1
|
Jin KC, Seo SO, Kim SK. Animal-free production of hen egg ovalbumin in engineered Saccharomyces cerevisiae via precision fermentation. Int J Biol Macromol 2024; 271:132479. [PMID: 38772474 DOI: 10.1016/j.ijbiomac.2024.132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
To enable the sustainable production of ovalbumin (OVA) without relying on animal sources, the generally recognized as safe (GRAS) host Saccharomyces cerevisiae was used for the precision fermentation-based production of recombinant OVA. For this purpose, a signal peptide derived from EPX1, the most abundant extracellular protein produced by Pichia pastoris, was identified as a novel signal peptide for the efficient secretion of OVA in S. cerevisiae. To improve OVA secretion and cell growth, three helper proteins (PDI1, KAR2, and HAC1) present in the endoplasmic reticulum were expressed individually or in combination. Notably, the +P1/K2 strain coexpressing PDI1 and KAR2 with OVA produced 2 mg/L of OVA in the medium fraction; this value was 2.6-fold higher than the corresponding value for the control strain without helper proteins. Finally, a glucose-limited fed-batch fermentation process using the +P1/K2 strain yielded 132 mg/L of total OVA with 8 mg/L of extracellular OVA.
Collapse
Affiliation(s)
- Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
2
|
Prototyping Yarrowia lipolytica for industrial production of hyperthermophilic enzymes- a case of β-glucosidase (CelB) from Pyrococcus furiosus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Khadye VS, Sawant S, Shaikh K, Srivastava R, Chandrayan S, Odaneth AA. Optimal secretion of thermostable Beta-glucosidase in Bacillus subtilis by signal peptide optimization. Protein Expr Purif 2021; 182:105843. [PMID: 33631310 DOI: 10.1016/j.pep.2021.105843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Commercial applications of β-glucosidase (BGL) demands its purity and availability on a large scale. In the present study, we aim to optimize the expression and secretion of a thermostable BGL from Pyrococcus furiosus (PfuBGL) in B. subtilis strain RIK1285. Initial studies with base strain BV002 harboring aprE signal peptide (aprESP) showed PfuBGL yield of 0.743 ± 0.19 pNP U/ml only. A library of 173 different homologous SPs from B. subtilis 168 genome was fused with target PfuBGL gene (PF0073) in pBE-S vector and extracellularly expressed in RIK1285 strain to identify optimal SP for PfuBGL secretion. High-throughput screening of the resulting SP library for BGL activity with a synthetic substrate followed by systematic scaling of the clones yielded a gene construct with CitHSP reporting a sixteen fold enhancement of PfuBGL secretion in comparison to base strain. Batch fermentation (7.5 L scale) PfuBGL yield of the BV003 strain with CitHSP-PF0073 fusion was observed to be 12.08 ± 0.21 pNP U/ml with specific activity of 35.52 ± 0.53 U/mg. Thus, the study represents report on the secretory expression of thermostable PfuBGL using B. subtilis as a host organism and demonstrating its high potential for industrial production of any protein/enzyme.
