1
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024. [PMID: 39364834 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Alizadeh F, Aghajani H, Mahboudi F, Talebkhan Y, Arefian E, Samavat S, Raufi R. Optimization of culture condition for Spodoptera frugiperda by design of experiment approach and evaluation of its effect on the expression of hemagglutinin protein of influenza virus. PLoS One 2024; 19:e0308547. [PMID: 39150957 PMCID: PMC11329130 DOI: 10.1371/journal.pone.0308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/18/2024] Open
Abstract
The baculovirus expression vector system (BEVS) is a powerful tool in pharmaceutical biotechnology to infect insect cells and produce the recombinant proteins of interest. It has been well documented that optimizing the culture condition and its supplementation through designed experiments is critical for maximum protein production. In this study, besides physicochemical parameters including incubation temperature, cell count of infection, multiplicity of infection, and feeding percentage, potential supplementary factors such as cholesterol, polyamine, galactose, pluronic-F68, glucose, L-glutamine, and ZnSO4 were screened for Spodoptera frugiperda (Sf9) cell culture and expression of hemagglutinin (HA) protein of Influenza virus via Placket-Burman design and then optimized through Box-Behnken approach. The optimized conditions were then applied for scale-up culture and the expressed r-HA protein was characterized. Optimization of selected parameters via the Box-Behnken approach indicated that feed percentage, cell count, and multiplicity of infection are the main parameters affecting r-HA expression level and potency compared to the previously established culture condition. This study demonstrated the effectiveness of designing experiments to select and optimize important parameters that potentially affect Sf9 cell culture, r-HA expression, and its potency in the BEVS system.
Collapse
Affiliation(s)
- Fatemeh Alizadeh
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Hamideh Aghajani
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Samavat
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| | - Rouhollah Raufi
- Department of Research & Development, AryoGen Pharmed Inc., Karaj, Iran
| |
Collapse
|
3
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
4
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Cindrić A, Pribić T, Lauc G. High-throughput N-glycan analysis in aging and inflammaging: State of the art and future directions. Semin Immunol 2024; 73:101890. [PMID: 39383621 DOI: 10.1016/j.smim.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
As the global population ages at an unprecedented rate, the prevalence of age-related diseases is increasing, making inflammaging - a phenomenon characterized by a chronic, low-grade inflammatory state that follows aging - a significant concern. Understanding the mechanisms of inflammaging and its impact on health is critical for developing strategies to improve the quality of life and manage health in the aging population. Despite their crucial roles in various biological processes, including immune response modulation, N-glycans, oligosaccharides covalently attached to many proteins, are often overlooked in clinical and research studies. This repeated oversight is largely due to their inherent complexity and the complexity of the analysis methods. High-throughput N-glycan analysis has emerged as a transformative tool in N-glycosylation research, enabling cost- and time-effective, detailed, and large-scale examination of N-glycan profiles. This paper is the first to explore the application of high-throughput N-glycomics techniques to investigate the complex interplay between N-glycosylation and the immune system in aging. Technological advancements have significantly improved Nglycan detection and characterization, providing insights into age-related changes in Nglycosylation. Key findings highlight consistent shifts in immunoglobulin G (IgG) and plasma/serum glycoprotein glycosylation with age, with a pronounced rise in agalactosylated structures bound to IgG that also affect the composition of the total plasma N-glycome. These N-glycan modifications seem to be strongly associated with inflammaging and have been identified as valuable biomarkers for biological age, predictors of disease risk, and proxy biomarkers for monitoring intervention efficacy at the individual level. Despite current challenges related to data complexity and methodological limitations, ongoing technological innovations and interdisciplinary research are expected tofurther advance our knowledge of glycan biology, improve diagnostic and therapeutic strategies, and promote healthier aging. The integration of glycomics with other omics approaches holds promise for a more comprehensive understanding of the aging immune system, paving the way for personalized medicine and targeted interventions to mitigate inflammaging. In conclusion, this paper underscores the transformative impact of high-throughput Nglycan analysis in aging and inflammaging.
Collapse
Affiliation(s)
- A Cindrić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - T Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - G Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
6
|
Clarke EC. Considerations for Glycoprotein Production. Methods Mol Biol 2024; 2762:329-351. [PMID: 38315375 DOI: 10.1007/978-1-0716-3666-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This chapter is intended to provide insights for researchers aiming to choose an appropriate expression system for the production of recombinant glycoproteins. Producing glycoproteins is complex, as glycosylation patterns are determined by the availability and abundance of specific enzymes rather than a direct genetic blueprint. Furthermore, the cell systems often employed for protein production are evolutionarily distinct, leading to significantly different glycosylation when utilized for glycoprotein production. The selection of an appropriate production system depends on the intended applications and desired characteristics of the protein. Whether the goal is to produce glycoproteins mimicking native conditions or to intentionally alter glycan structures for specific purposes, such as enhancing immunogenicity in vaccines, understanding glycosylation present in the different systems and in different growth conditions is essential. This chapter will cover Escherichia coli, baculovirus/insect cell systems, Pichia pastoris, as well as different mammalian cell culture systems including Chinese hamster ovary (CHO) cells, human endothelial kidney (HEK) cell lines, and baby hamster kidney (BHK) cells.
