrometer dimensions is not accessible, especially, for structurally complex bio-materials. How the molecular alignment is linked to extraordinary properties of silk and its amorphous-crystalline composition has to be accessed by a direct measurement from a single silk fiber. Here, we show orientation mapping of the internal silk fiber structure via polarisation-dependent IR absorbance at high spatial resolution of 4.2 μm and 1.9 μm in a hyper-spectral IR imaging by attenuated total reflection using synchrotron radiation in the spectral fingerprint region around 6 μm wavelength. Free-standing longitudinal micro-slices of silk fibers, thinner than the fiber cross section, were prepared by microtome for the four polarization method to directly measure the orientational sensitivity of absorbance in the molecular fingerprint spectral window of the amide bands of β-sheet polypeptides of silk. Microtomed lateral slices of silk fibers, which may avoid possible artefacts that affect spectroscopic measurements with fibers of an elliptical cross sections were used in the study. Amorphisation of silk by ultra-short laser single-pulse exposure is demonstrated.
Collapse
|
22
|
Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C. Silk I and Silk II studied by fast scanning calorimetry. Acta Biomater 2017; 55:323-332. [PMID: 28389368 DOI: 10.1016/j.actbio.2017.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023]
Abstract
Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50%MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25°C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50%MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37°C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II)=351±2.6°C, compared to Silk I crystals which melt at Tm(I)=292±3.8°C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065s between onset and end of melting) of the FSC experiment. STATEMENT OF SIGNIFICANCE Silkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the amount and type of crystals, and their stability. One measure of stability is crystal melting temperature. Crystals which are more stable have a higher melting temperature. Until now, it has been challenging to study thermal behavior of silk crystals because they degrade at high temperature. To avoid degradation, and study the melting properties of silk biomaterial, we heated silk at a very fast rate of 2000K/s using a special calorimeter. We have shown that the two crystal types have very different melting temperatures, indicating that one crystal type is much more stable than the other.
Collapse
|
23
|
Balčytis A, Ryu M, Wang X, Novelli F, Seniutinas G, Du S, Wang X, Li J, Davis J, Appadoo D, Morikawa J, Juodkazis S. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E356. [PMID: 28772716 PMCID: PMC5507002 DOI: 10.3390/ma10040356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 12/04/2022]
Abstract
Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at mid-IR were used to determine spatial distribution of different silk constituents and revealed an α-coil rich core and more broadly spread β-sheets in natural silk fibers obtained from wild Antheraea pernyi moths. Low energy T-ray bands at 243 and 229 cm -1 were observed in crystalline fibers of domestic and wild silk fibers, respectively, and showed no spectral shift down to 78 K temperature. A distinct 20±4 cm-1 band was observed in the crystalline Antheraea pernyi silk fibers. Systematic analysis and assignment of the observed spectral bands is presented. Water solubility and biodegradability of silk, required for bio-medical and sensor applications, are directly inferred from specific spectral bands.
Collapse
Affiliation(s)
- Armandas Balčytis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania.
- These authors contributed equally to this work..
| | - Meguya Ryu
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
- These authors contributed equally to this work..
| | - Xuewen Wang
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- These authors contributed equally to this work..
| | - Fabio Novelli
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Current address: Ruhr-University Bochum, 44801 Bochum, Germany..
| | - Gediminas Seniutinas
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Current address: Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland..
| | - Shan Du
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Xungai Wang
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Jingliang Li
- Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia.
| | - Jeffrey Davis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Dominique Appadoo
- Australian Synchrotron, Blackburn Road, Clayton, VIC 3168, Australia.
| | - Junko Morikawa
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| | - Saulius Juodkazis
- School of Science, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
- Melbourne Centre for Nanofabrication, the Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd., Clayton, VIC 3168, Australia.