Collapse
Affiliation(s)
- Vishwanath S Khadye
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Sneha Sawant
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Kurshedaktar Shaikh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Ritika Srivastava
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Sanjeev Chandrayan
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Annamma A Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| |
Collapse
|
4
|
Swietalski P, Hetzel F, Seitl I, Fischer L. Secretion of a low and high molecular weight β-glycosidase by Yarrowia lipolytica. Microb Cell Fact 2020; 19:100. [PMID: 32393258 PMCID: PMC7216700 DOI: 10.1186/s12934-020-01358-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background The secretory production of recombinant proteins in yeast simplifies isolation and purification but also faces possible complications due to the complexity of the secretory pathway. Therefore, correct folding, maturation and intracellular transport of the recombinant proteins are important processing steps with a higher effort needed for complex and large proteins. The aim of this study was to elucidate the secretion potential of Yarrowia lipolytica for low and high molecular weight β-glycosidases in a comparative cultivation approach. Results A low sized β-glucosidase from Pyrococcus furiosus (CelB; 55 kDa) and a large sized β-galactosidase isolated from the metagenome (M1; 120 kDa) were integrated into the acid extracellular protease locus using the CRISPR–Cas9 system to investigate the size dependent secretion of heterologous proteins in Y. lipolytica PO1f. The recombinant strains were cultivated in the bioreactor for 78 h and the extra- and intracellular enzyme activities were determined. The secretion of CelB resulted in an extracellular volumetric activity of 187.5 µkatoNPGal/Lmedium, while a volumetric activity of 2.98 µkatoNPGal/Lmedium was measured during the M1 production. However, when the amount of functional intra- and extracellular enzyme was investigated, the high molecular weight M1 (85%) was secreted more efficiently than CelB (27%). Real-time PCR experiments showed a linear correlation between the transcript level and extracellular activity for CelB, while a disproportional high mRNA level was observed regarding M1. Interestingly, mass spectrometry data revealed the unexpected secretion of two endogenous intracellular glycolytic enzymes, which is reported for the first time for Y. lipolytica. Conclusion The results of this study provide deeper insights into the secretion potential of Y. lipolytica. A secretion limitation for the low-size CelB was observed, while the large size M1 enzyme was produced in lower amounts but was secreted efficiently. It was shown for the first time that Y. lipolytica is a promising host for the secretion of heterologous high molecular weight proteins (> 100 kDa), although the total secreted amount has to be increased further.
Collapse
Affiliation(s)
- Paul Swietalski
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Frank Hetzel
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
5
|
Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae. Metab Eng 2019; 55:142-151. [PMID: 31220665 DOI: 10.1016/j.ymben.2019.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is a valuable host for the production of heterologous proteins with a wide array of applications, ranging from cellulose saccharification enzymes to biopharmaceuticals. Efficient protein secretion may be critical for economic viability; however previous efforts have shown limited improvements that are often protein-specific. By enhancing transit through the early secretory pathway, we have successfully improved extracellular levels of three different proteins from variety of origins: a bacterial endoglucanase (CelA), a fungal β-glucosidase (BglI) and a single-chain antibody fragment (4-4-20 scFv). Efficient co-translational translocation into the endoplasmic reticulum (ER) was achieved via secretion peptide engineering and the novel use of a 3'-untranslated region, improving extracellular activity or fluorescence 2.2-5.4-fold. We further optimized the pathway using a variety of new strategies including: i) increasing secretory pathway capacity by expanding the ER, ii) limiting ER-associated degradation, and iii) enhancing exit from the ER. By addressing these additional ER processing steps, extracellular activity/fluorescence increased by 3.5-7.1-fold for the three diverse proteins. The optimal combination of pathway interventions varied, and the highest overall increases ranged from 5.8 to 11-fold. These successful strategies should prove effective for improving the secretion of a wide range of heterologous proteins.
Collapse
|
6
|
Tang Z, Jin W, Tang Y, Wang Y, Wang C, Zheng X, Sun W, Liu M, Zheng T, Chen H, Wu Q, Shan Z, Bu T, Li C. Research on homology modeling, molecular docking of the cellulase and highly expression of the key enzyme (Bgl) in Pichia pastoris. Int J Biol Macromol 2018; 115:1079-1087. [DOI: 10.1016/j.ijbiomac.2018.04.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
7
|
Li B, Wang Z, Li S, Donelan W, Wang X, Cui T, Tang D. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus. BMC Biotechnol 2013; 13:73. [PMID: 24053641 PMCID: PMC4016594 DOI: 10.1186/1472-6750-13-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization.
Collapse
Affiliation(s)
| | | | | | | | | | - Taixing Cui
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China.
| | | |
Collapse
|
8
|
Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:491-510. [DOI: 10.1111/j.1567-1364.2012.00810.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - Zihe Liu
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Dina Petranovic
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| |
Collapse
|
9
|
Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 2012; 109:1259-68. [PMID: 22179756 DOI: 10.1002/bit.24409] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 11/06/2022]
Abstract
Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (µmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, that is, the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, (Tyo et al. submitted) in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter). For the IP there is more than 10-fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast.