Collapse
Affiliation(s)
- Elizabeth C Clarke
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
7
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
9
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Zhang Y, Lai Z, Yuan Z, Qu B, Li Y, Yan W, Li B, Yu W, Cai S, Zhang H. Serum disease-specific IgG Fc glycosylation as potential biomarkers for nonproliferative diabetic retinopathy using mass spectrometry. Exp Eye Res 2023:109555. [PMID: 37364630 DOI: 10.1016/j.exer.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To explore the potential of serum disease-specific immunoglobulin G (DSIgG) glycosylation as a biomarker for the diagnosis of nonproliferative diabetic retinopathy (NPDR). METHODS A total of 387 consecutive diabetic patients presenting in an eye clinic without proliferative diabetic retinopathy (DR) were included and divided into those with nondiabetic retinopathy (NDR) (n = 181) and NPDR (n = 206) groups. Serum was collected from all patients for DSIgG separation. The enriched glycopeptides of the tryptic digests of DSIgG were detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Patients were randomly divided into discovery and validation sets (1:1). The differences in glycopeptide ratios between the groups were compared by using Student's t-test or the Mann-Whitney U test. The predictive ability of the model was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS DSIgG1 G1FN/G0FN, G2N/G2, G2FN/G2N and DSIgG2 G1F/G0F, G1FN/G0FN, G2N/G1N, G2S/G2 were significantly different between NDR and NPDR patients (p < 0.05) in both the discovery and validation sets. The prediction model that was built comprising the seven glycopeptide ratios showed good NPDR prediction performance with an AUC of 0.85 in the discovery set and 0.87 in the validation set. CONCLUSION DSIgG Fc N-glycosylation ratios were associated with NPDR and can be used as potential biomarkers for the early diagnosis of DR.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Ophthalmology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhizhen Lai
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhonghao Yuan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Qu
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong, China
| | - Yan Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong, China
| | - Wenyu Yan
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Shanjun Cai
- Department of Ophthalmology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hua Zhang
- Continuous Education College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Plavša B, Szavits-Nossan J, Blivajs A, Rapčan B, Radovani B, Šesto I, Štambuk K, Mustapić V, Đerek L, Rudan D, Lauc G, Gudelj I. The N-Glycosylation of Total Plasma Proteins and IgG in Atrial Fibrillation. Biomolecules 2023; 13:biom13040605. [PMID: 37189353 DOI: 10.3390/biom13040605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Atrial fibrillation is a disease with a complex pathophysiology, whose occurrence and persistence are caused not only by aberrant electrical signaling in the heart, but by the development of a susceptible heart substrate. These changes, such as the accumulation of adipose tissue and interstitial fibrosis, are characterized by the presence of inflammation. N-glycans have shown great promise as biomarkers in different diseases, specifically those involving inflammatory changes. To assess the changes in the N-glycosylation of the plasma proteins and IgG in atrial fibrillation, we analyzed the N-glycosylation of 172 patients with atrial fibrillation, before and six months after a pulmonary vein isolation procedure, with 54 cardiovascularly healthy controls. An analysis was performed using ultra-high-performance liquid chromatography. We found one oligomannose N-glycan structure from the plasma N-glycome and six IgG N-glycans, mainly revolving around the presence of bisecting N-acetylglucosamine, that were significantly different between the case and control groups. In addition, four plasma N-glycans, mostly oligomannose structures and a derived trait that was related to them, were found to be different in the patients who experienced an atrial fibrillation recurrence during the six-month follow-up. IgG N-glycosylation was extensively associated with the CHA2DS2-VASc score, confirming its previously reported associations with the conditions that make up the score. This is the first study looking at the N-glycosylation patterns in atrial fibrillation and warrants further investigation into the prospect of glycans as biomarkers for atrial fibrillation.
Collapse
|
12
|
Rudman N, Kaur S, Simunović V, Kifer D, Šoić D, Keser T, Štambuk T, Klarić L, Pociot F, Morahan G, Gornik O. Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of plasma proteins and IgGs, as well as the complement system, in the development of type 1 diabetes. Diabetologia 2023; 66:1071-1083. [PMID: 36907892 PMCID: PMC10163086 DOI: 10.1007/s00125-023-05881-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Dinko Šoić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Lucija Klarić
- Institute of Genetics and Cancer, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, University of Western Australia, Perth, WA, Australia.
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
13
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
14
|
Bheemareddy BR, Reddy PN, Vemparala K, Dirisala VR. Enhancement of effector functions of anti-CD20 monoclonal antibody by increased afucosylation in CHO cell line through cell culture medium optimization. J Genet Eng Biotechnol 2022; 20:141. [PMID: 36194313 PMCID: PMC9532503 DOI: 10.1186/s43141-022-00421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Background Recombinant therapeutic anti-CD20 monoclonal antibody (mAb) is used for the treatment of non-Hodgkin’s lymphoma, a common B cell lymphoma constituting 80% of all lymphomas. Anti-CD20 mAb contains an Fc-linked biantennary glycan. Although, anti-CD20 monoclonal antibodies are being increasingly used for immunotherapy, their efficacy is limited in a section of patients with drug resistance to immunotherapy. There is a need to improve the efficacy by increasing the effector functions, such as the antibody-dependent cellular cytotoxicity (ADCC) activity of anti-CD20 monoclonal antibodies. Results We developed a simple and cost-effective approach to enhance ADCC effector activity in an in-house developed clone of anti-CD20 monoclonal antibody by increasing afucosylation in a new clone of Chinese Hamster Ovary (CHO) cells using 8X uridine, manganese, and galactose (UMG) to modulate the osmolality of the medium. The purified anti-CD20 monoclonal antibody from 8X UMG-containing medium showed a 2-fold increase in afucose content and 203% ADCC activity in comparison to control antibody. Conclusions Our study reports enhanced ADCC activity by modulating afucosylation using osmolality by altering simple feed additives in the culture medium. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00421-5.