| |
Collapse
|
24
|
Accelerated biodegradation of silk sutures through matrix metalloproteinase activation by incorporating 4-hexylresorcinol. Sci Rep 2017; 7:42441. [PMID: 28205580 PMCID: PMC5304327 DOI: 10.1038/srep42441] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Silk suture material is primarily composed of silk fibroin and regarded as a non-resorbable material. It is slowly degraded by proteolysis when it is implanted into the body. 4-Hexylresorcinol (4HR) is a well-known antiseptic. In this study, the biodegradability of 4HR-incorporated silk sutures were compared to that of untreated silk sutures and polyglactin 910 sutures, a commercially available resorbable suture. 4HR-incorporated silk sutures exhibited anti-microbial properties. Matrix metalloproteinase (MMP) can digest a wide spectrum of proteins. 4HR increased MMP-2, -3, and -9 expression in RAW264.7 cells. MMP-2, -3, and -9 were able to digest not only silk fibroin but also silk sutures. Consequently, 59.5% of the 4HR-incorporated silk suture material remained at 11 weeks after grafting, which was similar to that of polyglactin 910 degradation (56.4% remained). The residual amount of bare silk suture material at 11 weeks after grafting was 91.5%. The expression levels of MMP-2, -3 and -9 were high in the 4HR-incorporated silk suture-implanted site 12 weeks after implantation. In conclusion, 4HR-treated silk sutures exhibited anti-microbial properties and a similar level of bio-degradation to polyglactin 910 sutures and induced higher expression of MMP-2, -3, and -9 in macrophages.
Collapse
|
25
|
Pereira AM, Machado R, da Costa A, Ribeiro A, Collins T, Gomes AC, Leonor IB, Kaplan DL, Reis RL, Casal M. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomater 2017; 47:50-59. [PMID: 27713086 DOI: 10.1016/j.actbio.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials.
Collapse
|
26
|
Partlow BP, Bagheri M, Harden JL, Kaplan DL. Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin. Biomacromolecules 2016; 17:3570-3579. [DOI: 10.1021/acs.biomac.6b01086] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin P. Partlow
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street Medford, Massachusetts 02155, United States
| | - Mehran Bagheri
- Department
of Physics, University of Ottawa, 338L MacDonald Hall, 150 Louis Pasteur Ottawa, Ontario K1N 6N5, Canada
| | - James L. Harden
- Department
of Physics, University of Ottawa, 338L MacDonald Hall, 150 Louis Pasteur Ottawa, Ontario K1N 6N5, Canada
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Taddei P, Tozzi S, Zuccheri G, Martinotti S, Ranzato E, Chiono V, Carmagnola I, Tsukada M. Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:777-787. [PMID: 27770955 DOI: 10.1016/j.msec.2016.09.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
In this study, composite nanofibrous scaffolds were obtained by electrospinning a trifluoroacetic acid solution containing B. mori silk fibroin (SF) and poly(l-lactic acid) (PLLA) in a 1:1 weight ratio. SF, PLLA and SF/PLLA nanofibres were prepared with average diameter sizes of 360±90nm, 470±240nm and 580±220nm, respectively, as assessed by SEM analysis. Vibrational and thermal analyses showed that upon blending in the SF/PLLA nanofibres, the crystallisation of PLLA was hindered by the presence of SF, which crystallized preferentially and underwent conformational changes that did not significantly change its prevailing β-sheet structure. The two components were thermodynamically compatible and the intermolecular interactions between them were revealed for the first time. Human keratinocytes were cultured on nanofibres and their viability and proliferation were determined. Preliminary in vitro tests showed that the incorporation of SF into the PLLA component enhanced cell adhesion and proliferation with respect to the unfunctionalised material. SF has been successfully used to modify the biomaterial properties and confirmed to be an efficient bioactive protein to mediate cell-biomaterial interaction.
Collapse
Affiliation(s)
- Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy.
| | - Silvia Tozzi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie e Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy; Centro S3, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Valeria Chiono
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Irene Carmagnola
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masuhiro Tsukada
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
28
|
Antognazza MR, Di Paolo M, Ghezzi D, Mete M, Di Marco S, Maya-Vetencourt JF, Maccarone R, Desii A, Di Fonzo F, Bramini M, Russo A, Laudato L, Donelli I, Cilli M, Freddi G, Pertile G, Lanzani G, Bisti S, Benfenati F. Characterization of a Polymer-Based, Fully Organic Prosthesis for Implantation into the Subretinal Space of the Rat. Adv Healthc Mater 2016; 5:2271-82. [PMID: 27240295 DOI: 10.1002/adhm.201600318] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/19/2016] [Indexed: 01/08/2023]
Abstract
Replacement strategies arise as promising approaches in case of inherited retinal dystrophies leading to blindness. A fully organic retinal prosthesis made of conjugated polymers layered onto a silk fibroin substrate is engineered. First, the biophysical and surface properties are characterized; then, the long-term biocompatibility is assessed after implantation of the organic device in the subretinal space of 3-months-old rats for a period of five months. The results indicate a good stability of the subretinal implants over time, with preservation of the physical properties of the polymeric layer and a tight contact with the outer retina. Immunoinflammatory markers detect only a modest tissue reaction to the surgical insult and the foreign body that peaks shortly after surgery and progressively decreases with time to normal levels at five months after implantation. Importantly, the integrity of the polymeric layer in direct contact with the retinal tissue is preserved after five months of implantation. The recovery of the foreign-body tissue reaction is also associated with a normal b-wave in the electroretinographic response. The results demonstrate that the device implanted in nondystrophic eyes is well tolerated, highly biocompatible, and suitable as retinal prosthesis in case of photoreceptor degeneration.