Collapse
Affiliation(s)
- Zihe Liu
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
10
|
Li SW, Sun Y, Donelan W, Yu H, Scian J, Tang D, Yang LJ. Expression, purification, and characterization of recombinant human pancreatic duodenal homeobox-1 protein in Pichia pastoris. Protein Expr Purif 2010; 72:157-61. [PMID: 20381624 DOI: 10.1016/j.pep.2010.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 02/08/2023]
Abstract
Pancreatic duodenal hemeobox-1 (PDX1) is essential for the development of the embryonic pancreas and plays a key role in pancreatic beta-cell differentiation, maturation, regeneration, and maintenance of normal pancreatic beta-cell insulin-producing function. Purified recombinant PDX1 (rPDX1) may be a useful tool for many research and clinical applications, however, using the Escherichia coli expression system has several drawbacks for producing quality PDX1 protein. To explore the yeast expression system for generating rPDX1 protein, the cDNA coding for the full-length human PDX1 gene was cloned into the secreting expression organism Pichia pastoris. SDS-PAGE and western blotting analysis of culture medium from methanol-induced expression yeast clones demonstrated that the rPDX1 was secreted into the culture medium, had a molecular weight by SDS-PAGE of 50kDa, and was glycosylated. The predicted size of the mature unmodified PDX1 polypeptide is 31kDa, suggesting that eukaryotic post-translational modifications are the result of the increased molecular weight. The recombinant protein was purified to greater than 95% purity using a combined ammonium sulfate precipitation with heparin-agarose chromatography. Finally, 120mug of the protein was obtained in high purity from 1L of the culture supernatant. Bioactivity of the rPDX1 was confirmed by the ability to penetrate cell membranes and activation of an insulin-luciferase reporter gene. Our results suggest that the P. pastoris expression system can be used to produce a fully functional human rPDX1 for both research and clinical application.
Collapse
Affiliation(s)
- Shi-Wu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Improved secretion of the cancer-testis antigen SSX2 in Pichia pastoris by deletion of its nuclear localization signal. Appl Microbiol Biotechnol 2009; 86:243-53. [PMID: 19826807 DOI: 10.1007/s00253-009-2275-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
The cancer-testis (CT) antigen synovial sarcoma X break point 2 (SSX2) was expressed in Pichia pastoris as a means to produce a delayed-type hypersensitivity skin test reagent for monitoring SSX2-specific anti-cancer immune responses. SSX2 was detected intracellularly in P. pastoris despite the addition of the Saccharomyces cerevisiae alpha-mating factor secretion signal. Increasing the SSX2 gene copy number did not improve its secretion but did enhance intracellular SSX2 levels. SSX2 with its C-terminal nuclear localization signal (NLS) deleted (SSX2NORD), however, was secreted. Indirect immunofluorescence indicated that SSX2 containing the NLS did not translocate to the nucleus but accumulated in the endoplasmic reticulum (ER). Experimental results further suggested that SSX2 containing the NLS was misfolded in the ER, while deletion of the NLS facilitated correct folding of SSX2 inside the ER and improved its secretion. Production of SSX2NORD was scaled-up to a 2-L fermentor using a fed-batch protocol to maintain methanol at a concentration of 1 g L(-1). Decreasing the cultivation temperature from 25 degrees C to 16 degrees C improved protein stability in the culture supernatant. In this process, after 120 h cultivation, the wet cell weight of P. pastoris reached 280 mg mL(-1), and the yield of SSX2NORD was 21.6 mg L(-1).