Collapse
Affiliation(s)
- Bala Reddy Bheemareddy
- R&D Division, Hetero Biopharma Limited, Jadcherla, Mahbubnagar, Telangana, 509301, India
| | - Prakash Narayana Reddy
- Microbiology Department, Dr. V.S. Krishna Government Degree College (Autonomous), Visakhapatnam, Andhra Pradesh, 530013, India
| | - Kranthi Vemparala
- R&D Division, Hetero Biopharma Limited, Jadcherla, Mahbubnagar, Telangana, 509301, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, 522213, India.
| |
Collapse
|
15
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
16
|
Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022; 79:509. [PMID: 36066630 PMCID: PMC9448690 DOI: 10.1007/s00018-022-04514-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.
Collapse
Affiliation(s)
- Dennis Y Gout
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lotte S Groen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,LUMICKS, Paalbergweg 3, 1105 AG, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands. .,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands. .,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands. .,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Narvekar A, Pardeshi A, Jain R, Dandekar P. ADCC enhancement: A conundrum or a boon to mAb therapy? Biologicals 2022; 79:10-18. [PMID: 36085129 DOI: 10.1016/j.biologicals.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/27/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
The ability of antibodies to distinctly identify the antigens is an important feature exploited by the scientific community for the treatment of various diseases. The therapeutic action of monoclonal antibodies (mAbs) is mediated along with the cells of the immune system, such as natural killer cells, T cells and macrophages. The two major mechanisms that govern the therapeutic efficacy of mAbs are the antibody dependent cell mediated cytotoxicity (ADCC) and the complement dependent cytotoxicity (CDC). Consequently, much of the research dedicated to improving their action is focussed on enhancing either of these mechanisms. This manuscript focuses on the strategies to enhance ADCC, for providing more efficacious mAb therapeutics. These approaches essentially bring about changes in the elements of ADCC mechanism, such as the effector cell or the antibody itself and thus favour an enhanced therapeutic response. Several technologies of ADCC enhancement have been developed, based on the success of various strategies advanced by the researchers. These technologies show success with a few antibody therapeutics while they do not work with others. This review presents a detailed overview on these strategies and presents perspectives regarding the same.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Apurva Pardeshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
18
|
Rudman N, Kifer D, Kaur S, Simunović V, Cvetko A, Pociot F, Morahan G, Gornik O. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 2022; 65:1315-1327. [PMID: 35622127 PMCID: PMC9283363 DOI: 10.1007/s00125-022-05703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Individual variation in plasma N-glycosylation has mainly been studied in the context of diabetes complications, and its role in type 1 diabetes onset is largely unknown. Our aims were to undertake a detailed characterisation of the plasma and IgG N-glycomes in patients with recent onset type 1 diabetes, and to evaluate their discriminative potential in risk assessment. METHODS In the first part of the study, plasma and IgG N-glycans were chromatographically analysed in a study population from the DanDiabKids registry, comprising 1917 children and adolescents (0.6-19.1 years) who were newly diagnosed with type 1 diabetes. A follow-up study compared the results for 188 of these participants with those for their 244 unaffected siblings. Correlation of N-glycan abundance with the levels and number of various autoantibodies (against IA-2, GAD, ZnT8R, ZnT8W), as well as with sex and age at diagnosis, were estimated by using general linear modelling. A disease predictive model was built using logistic mixed-model elastic net regression, and evaluated using a 10-fold cross-validation. RESULTS Our study showed that onset of type 1 diabetes was associated with an increase in the proportion of plasma and IgG high-mannose and bisecting GlcNAc structures, a decrease in monogalactosylation, and an increase in IgG disialylation. ZnT8R autoantibody levels were associated with higher IgG digalactosylated glycan with bisecting GlcNAc. Finally, an increase in the number of autoantibodies (which is a better predictor of progression to overt diabetes than the level of any individual antibody) was accompanied by a decrease in the proportions of some of the highly branched plasma N-glycans. Models including age, sex and N-glycans yielded notable discriminative power between children with type 1 diabetes and their healthy siblings, with AUCs of 0.915 and 0.869 for addition of plasma and IgG N-glycans, respectively. CONCLUSIONS/INTERPRETATION We defined N-glycan changes accompanying onset of type 1 diabetes, and developed a predictive model based on N-glycan profiles that could have valuable potential in risk assessment. Increasing the power of tests to identify individuals at risk of disease development would be a considerable asset for type 1 diabetes prevention trials.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, Herlev Hospital, Herlev, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, Perth, WA, Australia.
- University of Melbourne, Parkville, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
19
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
21
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Zhang JH, Shan LL, Liang F, Du CY, Li JJ. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:856049. [PMID: 35316944 PMCID: PMC8934426 DOI: 10.3389/fbioe.2022.856049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant antibodies are rapidly developing therapeutic agents; approximately 40 novel antibody molecules enter clinical trials each year, most of which are produced from Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the development of antibody drugs is how to perform high-level expression and production of recombinant antibodies. The high-efficiency expression and quality of recombinant antibodies in CHO cells is determined by multiple factors. This review provides a comprehensive overview of several state-of-the-art approaches, such as optimization of gene sequence of antibody, construction and optimization of high-efficiency expression vector, using antibody expression system, transformation of host cell lines, and glycosylation modification. Finally, the authors discuss the potential of large-scale production of recombinant antibodies and development of culture processes for biopharmaceutical manufacturing in the future.