Collapse
Affiliation(s)
- Maria Rosa Antognazza
- Center for Nano Science and Technology; Fondazione Istituto Italiano di Tecnologia; Via G. Pascoli 70/3 20133 Milano Italy
| | - Mattia Di Paolo
- Department of Biotechnology and Applied Clinical Science; University of L'Aquila; Via Vetoio, Coppito 2 67100 L'Aquila Italy
| | - Diego Ghezzi
- Center for Synaptic Neuroscience and Technology; Fondazione Istituto Italiano di Tecnologia; Largo Giovanna Benzi 10 16132 Genova Italy
| | - Maurizio Mete
- Unità Operativa di Oculistica, Ospedale Sacro Cuore - Don Calabria; Via don A. Sempreboni 5; 37024 Negrar (Verona) Italy
| | - Stefano Di Marco
- Department of Biotechnology and Applied Clinical Science; University of L'Aquila; Via Vetoio, Coppito 2 67100 L'Aquila Italy
| | - José Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology; Fondazione Istituto Italiano di Tecnologia; Largo Giovanna Benzi 10 16132 Genova Italy
| | - Rita Maccarone
- Department of Biotechnology and Applied Clinical Science; University of L'Aquila; Via Vetoio, Coppito 2 67100 L'Aquila Italy
| | - Andrea Desii
- Center for Nano Science and Technology; Fondazione Istituto Italiano di Tecnologia; Via G. Pascoli 70/3 20133 Milano Italy
| | - Fabio Di Fonzo
- Center for Nano Science and Technology; Fondazione Istituto Italiano di Tecnologia; Via G. Pascoli 70/3 20133 Milano Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology; Fondazione Istituto Italiano di Tecnologia; Largo Giovanna Benzi 10 16132 Genova Italy
| | - Angela Russo
- Unità Operativa di Oculistica, Ospedale Sacro Cuore - Don Calabria; Via don A. Sempreboni 5; 37024 Negrar (Verona) Italy
| | - Lucia Laudato
- Center for Nano Science and Technology; Fondazione Istituto Italiano di Tecnologia; Via G. Pascoli 70/3 20133 Milano Italy
| | - Ilaria Donelli
- Innovhub-SSI; Silk Division; Via Giuseppe Colombo 83 20133 Milano Italy
| | - Michele Cilli
- Animal Facility; IRCCS Azienda Ospedaliera Universitaria San Martino IST Istituto Nazionale per la Ricerca sul Cancro; Largo Giovanna Benzi 10 16132 Genova Italy
| | - Giuliano Freddi
- Innovhub-SSI; Silk Division; Via Giuseppe Colombo 83 20133 Milano Italy
| | - Grazia Pertile
- Unità Operativa di Oculistica, Ospedale Sacro Cuore - Don Calabria; Via don A. Sempreboni 5; 37024 Negrar (Verona) Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology; Fondazione Istituto Italiano di Tecnologia; Via G. Pascoli 70/3 20133 Milano Italy
| | - Silvia Bisti
- Department of Biotechnology and Applied Clinical Science; University of L'Aquila; Via Vetoio, Coppito 2 67100 L'Aquila Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology; Fondazione Istituto Italiano di Tecnologia; Largo Giovanna Benzi 10 16132 Genova Italy
| |
Collapse
|
29
|
Jung H, Pena-Francesch A, Saadat A, Sebastian A, Kim DH, Hamilton RF, Albert I, Allen BD, Demirel MC. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins. Proc Natl Acad Sci U S A 2016; 113:6478-83. [PMID: 27222581 PMCID: PMC4988609 DOI: 10.1073/pnas.1521645113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility.