Collapse
|
12
|
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D. The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 2009; 8:1380-92. [PMID: 19216534 DOI: 10.1021/pr8007623] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impact of environmental factors on the productivity of yeast cells is poorly investigated so far. Therefore, it is a major concern to improve the understanding of cellular physiology of microbial protein production hosts, including the methylotrophic yeast Pichia pastoris. Two-Dimensional Fluorescence Difference Gel electrophoresis and protein identification via mass spectrometry were applied to analyze the impact of cultivation temperature on the physiology of a heterologous protein secreting P. pastoris strain. Furthermore, specific productivity was monitored and fluxes through the central carbon metabolism were calculated. Chemostat culture conditions were applied to assess the adaption to different growth temperatures (20, 25, 30 degrees C) at steady-state conditions. Many important cellular processes, including the central carbon metabolism, stress response and protein folding are affected by changing the growth temperature. A 3-fold increased specific productivity at lower cultivation temperature for an antibody Fab fragment was accompanied by a reduced flux through the TCA-cycle, reduced levels of proteins involved in oxidative stress response and lower cellular levels of molecular chaperones. These data indicate that folding stress is generally decreased at lower cultivation temperatures, enabling more efficient heterologous protein secretion in P. pastoris host cells.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Macauley SR, Zimmerman SA, Apolinario EE, Evilia C, Hou YM, Ferry JG, Sowers KR. The archetype gamma-class carbonic anhydrase (Cam) contains iron when synthesized in vivo. Biochemistry 2009; 48:817-9. [PMID: 19187031 DOI: 10.1021/bi802246s] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recombinant protein overproduction system was developed in Methanosarcina acetivorans to facilitate biochemical characterization of oxygen-sensitive metalloenzymes from strictly anaerobic species in the Archaea domain. The system was used to overproduce the archetype of the independently evolved gamma-class carbonic anhydrase. The overproduced enzyme was oxygen sensitive and had full incorporation of iron instead of zinc observed when overproduced in Escherichia coli. This, the first report of in vivo iron incorporation for any carbonic anhydrase, supports the need to reevaluate the role of iron in all classes of carbonic anhydrases derived from anaerobic environments.
Collapse
Affiliation(s)
- Sheridan R Macauley
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Hess M. Thermoacidophilic proteins for biofuel production. Trends Microbiol 2008; 16:414-9. [PMID: 18691890 DOI: 10.1016/j.tim.2008.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/17/2008] [Accepted: 06/27/2008] [Indexed: 11/18/2022]
Abstract
Growing concerns about global climate change and energy dependence have led to an increased effort to reduce carbon emissions. A considerable reduction could be achieved by using biofuels from lignocellulosic biomass instead of fossil fuels. One major bottleneck of biofuel production from lignocellulose is the availability of efficient and inexpensive biocatalysts (i.e. alcohol dehydrogenases, cellulases and esterases) that are active and stable at high temperatures and low pH values. Although heterologous gene expression is used effectively to obtain recombinant proteins derived from mesophiles, the production of thermoacidophilic proteins is often unsuccessful. Some of the reasons for this failure and potential solutions for an increased production of novel extremophilic biocatalysts are discussed here.
Collapse
Affiliation(s)
- Matthias Hess
- Department of Energy Joint Genome Institute, Genomics Division, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| |
Collapse
|
15
|
|
16
|
Abstract
The biopharmaceuticals market is currently outperforming the pharmaceuticals market and is now valued at US$ 48 billion with an average annual growth of 19%. Behind this success is a 100-fold increase in productivities of eukaryotic expression systems. However, the productivity per cell has remained unchanged for more than 10 years. The engineering of the ER-resident protein folding machinery is discussed together with an overview of signal transduction pathways activated by heterologous protein overexpression to increase cell specific productivities.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
17
|
O'Malley MA, Lazarova T, Britton ZT, Robinson AS. High-level expression in Saccharomyces cerevisiae enables isolation and spectroscopic characterization of functional human adenosine A2a receptor. J Struct Biol 2007; 159:166-78. [PMID: 17591446 PMCID: PMC1994815 DOI: 10.1016/j.jsb.2007.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (approximately 4mg/L of culture) of functional human adenosine A(2)a receptor fused to a green fluorescent protein (A(2)aR-GFP) from Saccharomyces cerevisiae. In this work, we re-engineered A(2)aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A(2)aR and A(2)aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A(2)aR-GFP-His(10). One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-beta-d-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A(2)aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A(2)a-His(10) receptor was purified in quantities of 6+/-2mg/L of culture, with ligand-binding yields of 1mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A(2)aR yet achieved from any heterologous expression system.