Collapse
Affiliation(s)
- Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jun-He Zhang,
| | - Lin-Lin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Chen-Yang Du
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
23
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
24
|
Bordoloi D, Xu Z, Ho M, Purwar M, Bhojnagarwala P, Cassel J, Giron LB, Walker S, Kulkarni AJ, Ruiz ET, Choi J, Zaidi FI, Wu Y, Wang S, Patel A, Ramos S, Smith T, Kulp D, Ugen KE, Srinivasan A, Abdel-Mohsen M, Humeau L, Weiner DB, Muthumani K. Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacol Transl Sci 2021; 4:1349-1361. [PMID: 34396059 PMCID: PMC8353887 DOI: 10.1021/acsptsci.1c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Ziyang Xu
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Michelle Ho
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Mansi Purwar
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Pratik Bhojnagarwala
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Joel Cassel
- Molecular
Screening Facility, The Wistar Institute, Philadelphia, Pennsylvania 19104,United States
| | - Leila B. Giron
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Susanne Walker
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Abhijeet J Kulkarni
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Edgar Tello Ruiz
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Jihae Choi
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Faraz I. Zaidi
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Yuanhan Wu
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Shaoying Wang
- Synbio
Technologies, Monmouth Junction, New Jersey 08852, United States
| | - Ami Patel
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Stephanie Ramos
- Inovio
Pharmaceuticals, Plymouth
Meeting, Pennsylvania 19462, United States
| | - Trevor Smith
- Inovio
Pharmaceuticals, Plymouth
Meeting, Pennsylvania 19462, United States
| | - Daniel Kulp
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Kenneth E. Ugen
- Department
of Molecular Medicine, University of South
Florida Morsani College of Medicine, Tampa, Florida 33612, United States
| | | | - Mohamed Abdel-Mohsen
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Laurent Humeau
- Inovio
Pharmaceuticals, Plymouth
Meeting, Pennsylvania 19462, United States
| | - David B. Weiner
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| | - Kar Muthumani
- Vaccine
& Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania 19104-4205, United States
| |
Collapse
|
25
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Hargett AA, Marcella AM, Yu H, Li C, Orwenyo J, Battistel MD, Wang LX, Freedberg DI. Glycosylation States on Intact Proteins Determined by NMR Spectroscopy. Molecules 2021; 26:molecules26144308. [PMID: 34299586 PMCID: PMC8303171 DOI: 10.3390/molecules26144308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Protein glycosylation is important in many organisms for proper protein folding, signaling, cell adhesion, protein-protein interactions, and immune responses. Thus, effectively determining the extent of glycosylation in glycoprotein therapeutics is crucial. Up to now, characterizing protein glycosylation has been carried out mostly by liquid chromatography mass spectrometry (LC-MS), which requires careful sample processing, e.g., glycan removal or protein digestion and glycopeptide enrichment. Herein, we introduce an NMR-based method to better characterize intact glycoproteins in natural abundance. This non-destructive method relies on exploiting differences in nuclear relaxation to suppress the NMR signals of the protein while maintaining glycan signals. Using RNase B Man5 and RNase B Man9, we establish reference spectra that can be used to determine the different glycoforms present in heterogeneously glycosylated commercial RNase B.
Collapse
Affiliation(s)
- Audra A. Hargett
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Aaron M. Marcella
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Huifeng Yu
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Jared Orwenyo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Marcos D. Battistel
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Darón I. Freedberg
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
- Correspondence:
| |
Collapse
|
27
|
Prenc E, Pulanic D, Pucic-Bakovic M, Ugrina I, Desnica L, Milosevic M, Pirsl F, Mitchell S, Rose J, Vrhovac R, Nemet D, Lauc G, Pavletic SZ. Significant Associations of IgG Glycan Structures With Chronic Graft-Versus-Host Disease Manifestations: Results of the Cross-Sectional NIH Cohort Study. Front Immunol 2021; 12:633214. [PMID: 34335560 PMCID: PMC8317462 DOI: 10.3389/fimmu.2021.633214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/28/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a systemic alloimmune and autoimmune disorder and a major late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). The disease is characterized by an altered homeostasis of the humoral immune response. Immunoglobulin G (IgG) glycoprotein is the main effector molecule of the humoral immune response. Changes in IgG glycosylation are associated with a number of autoimmune diseases. IgG glycosylation analysis was done by the means of liquid chromatography in the National Institutes of Health (NIH) cohort of 213 cGvHD patients. The results showed statistically significant differences with regards to cGvHD NIH joint/fascia and skin score, disease activity and intensity of systemic immunosuppression. ROC analysis confirmed that IgG glycosylation increases specificity and sensitivity of models using laboratory parameters and markers of inflammation associated with cGvHD (eosinophil count, complement components C3 and C4 and inflammation markers: albumin, CRP and thrombocyte count). This research shows that IgG glycosylation may play a significant role in cGvHD pathology. Further research could contribute to the understanding of the disease biology and lead to the clinical biomarker development to allow personalized approaches to chronic GvHD therapy.