Collapse
Affiliation(s)
- Huihun Jung
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Abdon Pena-Francesch
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Alham Saadat
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; Bioinformatics Consulting Center, Pennsylvania State University, University Park, PA 16802
| | - Dong Hwan Kim
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Reginald F Hamilton
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; Bioinformatics Consulting Center, Pennsylvania State University, University Park, PA 16802
| | - Benjamin D Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802;
| | - Melik C Demirel
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
30
|
Su D, Jiang L, Chen X, Dong J, Shao Z. Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9619-28. [PMID: 26989907 DOI: 10.1021/acsami.6b00891] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regenerated silk fibroin (RSF) of Bombyx mori silk fiber is a promising natural material for bone defect repair. However, a lack of specific integrin and growth factor for osteoinduction significantly hinders its application in this area. In this study, the role of Laponite nanoplatelet (LAP), a bioactive clay that can promote osteoblast growth, in the formation of RSF hydrogel, as well as the various properties of RSF/LAP hybrid hydrogel, was closely investigated. The results indicate that LAP could serve as a medium to accelerate hydrophobic interaction among the RSF molecules and a disruptor to limit the growth of β-sheet domain during the gelation of RSF. Rheological measurement suggests that the RSF/LAP hydrogel is injectable as it displays thixotropy in the room temperature. Proliferation and differentiation results of the primary osteoblasts encapsulated in hydrogel show that RSF/LAP hydrogel can promote the cell proliferation and enhance the osteogenic differentiation. The transcript levels for alkaline phosphatase, osteocalcin, osteopontin, and collagen type I osteogenic markers obviously improve with RSF/LAP hydrogel compared to the controls at 14 days, especially with the higher contents of LAP. Overall, the results suggest that the RSF/LAP hydrogel have great potential to be utilized as an injectable biomaterial for irregular bone defect repair.
Collapse
Affiliation(s)
- Dihan Su
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200032, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200032, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
31
|
Aksakal B. Temperature effect on the recovery process in stretched Bombyx mori silk fibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:629-636. [PMID: 25701136 DOI: 10.1016/j.saa.2015.01.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
The recovery process in stretched Bombyx mori silk fibers at different strain levels from 3% to 17% was investigated at room conditions during long period of time from 5min to 20days and more. How the temperature affects the recovery process in the silk fibers stretched at room conditions was examined at temperatures from 25 to 125°C. The results of the recovery process at 25°C revealed that although the recovery process from strain values higher than 3% strain continued slowly which caused quite high remaining deformation, a complete recovery from 3% strain was observed after 3days. However, better recovery process was observed with increasing temperature which led to lower remaining deformations. For instance, a complete recovery from 6% strain was observed after 144h and 3h for the recovery process at 100°C and 125°C, respectively which indicates an important result that the deformations induced by stretching the silk fibers up to 6% strain are reversible and increasing temperature affects the velocity of this process significantly. The recovery process expressed in the strain (ε) and logarithm time coordinates showed a linear dependence for which a linear equation was proposed. Thus, this linear equation enables to estimate the required time for a complete recovery from different strain levels and remaining deformation at any stage of the recovery at different temperatures. The ATR-FTIR spectra of the stretched silk fibers during the recovery process revealed some changes in the absorbance ratios and shifts in the positions of the bands assigned to Cα-C, N-H stretching vibrations, and the Amide III mode. It was suggested that new formation of the hydrogen bonds between polypeptide chains especially in amorphous regions and the changes in the intra-sheet hydrogen bonds in β-sheet crystalline regions greatly contribute to the recovery process.
Collapse
Affiliation(s)
- Baki Aksakal
- Yildiz Technical University, Department of Physics, Davutpasa Campus, Esenler 34210, Istanbul, Turkey.