Collapse
Affiliation(s)
- Michelle A O'Malley
- Department of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Although manipulation of the endoplasmic reticulum (ER) folding environment in the yeast Saccharomyces cerevisiae has been shown to increase the secretory productivity of recombinant proteins, the cellular interactions and processes of native enzymes and chaperones such as protein disulfide isomerase (PDI) are still unclear. Previously, we reported that overexpression of the ER chaperone PDI enabled up to a 3-fold increase in secretion levels of the Pyrococcus furiosus beta-glucosidase in the yeast S. cerevisiae. This result was surprising since beta-glucosidase contains only one cysteine per monomer and no disulfide bonds. Two possible mechanisms were proposed: PDI either forms a transient disulfide bond with the lone cysteine residue of the nascent beta-glucosidase during the folding and assembly process or acts as a chaperone to aid in proper folding. To discern between the two mechanisms, the single cysteine residue was mutated to serine, and the secretion of the two protein variants was determined. The serine mutant still showed increased secretion in vivo when PDI levels were elevated. When the folding bottleneck is removed by increasing expression temperatures to 37 degrees C rather than 30 degrees C, PDI no longer has an improvement on secretion. These results suggest that, unexpectedly, PDI acts in a chaperone-like capacity or possibly cooperates with the cell's folding or degradation mechanisms regardless of whether the protein is redox-active.
Collapse
Affiliation(s)
| | - Anne Skaja Robinson
- To whom correspondence should be addressed at: Tel: +1 302 831-0557, Fax: +1 302 831-1048,
| |
Collapse
|
19
|
Powers SL, Robinson CR, Robinson AS. Denaturation of an extremely stable hyperthermophilic protein occurs via a dimeric intermediate. Extremophiles 2006; 11:179-89. [PMID: 17072686 DOI: 10.1007/s00792-006-0030-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 08/04/2006] [Indexed: 11/25/2022]
Abstract
To elucidate determinants of thermostability and folding pathways of the intrinsically stable proteins from extremophilic organisms, we are studying beta-glucosidase from Pyrococcus furiosus. Using fluorescence and circular dichroism spectroscopy, we have characterized the thermostability of beta-glucosidase at 90 degrees C, the lowest temperature where full unfolding is achieved with urea. The chemical denaturation profile reveals that this homotetrameric protein unfolds at 90 degrees C with an overall DeltaG degrees of approximately 20 kcal mol(-1). The high temperatures needed to chemically denature P. furiosus beta-glucosidase and the large DeltaG degrees of unfolding at high temperatures shows this to be one of the most stable proteins yet characterized. Unfolding proceeds via a three-state pathway that includes a stable intermediate species. Stability of the native and intermediate forms is concentration dependent, and we have identified a dimeric assembly intermediate using high temperature native gel electrophoresis. Based on this data, we have developed a model for the denaturation of beta-glucosidase in which the tetramer dissociates to partially folded dimers, followed by the coupled dissociation and denaturation of the dimers to unfolded monomers. The extremely high stability is thus derived from a combination of oligomeric interactions and subunit folding.
Collapse
Affiliation(s)
- Sara Lawrence Powers
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
20
|
Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 2006; 74:381-9. [PMID: 17051412 DOI: 10.1007/s00253-006-0652-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/22/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
In Pichia pastoris, secretion of the A33 single-chain antibody fragment (A33scFv) was shown to reach levels of approximately 4 g l(-1) in fermentor cultures. In this study, we investigated whether manipulating chaperone and foldase levels in P. pastoris could further increase secretion of A33scFv. Cells were engineered to cooverexpress immunoglobulin binding protein (BiP) and/or protein disulfide isomerase (PDI) with A33scFv during growth in methanol as the sole carbon and energy source. Cooverexpression of BiP resulted in increased secretion levels of A33scFv by approximately threefold. In contrast, cooverexpression of PDI had no apparent effect on secretion of A33scFv. In cells cooverexpressing BiP and PDI, A33scFv secretion did not increase and protein levels remained the same as the control strain. We believe that secretion of A33scFv is increased by cooverexpression of BiP as a result of an increase in folding capacity inside the endoplasmic reticulum (ER). In addition, lack of increased single-chain secretion when PDI is coexpressed was unexpected due to the presence of disulfide bonds in A33scFv. We also show that during PDI cooverexpression with the single-chain there is a sixfold increase in BiP levels, indicating that the former is possibly inducing an unfolded protein response due to excess chaperone and recombinant protein in the ER.