Collapse
Affiliation(s)
- Ema Prenc
- Fidelta Ltd., Translational Research and Alliances, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Pulanic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Internal Medicine, Division of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Ivo Ugrina
- Genos Ltd., Zagreb, Croatia.,Faculty of Science, University of Split, Split, Croatia
| | - Lana Desnica
- Department of Internal Medicine, Division of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milan Milosevic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Environmental and Occupational Health and Sports, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Filip Pirsl
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sandra Mitchell
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeremy Rose
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radovan Vrhovac
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Internal Medicine, Division of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Damir Nemet
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Internal Medicine, Division of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Stupin A, Cvetko A, Kralik G, Mihalj M, Šušnjara P, Kolobarić N, Ćurić ŽB, Lukinac AM, Kibel A, Selthofer-Relatić K, Jukić I, Stupin M, Kolar L, Kralik Z, Grčević M, Galović O, Mihaljević Z, Matić A, Juranić B, Gornik O, Lauc G, Drenjančević I. The effect of n-3 polyunsaturated fatty acids enriched hen eggs consumption on IgG and total plasma protein N-glycosylation in healthy individuals and cardiovascular patients. Glycobiology 2021; 31:1163-1175. [PMID: 34132788 DOI: 10.1093/glycob/cwab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE This study determined the effect of n-3 PUFAs enriched hen eggs consumption on IgG and total plasma protein N-glycan profiles and inflammatory biomarkers level in healthy individuals (N = 33) and cardiovascular (CV) patients (N = 21). MATERIALS AND METHODS Subjects were divided to Control-Healthy and Control-CV subgroups (consumed three regular hens' eggs/daily (249 mg n-3 PUFAs/day)), and n-3-PUFAs-Healthy and n-3-PUFAs-CV subgroups (consumed three n-3 PUFAs enriched hen eggs/daily (1053 mg n-3 PUFAs/day)) for 3 weeks. Serum free fatty acids profile and high-sensitivity C reactive protein (hsCRP), interleukin 6 and 10 (IL-6, IL-10) and tumor necrosis factor alpha were measured. Total plasma protein and IgG N-glycome have been profiled before and after dietary protocols. RESULTS Serum n-3 PUFAs concentration significantly increased following n-3 PUFAs hen eggs consumption in both n-3-PUFAs-Healthy and n-3-PUFAs-CV. IL-10 significantly increased in both Healthy subgroups, while no change occurred in CV subgroups. Derived IgG N-glycan traits: bisecting GlcNAc (B) significantly decreased in n-3-PUFAs-Healthy, while agalactosylation (G0) and core fucosylation (CF) significantly increased in Control-Healthy. Derived total plasma protein N-glycan traits: high branching glycans (HB), trigalactosylation (G3), tetragalactosylation (G4), trisialylation (S3), tetrasialylation (S4) and antennary fucosylation (AF) significantly decreased, while G0, monogalactosylation (G1), neutral glycans (S0), B, CF and oligomannose structures (OM) significantly increased in n-3 PUFAs-CV. Digalactosylation (G2) significantly decreased, and G0, G1, S0, disialylation (S2), B and CF significantly increased in Control-CV. CONCLUSIONS n-3 PUFAs consumption alters IgG N-glycan traits and IL-10 in healthy individuals, and total plasma protein N-glycan traits in CV patients, by shifting them toward less inflammatory N-glycosylation profile.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska ulica 57, HR-32100 Vinkovci, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology, Clinical Immunology and Allergology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Department of Internal Medicine, National Memorial Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Grčević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Brankica Juranić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia.,Departments of Nursing and Palliative Medicine, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia.,Genos Glycoscience Research Laboratory, HR-10000, Zagreb, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| |
Collapse
|
29
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
30
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
31
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
32
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
33
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Petrović T, Lauc G, Trbojević-Akmačić I. The Importance of Glycosylation in COVID-19 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:239-264. [PMID: 34495539 DOI: 10.1007/978-3-030-70115-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the major health problems worldwide. SARS-CoV-2 survival and virulence are shown to be impacted by glycans, covalently attached to proteins in a process of glycosylation, making glycans an area of interest in SARS-CoV-2 biology and COVID-19 infection. The SARS-CoV-2 uses its highly glycosylated spike (S) glycoproteins to bind to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. Viral glycosylation has wide-ranging roles in viral pathobiology, including mediating protein folding and stability, immune evasion, host receptor attachment, and cell entry. Modification of SARS-CoV-2 envelope membrane with glycans is important in host immune recognition and interaction between S and ACE2 glycoproteins. On the other hand, immunoglobulin G, a key molecule in immune response, shows a distinct glycosylation profile in COVID-19 infection and with increased disease severity. Hence, further studies on the role of glycosylation in SARS-CoV-2 infectivity and COVID-19 infection are needed for its successful prevention and treatment. This chapter focuses on recent findings on the importance of glycosylation in COVID-19 infection.
Collapse
Affiliation(s)
- Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
36
|
van der Horst HJ, Nijhof IS, Mutis T, Chamuleau MED. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers (Basel) 2020; 12:E3041. [PMID: 33086644 PMCID: PMC7603375 DOI: 10.3390/cancers12103041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has rapidly changed the field of cancer therapy. In 1997, the CD20-targeting mAb rituximab was the first mAb to be approved by the U.S. Food and Drug Administration (FDA) for treatment of cancer. Within two decades, dozens of mAbs entered the clinic for treatment of several hematological cancers and solid tumors, and numerous more are under clinical investigation. The success of mAbs as cancer therapeutics lies in their ability to induce various cytotoxic machineries against specific targets. These cytotoxic machineries include antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), which are all mediated via the fragment crystallizable (Fc) domain of mAbs. In this review article, we will outline the novel approaches of engineering these Fc domains of mAbs to enhance their Fc-effector function and thereby their anti-tumor potency, with specific focus to summarize their (pre-) clinical status for the treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM).
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, 1081 HV Amsterdam, The Netherlands; (I.S.N.); (T.M.); (M.E.D.C.)