| |
Collapse
|
32
|
Aksakal B, Koç K, Yargı Ö, Tsobkallo K. Effect of UV-light on the uniaxial tensile properties and structure of uncoated and TiO2 coated Bombyx mori silk fibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:658-665. [PMID: 25746557 DOI: 10.1016/j.saa.2015.01.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
The effect of UV-light on the uniaxial tensile properties and the structure of uncoated and TiO2 coated silk fibers in the bave form by using sol-gel method was investigated with tensile testing and FT-IR/ATR spectroscopy methods after the silk filaments were exposed to UV-light with high intensity of 760W/m(2) for different times from 0.5h to 1day. It was clearly observed that TiO2 coating considerably increased the Young's modulus of the uncoated silk single filament by around 17% before the UV-irradiation. The yield point and the post yield region disappeared on the stress-strain curves of both uncoated and TiO2 coated silk filaments after UV-irradiation time higher than 1h. Except for the Young's modulus, most of the tensile characteristics of both uncoated and TiO2 coated silk filaments decreased remarkably with increasing UV-irradiation time, e.g., after 1h irradiation, although the Young's modulus slightly changed and ultimate tensile strength decreased by only around 18% and 23%, for the uncoated and TiO2 coated silk filaments, respectively; breaking extension decreased dramatically by 67% and 72%, respectively, for uncoated and TiO2 coated silk filaments. Only the Young's modulus of TiO2 coated silk filaments which can be considered as a more stable tensile characteristic became significantly higher than that of the uncoated silk filaments with increasing UV-irradiation time. After 1day irradiation, even though the uncoated silk filaments could not be tested and completely lost of their fiber properties, the TiO2 coated silk filaments showed a stress-strain curve in initial elastic region with Young's modulus of ∼13GPa which indicates considerable protective effect of TiO2 on the silk fiber structure, especially on the β-sheet microcrystals against UV-radiation. The FT-IR/ATR spectral results showed that significant photodegradation took place in not only crystalline but also amorphous regions which were deduced from the decrease in the absorbance ratios of the bands assigned to CH3 rocking, Cα-Cβ, Cα-C stretching vibrations in β-sheet crystalline regions as well as the Amide I, II, and III bands for both crystalline and amorphous regions. Even though the ratio of crystalline to amorphous regions in uncoated silk filaments decreased significantly, the ratio in TiO2 coated silk filaments became almost constant with increasing UV-irradiation time which may indicate more stable β-sheet microcrystals against photodegradation.
Collapse
Affiliation(s)
- Baki Aksakal
- Department of Physics, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul, Turkey.
| | - Kenan Koç
- Department of Physics, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul, Turkey
| | - Önder Yargı
- Department of Physics, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul, Turkey
| | - Katherina Tsobkallo
- Department of Mechanics of Materials, St. Petersburg State University of Technology and Design, B. Morskaya 18, 191186 St. Petersburg, Russia
| |
Collapse
|
33
|
Drnovšek N, Kocen R, Gantar A, Drobnič-Košorok M, Leonardi A, Križaj I, Rečnik A, Novak S. Size of silk fibroin β-sheet domains affected by Ca2+. J Mater Chem B 2016; 4:6597-6608. [DOI: 10.1039/c6tb01101b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of bioactive glass or other Ca2+ source to fibroin changes scaffold degradation and the mechanical and protein secondary structure properties due to the reduction in the size of β-sheet domains.
Collapse
Affiliation(s)
- N. Drnovšek
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - R. Kocen
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - A. Gantar
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - M. Drobnič-Košorok
- Institute of Physiology
- Pharmacology and Toxicology
- Veterinary Faculty
- University of Ljubljana
- Ljubljana
| | - A. Leonardi
- Department of Molecular and Biomedical Sciences
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - I. Križaj
- Department of Molecular and Biomedical Sciences
- Jožef Stefan Institute
- Ljubljana
- Slovenia
- Faculty of Chemistry and Chemical Technology
| | - A. Rečnik
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - S. Novak
- Department for Nanostructured Materials
- Jožef Stefan Institute
- Ljubljana
- Slovenia
- Jožef Stefan International Postgraduate School
| |
Collapse
|
34
|
Chen C, Yao T, Tu S, Xu W, Han Y, Zhou P. In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging. Phys Chem Chem Phys 2016; 18:16353-60. [DOI: 10.1039/c6cp03314h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SF was incompatible with PEG in some extent, and the phase separation took place in their blend film. The conformation of SF in the interface between SF and PEG was changed to the β-sheet, while that in the protein-rich domain remained in the random coil and/or helix conformation.