Collapse
|
21
|
Huang D, Shusta EV. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions. Appl Environ Microbiol 2006; 72:7748-59. [PMID: 17028228 PMCID: PMC1694270 DOI: 10.1128/aem.01403-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 microg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.
Collapse
Affiliation(s)
- Dagang Huang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | |
Collapse
|
22
|
Li J, Sun X, Zhang Y. Improvement of hepatitis B surface antigen expression by dimethyl sulfoxide in the culture of recombinant Chinese hamster ovary cells. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Inan M, Aryasomayajula D, Sinha J, Meagher MM. Enhancement of protein secretion inPichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 2006; 93:771-8. [PMID: 16255058 DOI: 10.1002/bit.20762] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.
Collapse
Affiliation(s)
- Mehmet Inan
- Biological Process Development Facility, Department of Chemical Engineering, University of Nebraska, Lincoln, 207P Othmer Hall, Nebraska 68588-0643, USA.
| | | | | | | |
Collapse
|
24
|
van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 2005; 120:284-95. [PMID: 16084620 DOI: 10.1016/j.jbiotec.2005.06.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 06/10/2005] [Accepted: 06/16/2005] [Indexed: 11/29/2022]
Abstract
Beta-glucosidase genes of fungal origins were isolated and heterologously expressed in Saccharomyces cerevisiae to enable growth on the disaccharide, cellobiose. To promote secretion of the beta-glucosidases, the genes were fused to the secretion signal of the Trichoderma reesei xyn2 gene and constitutively expressed from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The two most promising enzymes, BGL1 from Saccharomycopsis fibuligera and BglA from Aspergillus kawachii, were anchored to the yeast cell surface by fusing the mature proteins to the alpha-agglutinin (AGalpha1) or cell wall protein 2 (Cwp2) peptides. The maximum specific growth rates (mu(max)) of the recombinant S. cerevisiae strains were determined in batch cultivation. S. cerevisiae secreting the recombinant S. fibuligera BGL1 enzyme sustained growth aerobically and anaerobically, in minimal medium containing 5g L(-1) cellobiose at 0.23 h(-1) (compared to 0.29 h(-1) on glucose) and 0.18 h(-1) (compared to 0.25 h(-1) on glucose), respectively. Substrate consumption and product formation were determined to evaluate product yields in glucose and cellobiose.
Collapse
Affiliation(s)
- Ronél van Rooyen
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
25
|
Niebauer RT, Wedekind A, Robinson AS. Decreases in yeast expression yields of the human adenosine A2a receptor are a result of translational or post-translational events. Protein Expr Purif 2005; 37:134-43. [PMID: 15294291 DOI: 10.1016/j.pep.2004.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 06/01/2004] [Indexed: 11/21/2022]
Abstract
The human adenosine receptor (A2a), a G-protein-coupled receptor (GPCR), was C-terminally tagged with the green fluorescent protein (GFP) and expressed in the yeast Saccharomyces cerevisiae to gain an understanding of the expression limitations of this medically relevant class of membrane proteins. The A2a-GFP protein was able to bind adenosine analogs indicating that the GFP tag did not alter the ligand binding activity of the receptor. A screen based on whole cell fluorescence was developed and a library of clones with various gene copy numbers was screened via flow cytometry to isolate clones with the highest protein expression levels. All clones studied exhibited a decrease in the net A2a-GFP protein production rate over time as determined by whole cell fluorescence, Western blotting, confocal microscopy, and ligand binding. Quantitative PCR showed that A2a-GFP mRNA levels remained relatively high even as the protein production rate decreased. A cycloheximide chase experiment showed that the mature protein was stable over time and was not significantly degraded. Taken together, these results suggest that heterologous expression of GPCRs is limited by a translational or post-translational bottleneck that is unique from expression limitations seen for soluble proteins.