| | | | | | | |
Collapse
|
37
|
Interferon-α alters host glycosylation machinery during treated HIV infection. EBioMedicine 2020; 59:102945. [PMID: 32827942 PMCID: PMC7452630 DOI: 10.1016/j.ebiom.2020.102945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background A comprehensive understanding of host factors modulated by the antiviral cytokine interferon-α (IFNα) is imperative for harnessing its beneficial effects while avoiding its detrimental side-effects during HIV infection. Cytokines modulate host glycosylation which plays a critical role in mediating immunological functions. However, the impact of IFNα on host glycosylation has never been characterized. Methods We assessed the impact of pegylated IFNα2a on IgG glycome, as well as CD8+ T and NK cell-surface glycomes, of 18 HIV-infected individuals on suppressive antiretroviral therapy. We linked these glycomic signatures to changes in inflammation, CD8+ T and NK cell phenotypes, and HIV DNA. Findings We identified significant interactions that support a model in which a) IFNα increases the proportion of pro-inflammatory, bisecting GlcNAc glycans (known to enhance FcγR binding) within the IgG glycome, which in turn b) increases inflammation, which c) leads to poor CD8+ T cell phenotypes and poor IFNα-mediated reduction of HIV DNA. Examining cell-surface glycomes, IFNα increases levels of the immunosuppressive GalNAc-containing glycans (T/Tn antigens) on CD8+ T cells. This induction is associated with lower HIV-gag-specific CD8+ T cell functions. Last, IFNα increases levels of fucose on NK cells. This induction is associated with higher NK functions upon K562 stimulation. Interpretation IFNα causes host glycomic alterations that are known to modulate immunological responses. These alterations are associated with both detrimental and beneficial consequences of IFNα. Manipulating host glycomic interactions may represent a strategy for enhancing the positive effects of IFNα while avoiding its detrimental side-effects. Funding NIH grants R21AI143385, U01AI110434.
Collapse
|
38
|
Kishimoto Y, Okada F, Maesako T, Yamamoto S, Kinoshita M, Hayakawa T, Suzuki S. Analysis of 2-aminopyridine labeled glycans by dual-mode online solid phase extraction for hydrophilic interaction and reversed-phase liquid chromatography. J Chromatogr A 2020; 1625:461194. [PMID: 32709309 DOI: 10.1016/j.chroma.2020.461194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Quantitative analysis of glycans released from glycoproteins using high-performance liquid chromatography (HPLC) requires fluorescent tag labeling to enhance sensitivity and selectivity. However, the methods required to remove large amounts of excess labeling reagents from the reaction mixture are time-consuming. Furthermore, these methods, including solvent extraction and solid phase extraction (SPE), often impair quantitative analysis. Here, we developed an online sample cleanup procedure for HPLC analysis of 2-aminopyridine (AP)-labeled glycans using a six-port/two-way valve and two small columns: one packed with a strong cation exchange resin (SCX) and the other comprising ODS silica gel. AP-labeled glycans delivered from an injection port were separated from excess AP by passing through an SCX column (4.6 mm i.d., 1 cm long) regulated to 40°C. The AP-labeled glycans were trapped on an ODS column (4.6 mm i.d., 1 cm long) to further separate them from inorganic contaminants. By changing the valve position after 2 min to connect the ODS column to an analysis column, AP-labeled glycans trapped in the ODS column were eluted with an acetonitrile-containing eluent followed by hydrophilic interaction liquid chromatography (HILIC) separation on an amide column or reversed-phase mode separation on a C30 column. This method was successfully used to analyze N-linked glycans released from several glycoprotein samples.
Collapse
Affiliation(s)
- Yuka Kishimoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Fuka Okada
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Tomohiro Maesako
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Takao Hayakawa
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
39
|
Kido M, Idogaki H, Nishikawa K, Omasa T. Low-concentration staurosporine improves recombinant antibody productivity in Chinese hamster ovary cells without inducing cell death. J Biosci Bioeng 2020; 130:525-532. [PMID: 32800439 DOI: 10.1016/j.jbiosc.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are used as host cells for biopharmaceutical production, including monoclonal antibodies (mAbs). Arresting the cell cycle with chemical compounds is an effective approach to improve biopharmaceutical productivity. In a previous study, potential new cell cycle-arresting compounds were screened from marine-derived microorganism culture extracts, and it was suggested that staurosporine might improve mAb productivity in CHO cells via cell cycle arrest. The purpose of this study was to demonstrate the effectiveness of staurosporine as a cell-cycle arresting compound to improve mAb productivity. The optimal staurosporine concentration range was initially investigated using batch cultures. Thereafter, the effects on the culture profile and mAb productivity were evaluated using fed-batch cultures. Staurosporine at concentrations ≥10 nM induced cell death, but at concentrations ≤5 nM did not. In the range of 2-4 nM, cell growth was inhibited, whereas the specific production rate (Qp) and cell longevity were improved in a dose-dependent manner. The Qp and maximum mAb concentration with 4 nM staurosporine improved by 36.3 and 5.2%, respectively, compared to those with control conditions. Cell viability post-culture without staurosporine was 40.0 ± 0.3%, whereas with 4 nM staurosporine, it was 90.1 ± 1.0%. Flow cytometric analysis indicated cell-cycle arrest at the G1/G0 phase with 4 nM staurosporine addition. The present study highlighted the efficacy of staurosporine in improving mAb production by causing cell-cycle arrest. Further research into staurosporine analogs and how to use them will lead to development of more effective industrial production technologies of biopharmaceuticals.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division, OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
40
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
42
|
Principles of N-Linked Glycosylation Variations of IgG-Based Therapeutics: Pharmacokinetic and Functional Considerations. Antibodies (Basel) 2020; 9:antib9020022. [PMID: 32532067 PMCID: PMC7345016 DOI: 10.3390/antib9020022] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The development of recombinant therapeutic proteins has been a major revolution in modern medicine. Therapeutic-based monoclonal antibodies (mAbs) are growing rapidly, providing a potential class of human pharmaceuticals that can improve the management of cancer, autoimmune diseases, and other conditions. Most mAbs are typically of the immunoglobulin G (IgG) subclass, and they are glycosylated at the conserved asparagine position 297 (Asn-297) in the CH2 domain of the Fc region. Post-translational modifications here account for the observed high heterogeneity of glycoforms that may or not impact the stability, pharmacokinetics (PK), efficacy, and immunogenicity of mAbs. These modifications are also critical for the Fc receptor binding, and consequently, key antibody effector functions including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Moreover, mAbs produced in non-human cells express oligosaccharides that are not normally found in serum IgGs might lead to immunogenicity issues when administered to patients. This review summarizes our understanding of the terminal sugar residues, such as mannose, sialic acids, fucose, or galactose, which influence therapeutic mAbs either positively or negatively in this regard. This review also discusses mannosylation, which has significant undesirable effects on the PK of glycoproteins, causing a decreased mAbs’ half-life. Moreover, terminal galactose residues can enhance CDC activities and Fc–C1q interactions, and core fucose can decrease ADCC and Fc–FcγRs binding. To optimize the therapeutic use of mAbs, glycoengineering strategies are used to reduce glyco-heterogeneity of mAbs, increase their safety profile, and improve the therapeutic efficacy of these important reagents.