Collapse
Affiliation(s)
- Congheng Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Ting Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Sidong Tu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Weijie Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yi Han
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
35
|
Boulet-Audet M, Vollrath F, Holland C. Identification and classification of silks using infrared spectroscopy. J Exp Biol 2015; 218:3138-49. [PMID: 26347557 PMCID: PMC4631776 DOI: 10.1242/jeb.128306] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
36
|
Chameettachal S, Murab S, Vaid R, Midha S, Ghosh S. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering. J Tissue Eng Regen Med 2015; 11:1212-1229. [DOI: 10.1002/term.2024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/16/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Sumit Murab
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Radhika Vaid
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Swati Midha
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Sourabh Ghosh
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| |
Collapse
|
37
|
Zafar MS, Belton DJ, Hanby B, Kaplan DL, Perry CC. Functional material features of Bombyx mori silk light versus heavy chain proteins. Biomacromolecules 2015; 16:606-14. [PMID: 25565556 PMCID: PMC4767016 DOI: 10.1021/bm501667j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bombyx mori (BM) silk fibroin is composed of two different subunits: heavy chain and light chain fibroin linked by a covalent disulfide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fiber mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibers formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fiber formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications, and potential applications of these materials in biomedical and industrial applications.
Collapse
Affiliation(s)
- Muhammad S. Zafar
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS United Kingdom
- Department of Dental Biomaterials, College of Dentistry, Taibah University P.O. Box. 2898, Al Madina Al Munawara, Saudi Arabia
| | - David J. Belton
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS United Kingdom
| | - Benjamin Hanby
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS United Kingdom
| | - David L. Kaplan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, MA 02155, United States of America
| | - Carole C. Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS United Kingdom
| |
Collapse
|
38
|
Carrascoza Mayen JF, Lupan A, Cosar C, Kun AZ, Silaghi-Dumitrescu R. On the roles of the alanine and serine in the β-sheet structure of fibroin. Biophys Chem 2015; 197:10-7. [DOI: 10.1016/j.bpc.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/20/2014] [Accepted: 11/09/2014] [Indexed: 11/26/2022]
|
39
|
Tang S, Liao X, Shi B, Qu Y, Huang Z, Lin Q, Guo X, Pei F. The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model. PLoS One 2014; 9:e107517. [PMID: 25215612 PMCID: PMC4162607 DOI: 10.1371/journal.pone.0107517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/18/2014] [Indexed: 02/05/2023] Open
Abstract
Neural stem cells (NSCs) have emerged as a potential source for cell replacement therapy following spinal cord injury (SCI). However, poor survival and low neuronal differentiation remain major obstacles to the use of NSCs. Biomaterials with neurotrophic factors are promising strategies for promoting the proliferation and differentiation of NSCs. Silk fibroin (SF) matrices were demonstrated to successfully deliver growth factors and preserve their potency. In this study, by incorporating NT-3 into a SF coating, we successfully developed NT-3-immobilized scaffolds (membranes and conduits). Sustained release of bioactive NT-3 from the conduits for up to 8 weeks was achieved. Cell viability was confirmed using live/dead staining after 14 days in culture. The efficacy of the immobilized NT-3 was confirmed by assessing NSC neuronal differentiation in vitro. NSC neuronal differentiation was 55.2 ± 4.1% on the NT-3-immobilized membranes, which was significantly higher than that on the NT-3 free membrane. Furthermore, 8 weeks after the NSCs were seeded into conduits and implanted in rats with a transected SCI, the conduit+NT-3+NSCs group achieved higher NSC survival (75.8 ± 15.1%) and neuronal differentiation (21.5 ± 5.2%) compared with the conduit+NSCs group. The animals that received the conduit+NT-3+NSCs treatment also showed improved functional outcomes, as well as increased axonal regeneration. These results indicate the feasibility of fabricating NT-3-immobilized scaffolds using the adsorption of NT-3/SF coating method, as well as the potential of these scaffolds to induce SCI repair by promoting survival and neuronal differentiation of transplanted NSCs.