Collapse
Affiliation(s)
- Ronald T Niebauer
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
26
|
Smith JD, Richardson NE, Robinson AS. Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:18-25. [PMID: 16112628 DOI: 10.1016/j.bbapap.2005.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 07/18/2005] [Accepted: 07/26/2005] [Indexed: 11/29/2022]
Abstract
Efficient protein folding and trafficking are essential for high-level production of secretory proteins. Slow folding or misfolding of proteins can lead to secretory bottlenecks that reduce productivity. We previously examined the expression of a hyperthermophilic tetramer Pyrococcus furiosus beta-glucosidase in the yeast Saccharomyces cerevisiae. A secretory bottleneck was found in the endoplasmic reticulum, presumably due to beta-glucosidase misfolding. By increasing expression temperature from 30 degrees C up to 40 degrees C, secretion yields increased by as much as 440% per cell to greater than 100 mg/L at 37 degrees C. We examined the effect of temperature on beta-glucosidase folding and secretion and determined that increased expression temperature decreased intracellularly retained, insoluble beta-glucosidase. Likewise, stress on the cell caused by beta-glucosidase expression was found to be greatly reduced at 37 degrees C compared to 30 degrees C. Levels of the abundant endoplasmic reticulum chaperone, BiP, were relatively unchanged at these temperatures during heterologous expression. Using cycloheximide to inhibit new protein synthesis, we determined that the increase in secretion is likely due to the effect of temperature on the beta-glucosidase itself rather than the cell's response to elevated temperatures. We believe that this is the first evidence of in vivo effects of temperature on the secretion of hyperthermophilic proteins.
Collapse
Affiliation(s)
- Jason D Smith
- Department of Chemical Engineering, University of Delaware, 259 Colburn Laboratory, Newark, DE 19716, USA
| | | | | |
Collapse
|
27
|
Smith JD, Tang BC, Robinson AS. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 2004; 85:340-50. [PMID: 14748090 DOI: 10.1002/bit.10853] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eukaryotes, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). Many heterologous proteins are retained in the ER due to suboptimal folding conditions. We previously reported that heterologous secretion of Pyrococcus furiosus beta-glucosidase in Saccharomyces cerevisiae resulted in the accumulation of a large fraction of inactive beta-glucosidase in the ER. In this work, we determine the effect of introducing additional genes of ER-resident yeast proteins, Kar2p (binding protein [BiP]) and protein disulfide isomerase (PDI), on relieving this bottleneck. Single-copy expression of BiP and PDI worked synergistically to improve secretion by reverse similar 60%. In an effort to optimize BiP and PDI interactions, we created a library of beta-glucosidase expression strains that incorporated four combinations of constitutively or inducibly-expressed BiP and PDI genes integrated to random gene copynumbers in the yeast chromosome. Approximately 15% of the transformants screened had secretion level improvements higher than that seen with single BiP/PDI gene overexpression, and the highest secreting strain had threefold higher beta-glucosidase levels than the control. Nineteen of the improved strains were re-examined for beta-glucosidase secretion as well as BiP and PDI levels. Within the improved transformants BiP and PDI levels ranged sevenfold and tenfold over the control, respectively. Interestingly, increasing BiP levels decreased beta-glucosidase secretion, whereas increasing PDI levels increased beta-glucosidase secretion. The action of PDI was unexpected because beta-glucosidase is not a disulfide-bonded protein. We suggest that PDI may be acting in a chaperone-like capacity or possibly creating mixed disulfides with the beta-glucosidase's lone cysteine residue during the folding and assembly process.
Collapse
Affiliation(s)
- Jason D Smith
- Department of Chemical Engineering, University of Delaware, 259 Colburn Laboratory, Newark, Delaware 19716, USA
| | | | | |
Collapse
|