Collapse
|
43
|
Singh SS, Heijmans R, Meulen CKE, Lieverse AG, Gornik O, Sijbrands EJG, Lauc G, van Hoek M. Association of the IgG N-glycome with the course of kidney function in type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001026. [PMID: 32349995 PMCID: PMC7213753 DOI: 10.1136/bmjdrc-2019-001026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Inflammatory processes are thought to be involved in kidney function decline in individuals with type 2 diabetes. Glycosylation of immunoglobulin G (IgG) is an important post-translation process affecting the inflammatory potential of IgG. We investigated the prospective relationship between IgG N-glycosylation patterns and kidney function in type 2 diabetes. RESEARCH DESIGN AND METHODS In the DiaGene study, an all-lines-of-care case-control study (n=1886) with mean prospective follow-up of 7.0 years, the association between 58 IgG N-glycan profiles and estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) per year and during total follow-up was analyzed. Models were adjusted for clinical variables and multiple comparisons. RESULTS Eleven traits were significantly associated with eGFR change per year. Bisecting GlcNAc in fucosylated and fucosylated disialylated structures and monosialylation of fucosylated digalactosylated structures were associated with a faster decrease of eGFR. Fucosylation of neutral and monogalactosylated structures was associated with less eGFR decline per year. No significant associations between IgG glycans and ACR were found. CONCLUSIONS In type 2 diabetes, we found IgG N-glycosylation patterns associated with a faster decline of kidney function, reflecting a pro-inflammatory state of IgG. eGFR, but not ACR, was associated with IgG glycans, which suggests these associations may represent renal macroangiopathy rather than microvascular disease.
Collapse
Affiliation(s)
- Sunny S Singh
- Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | - Ralph Heijmans
- Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | | | - Aloysius G Lieverse
- Internal Medicine, Maxima Medical Centre, Eindhoven, Noord-Brabant, Netherlands
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mandy van Hoek
- Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| |
Collapse
|
44
|
Lueangsakulthai J, Sah BNP, Scottoline BP, Dallas DC. Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model. Nutrients 2020; 12:E621. [PMID: 32120792 PMCID: PMC7146391 DOI: 10.3390/nu12030621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
To prevent infectious diarrhea in infants, orally-supplemented enteric pathogen-specific recombinant antibodies would need to resist degradation in the gastrointestinal tract. Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used as a model to assess the digestion of neutralizing antibodies in infant digestion. The aim was to determine the remaining binding activity of RSV F protein-specific monoclonal and naturally-occurring immunoglobulins (Ig) in different isoforms (IgG, IgA, and sIgA) across an ex vivo model of infant digestion. RSV F protein-specific monoclonal immunoglobulins (IgG, IgA, and sIgA) and milk-derived naturally-occurring Ig (IgG and sIgA/IgA) were exposed to an ex vivo model of digestion using digestive samples from infants (gastric and intestinal samples). The survival of each antibody was tested via an RSV F protein-specific ELISA. Ex vivo gastric and intestinal digestion degraded palivizumab IgG, IgA, and sIgA (p < 0.05). However, the naturally-occurring RSV F protein-specific IgG and sIgA/IgA found in human milk were stable across gastric and intestinal ex vivo digestion. The structural differences between recombinant and naturally-occurring antibodies need to be closely examined to guide future design of recombinant antibodies with increased stability for use in the gastrointestinal tract.
Collapse
Affiliation(s)
- Jiraporn Lueangsakulthai
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (J.L.); (B.N.P.S.)
| | - Baidya Nath P. Sah
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (J.L.); (B.N.P.S.)
| | - Brian P. Scottoline
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR 97239, USA;
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (J.L.); (B.N.P.S.)