Collapse
Affiliation(s)
- Shuo Tang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Liao
- Department of Pain Medicine, Shenzhen Nanshan Hospital, Shenzhen, China
| | - Bo Shi
- Department of Orthopaedics, Mianyang Center Hospital, Mianyang, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Huang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Lin
- Department of Orthopaedics, Guangdong hospital of traditional Chinese medicine, Guangzhou, China
- * E-mail: (QL); (XDG); (FXP)
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (QL); (XDG); (FXP)
| | - Fuxing Pei
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (QL); (XDG); (FXP)
| |
Collapse
|
40
|
Kalyani D, Jyothi K, Sivaprakasam C, Nachiappan V. Spectroscopic and molecular modeling studies on the interactions of N-Methylformamide with superoxide dismutase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:148-152. [PMID: 24473177 DOI: 10.1016/j.saa.2014.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/21/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
N-Methylformamide, a polar solvent has a wide industrial applications and it is well-known for hepatotoxicity. The interaction between NMF with superoxide dismutase, an antioxidant defense enzyme has been studied for the first time using spectroscopic methods including Fourier transform infrared (FT-IR) spectroscopy, Circular dichroism (CD) spectroscopy and UV-visible spectroscopy under simulative physiological conditions and also by molecular modelling. Fourier Transform Infra Red analysis showed that the change in peak positions and shapes revealed that the secondary structure of SOD had been changed by the interaction with NMF. The data of CD spectra also confirmed that NMF decreased the degree of secondary structure of SOD, which directly resulted in destabilization of enzyme. We studied the inhibitory effect of NMF on enzyme kinetics by pyrogallol autoxidation revealed that protein-ligand complex caused structural unfolding which resulted in enzymatic inhibition. Thus the spectral behaviour of superoxide dismutase provides data concerning its conformational changes in the presence of NMF. Furthermore, molecular docking was applied to explore the binding mode between the protein-ligand complex. This suggested that Asn54 and Val302 residues of dimeric protein were predicted to interact with NMF. The present study provides direct evidence at a molecular level to show that exposure to NMF cause perturbation in its structure and function.
Collapse
Affiliation(s)
- Durai Kalyani
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, India
| | - Kanagaraj Jyothi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, India
| | - Chinnarasu Sivaprakasam
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, India.
| |
Collapse
|
41
|
Silk protein aggregation kinetics revealed by Rheo-IR. Acta Biomater 2014; 10:776-84. [PMID: 24200713 DOI: 10.1016/j.actbio.2013.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022]
Abstract
The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic.
Collapse
|
42
|
Merkle V, Zeng L, Teng W, Slepian M, Wu X. Gelatin shells strengthen polyvinyl alcohol core–shell nanofibers. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Taddei P, Chiono V, Anghileri A, Vozzi G, Freddi G, Ciardelli G. Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromol Biosci 2013; 13:1492-510. [DOI: 10.1002/mabi.201300156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie; Università di Bologna Via Belmeloro 8/2; Bologna I-40126 Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Anna Anghileri
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Giovanni Vozzi
- Research Center “E. Piaggio”; University of Pisa; Largo Lucio Lazzarino 2 56126 Pisa Italy
- Dipartimento di Ingegneria dell'Informazione; University of Pisa; Via Caruso 1 56126 Pisa Italy
| | - Giuliano Freddi
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
44
|
Aksakal B, Koç K. The Tensile Properties of Uncoated and TiO 2Coated Bombyx Mori Silk Yarns Exposed to Thermal Treatment. J MACROMOL SCI B 2013. [DOI: 10.1080/00222348.2013.763703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Baki Aksakal
- a Department of Physics, Faculty of Arts and Sciences , Yildiz Technical University , Davutpasa Campus, Esenler , Istanbul , Turkey
| | - Kenan Koç
- a Department of Physics, Faculty of Arts and Sciences , Yildiz Technical University , Davutpasa Campus, Esenler , Istanbul , Turkey
| |
Collapse
|
45
|
Luo X, Wu J, Intisar A, Geng J, Wu L, Zheng K, Du Y. Study on Light Aging of Silk Fabric by Fourier Transform Infrared Spectroscopy and Principal Component Analysis. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.673098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Chen F, Porter D, Vollrath F. Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties. Acta Biomater 2012; 8:2620-7. [PMID: 22484695 DOI: 10.1016/j.actbio.2012.03.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Bombyx mori cocoon is a natural composite made of silk fibre with a distinctive multi-layer structure that provides mechanical protection for its biological functions. Here we investigate the components, structure and mechanical properties of cocoon layers, and quantify the contributions of the multi-layer structure to the mechanical properties of cocoon. A better understanding of the multi-layer mechanism of a natural composite could help the further design of biomimetic multiscale artificial materials.
Collapse
|
47
|
Teng W, Cappello J, Wu X. Physical crosslinking modulates sustained drug release from recombinant silk-elastinlike protein polymer for ophthalmic applications. J Control Release 2011; 156:186-94. [PMID: 21839125 DOI: 10.1016/j.jconrel.2011.07.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/09/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
We evaluated the drug release capability of optically transparent recombinant silk-elastinlike protein polymer, SELP-47K, films to sustainably deliver the common ocular antibiotic, ciprofloxacin. The ciprofloxacin release kinetics from drug-loaded SELP-47K films treated with ethanol or methanol vapor to induce different densities of physical crosslinking was investigated. Additionally, the drug-loaded protein films were embedded in a protein polymer coating to further prolong the release of the drug. Drug-loaded SELP-47K films released ciprofloxacin for up to 132 h with near first-order release kinetics. Polymer coating of drug-loaded films prolonged drug release for up to 220 h. The antimicrobial activity of ciprofloxacin released from the drug delivery matrices was not impaired by the film casting process or the ethanol or methanol treatments. The mechanism of drug release was elucidated by analyzing the physical properties of the film specimens, including equilibrium swelling, soluble fraction, surface roughness and hydrophobicity. Additionally, the conformation of the SELP-47K and its physical crosslinks in the films was analyzed by FTIR and Raman spectroscopy. A three-parameter physics based model accurately described the release rates observed for the various film and coating treatments and attributed the effects to the degree of physical crosslinking of the films and to an increasing affinity of the drug with the polymer network. Together, these results indicate that optically transparent silk-elastinlike protein films may be attractive material candidates for novel ophthalmic drug delivery devices.
Collapse
Affiliation(s)
- Weibing Teng
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
48
|
Cilurzo F, Gennari CG, Selmin F, Marotta LA, Minghetti P, Montanari L. An investigation into silk fibroin conformation in composite materials intended for drug delivery. Int J Pharm 2011; 414:218-24. [DOI: 10.1016/j.ijpharm.2011.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
49
|
Qiu W, Cappello J, Wu X. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers. APPLIED PHYSICS LETTERS 2011; 98:263702-2637023. [PMID: 21918580 PMCID: PMC3144965 DOI: 10.1063/1.3604786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/30/2011] [Indexed: 05/22/2023]
Abstract
We report here that autoclaving is a chemical-free, physical crosslinking strategy capable of stabilizing electrospun recombinant silk-elastinlike protein (SELP) polymer nanofibers. Fourier transform infrared spectroscopy showed that the autoclaving of SELP nanofibers induced a conformational conversion of β-turns and unordered structures to ordered β-sheets. Tensile stress-strain analysis of the autoclaved SELP nanofibrous scaffolds in phosphate buffered saline at 37 °C revealed a Young's modulus of 1.02 ± 0.28 MPa, an ultimate tensile strength of 0.34 ± 0.04 MPa, and a strain at failure of 29% ± 3%.
Collapse
|
50
|
Teng W, Huang Y, Cappello J, Wu X. Optically transparent recombinant silk-elastinlike protein polymer films. J Phys Chem B 2011; 115:1608-15. [PMID: 21288001 PMCID: PMC3041846 DOI: 10.1021/jp109764f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recombinant protein polymers, evaluated extensively as biomaterials for applications in drug delivery and tissue engineering, are rarely reported as being optically transparent. Here we report the notable optical transparency of films composed of a genetically engineered silk-elastinlike protein polymer SELP-47K. SELP-47K films of 100 μm in thickness display a transmittance of 93% in the wavelength range of 350-800 nm. While covalent cross-linking of SELP-47K via glutaraldehyde decreases its transmittance to 77% at the wavelength of 800 nm, noncovalent cross-linking using methanol slightly increases it to 95%. Non- and covalent cross-linking of SELP-47K films also influences their secondary structures and water contents. Cell viability and proliferation analyses further reveal the excellent cytocompatibility of both non- and covalently cross-linked SELP-47K films. The combination of high optical transparency and cytocompatibility of SELP-47K films, together with their previously reported outstanding mechanical properties, suggests that this protein polymer may be useful in unique, new biomedical applications.
Collapse
Affiliation(s)
- Weibing Teng
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Yiding Huang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph Cappello
- Protein Polymer Technologies, Inc., San Diego, California 92121, United States
| | - Xiaoyi Wu
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Biomedical Engineering Program & Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|