| |
Collapse
|
45
|
A MUC16 IgG Binding Activity Selects for a Restricted Subset of IgG Enriched for Certain Simian Immunodeficiency Virus Epitope Specificities. J Virol 2020; 94:JVI.01246-19. [PMID: 31776284 PMCID: PMC7022352 DOI: 10.1128/jvi.01246-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023] Open
Abstract
We have recently shown that MUC16, a component of the glycocalyx of some mucosal barriers, has elevated binding to the G0 glycoform of the Fc portion of IgG. Therefore, IgG from patients chronically infected with human immunodeficiency virus (HIV), who typically exhibit increased amounts of G0 glycoforms, showed increased MUC16 binding compared to uninfected controls. Using the rhesus macaque simian immunodeficiency virus SIVmac251 model, we can compare plasma antibodies before and after chronic infection. We find increased binding of IgG to MUC16 after chronic SIV infection. Antibodies isolated for tight association with MUC16 (MUC16-eluted antibodies) show reduced FcγR engagement and antibody-dependent cellular cytotoxicity (ADCC) activity. The glycosylation profile of these IgGs was consistent with a decrease in FcγR engagement and subsequent ADCC effector function, as they contain a decrease in afucosylated bisecting glycoforms that preferentially bind FcγRs. Testing of the SIV antigen specificity of IgG from SIV-infected macaques revealed that the MUC16-eluted antibodies were enriched for certain specific epitopes, including regions of gp41 and gp120. This enrichment of specific antigen responses for fucosylated bisecting glycoforms and the subsequent association with MUC16 suggests that the immune response has the potential to direct specific epitope responses to localize to the glycocalyx through interaction with this specific mucin.IMPORTANCE Understanding how antibodies are distributed in the mucosal environment is valuable for developing a vaccine to block HIV infection. Here, we study an IgG binding activity in MUC16, potentially representing a new IgG effector function that would concentrate certain antibodies within the glycocalyx to trap pathogens before they can reach the underlying columnar epithelial barriers. These studies reveal that rhesus macaque IgG responses during chronic SIV infection generate increased antibodies that bind MUC16, and interestingly, these MUC16-tethered antibodies are enriched for binding to certain antigens. Therefore, it may be possible to direct HIV vaccine-generated responses to associate with MUC16 and enhance the antibody's ability to mediate immune exclusion by trapping virions within the glycocalyx and preventing the virus from reaching immune target cells within the mucosa. This concept will ultimately have to be tested in the rhesus macaque model, which is shown here to have MUC16-targeted antigen responses.
Collapse
|
46
|
Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy. Sci Rep 2020; 10:1464. [PMID: 32001734 PMCID: PMC6992666 DOI: 10.1038/s41598-019-57393-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Anti-D immunoglobulin (Anti-D Ig) prophylaxis prevents haemolytic disease of the fetus and newborn. Monoclonal IgG anti-Ds (mAb-Ds) would enable unlimited supplies but have differed in efficacy in FcγRIIIa-mediated ADCC assays and clinical trials. Structural variations of the oligosaccharide chains of mAb-Ds are hypothesised to be responsible. Quantitative data on 12 Fc-glycosylation features of 23 mAb-Ds (12 clones, 5 produced from multiple cell lines) and one blood donor-derived anti-D Ig were obtained by HPLC and mass spectrometry using 3 methods. Glycosylation of mAb-Ds from human B-lymphoblastoid cell lines (B) was similar to anti-D Ig although fucosylation varied, affecting ADCC activity. In vivo, two B mAb-Ds with 77–81% fucosylation cleared red cells and prevented D-immunisation but less effectively than anti-D Ig. High fucosylation (>89%) of mouse-human heterohybridoma (HH) and Chinese hamster ovary (CHO) mAb-Ds blocked ADCC and clearance. Rat YB2/0 mAb-Ds with <50% fucosylation mediated more efficient ADCC and clearance than anti-D Ig. Galactosylation of B mAb-Ds was 57–83% but 15–58% for rodent mAb-Ds. HH mAb-Ds had non-human sugars. These data reveal high galactosylation like anti-D Ig (>60%) together with lower fucosylation (<60%) as safe features of mAb-Ds for mediating rapid red cell clearance at low doses, to enable effective, inexpensive prophylaxis.
Collapse
|
47
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
49
|
The potential of engineered antibodies for HIV-1 therapy and cure. Curr Opin Virol 2019; 38:70-80. [PMID: 31421319 DOI: 10.1016/j.coviro.2019.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) are currently under investigation as a therapy for HIV-1 infection and recent clinical trials have shown prolonged viral suppression by bnAbs during antiretroviral treatment interruption. Interestingly, these bnAbs also showed the ability to activate the host immune system to clear HIV-1 infected cells. There are many possibilities to further increase the potential efficacy of bnAbs. Most notably, Fc domain engineering to improve half-life and increase engagement of effector cells will augment two advantages of bnAbs. Moreover, antibody engineering can improve affinity and recognition of conserved epitopes and allows the combination of multiple epitope specificities in a single molecule. These increasingly potent and broad antibodies may prove valuable as alternative HIV-1 therapeutic and possibly in curative approaches.
Collapse
|
50
|
Chen Z, Yang Y, Liu LL, Lundqvist A. Strategies to Augment Natural Killer (NK) Cell Activity against Solid Tumors. Cancers (Basel) 2019; 11:cancers11071040. [PMID: 31340613 PMCID: PMC6678934 DOI: 10.3390/cancers11071040] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a crucial role to prevent local growth and dissemination of cancer. Therapies based on activating the immune system can result in beneficial responses in patients with metastatic disease. Treatment with antibodies targeting the immunological checkpoint axis PD-1 / PD-L1 can result in the induction of anti-tumor T cell activation leading to meaningful long-lasting clinical responses. Still, many patients acquire resistance or develop dose-limiting toxicities to these therapies. Analysis of tumors from patients who progress on anti-PD-1 treatment reveal defective interferon-signaling and antigen presentation, resulting in immune escape from T cell-mediated attack. Natural killer (NK) cells are innate lymphocytes that can kill tumor cells without prior sensitization to antigens and can be activated to kill tumor cells that have an impaired antigen processing and presentation machinery. Thus, NK cells may serve as useful effectors against tumor cells that have become resistant to classical immune checkpoint therapy. Various approaches to activate NK cells are being increasingly explored in clinical trials against cancer. While clinical benefit has been demonstrated in patients with acute myeloid leukemia receiving haploidentical NK cells, responses in patients with solid tumors are so far less encouraging. Several hurdles need to be overcome to provide meaningful clinical responses in patients with solid tumors. Here we review the recent developments to augment NK cell responses against solid tumors with regards to cytokine therapy, adoptive infusion of NK cells, NK cell engagers, and NK cell immune checkpoints.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Lisa L Liu
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| |
Collapse
|