1
|
Pikulngam A, Talungchit S, Ratanasathien S, Saiprasert P, Promphet P, Tansakul C. Synthesis and Characterization of New Hydrolytic Resistant Antibacterial Pyridinium and N-Alkyl Ammonium-Containing Methacrylamides for Dental Resin Adhesives. Chem Asian J 2025:e01643. [PMID: 40492335 DOI: 10.1002/asia.202401643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/23/2025] [Accepted: 06/03/2025] [Indexed: 06/12/2025]
Abstract
Resin-based composites have relatively short lifetime mainly attributed to hydrolytic and enzymatic degradation of easily hydrolyzed methacrylates in the dental resin adhesive. To address these problems, a series of antibacterial and hydrolytic resistant methacrylamide monomers containing quaternary ammonium salts and long alkyl chains, MAPs, MADAs, and BMADPB were synthesized. Synthesized methacrylamides exhibited antibacterial activities against S. mutans and E. faecalis. Factors that affect the antibacterial activities are intermolecular hydrogen bonding and alkyl chain length. Some synthesized methacrylamides expressed equal or lower cytotoxic activities against mouse dental papilla cell lines than those of bis-GMA and MDPB, common methacylates used in dental resin adhesives. Degree of conversion at 30 s, the clinically relevant exposure time for tooth restoration, of methacrylamides (51%-83%) were lower than that of the reference antibacterial methacrylate, MDPB (98%) due to lower reactivity of methacrylamide compared with methacrylate. Addition of selected methacrylamides in the resins remarkably improved flexural modulus after water storage. Hydrolysis experiment in acidic condition of the synthesized monomers and their corresponding polymers proved their hydrolytic stability. Antibacterial activities, cell viability, mechanical strength, and hydrolytic stability of new methacrylamides represent alternative antibacterial and durable monomers for resin adhesives.
Collapse
Affiliation(s)
- Arthit Pikulngam
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supitcha Talungchit
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Somjin Ratanasathien
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Piangkwan Saiprasert
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Prompat Promphet
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chittreeya Tansakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Tian Y, Bao X, Wang S, Tang C, Wu N, Li G, Ren K, Yin J, Yan S, Xu G. A biomimetic nanofiber composite hydrogel with tissue adhesion, self-healing and antibacterial ability for infected wound healing. Acta Biomater 2025:S1742-7061(25)00243-0. [PMID: 40185462 DOI: 10.1016/j.actbio.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Skin injuries represent a significant clinical challenge, as conventional dressings frequently induce secondary trauma and microbial infiltration due to suboptimal barrier properties, ultimately delaying tissue repair. Ideal wound dressings should not only replicate the structure of native skin tissue but also create an environment conducive to cell viability. In this study, an injectable nanofiber composite self-healing hydrogel was developed for treating infected wounds. The antimicrobial properties of the hydrogel were achieved through the adsorption of branched polyethyleneimine (PEI) on gelatin fibers, while its self-healing capabilities were enhanced via Schiff base reactions and its tissue adhesion was strengthened by the incorporation of dopamine. Results demonstrated that the hydrogel exhibited strong biocompatibility and antimicrobial activity, promoted macrophage polarization towards the M2 phenotype, effectively suppressed inflammation, and facilitated wound healing in an infected wound model. STATEMENT OF SIGNIFICANCE: Wound infections pose a significant clinical challenge, often impeding healing and, in severe cases, leading to ulceration or life-threatening complications. In this study, a gelatin nanofiber composite hydrogel (PGF@ALG/PLGA hydrogel) functionalized with branched polyethyleneimine (PEI) was developed to address infected wounds through a biomimetic structure and enhanced pro-healing properties. The gelatin nanofibers within the hydrogel matrix facilitated electrostatic immobilization of PEI, effectively mitigating its inherent cytotoxicity by restricting free cationic charge exposure while ensuring localized surface enrichment. The resulting hydrogel exhibited robust tissue adhesion and autonomous self-healing capability. In infected wound models, the PEI-modified nanofibers within PGF@ALG/PLGA hydrogels demonstrated obvious antibacterial efficacy and promoted macrophage polarization to the M2 phenotype, synergistically accelerating the transition from the inflammatory phase to tissue regeneration. These findings underscore the therapeutic potential of PGF@ALG/PLGA hydrogel as a multifunctional platform for managing chronic infected wounds.
Collapse
Affiliation(s)
- Yinghao Tian
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| | - Shunmin Wang
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China
| | - Chen Tang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
3
|
Zhao Y, Xue Y, Wang C, Zhao Z, Cui R, Zhu B. Antibacterial poly(ethyl methacrylate) surfaces constructed by facile amination with polyethyleneimine of different architectures. Colloids Surf B Biointerfaces 2025; 248:114458. [PMID: 39724827 DOI: 10.1016/j.colsurfb.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Polymethacrylate and its derivatives are widely used in food industry and biomedical applications for their plasticity, biocompatibility and optical transparency. However, susceptibility to bacterial growth on their surfaces limits their applications. In this study, linear and branched polyethyleneimine (PEI) molecules were grafted onto poly(ethyl methacrylate) (PEMA) via aminolysis using a simple one-step method to enhance the antibacterial properties of PEMA films. PEI-modified PEMA films were characterized by ATR-FTIR, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA). The modified films exhibited optimal bactericidal efficiency of 98.0 % against Escherichia coli (E. coli) and over 99.9 % against Staphylococcus aureus (S. aureus). Furthermore, hydrolysis was found to contribute to anchoring PEI onto PEMA as well. Though branched PEI exhibited a higher grafting amount than the linear ones under same conditions, PEMA modified with linear PEI presented a similar or even higher antibacterial efficiency than those grafted with branched PEI. Overall, PEI-grafted PEMA films prepared with simple one-step method exhibit effective antibacterial properties and good biocompatibilities, making them promising candidates for biomedical devices and other applications.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
4
|
Das P, Ganguly S, Marvi PK, Hassan S, Sherazee M, Mahana M, (Shirley) Tang X, Srinivasan S, Rajabzadeh AR. Silicene-Based Quantum Dots Nanocomposite Coated Functional UV Protected Textiles With Antibacterial and Antioxidant Properties: A Versatile Solution for Healthcare and Everyday Protection. Adv Healthc Mater 2025; 14:e2404911. [PMID: 39757484 PMCID: PMC11874647 DOI: 10.1002/adhm.202404911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 01/07/2025]
Abstract
The predominant adverse health effects in care delivery result from hospital-acquired (nosocomial) infections, which impose a substantial financial burden on global healthcare systems. Integrating contact-killing antibacterial action, gas permeability, and antioxidant properties into textile coatings offers a transformative solution, significantly enhancing both medical and everyday protective applications. This study presents an innovative, pollution-free physical compounding method for creating a fluorescent biopolymer composite embedded with silicene-based heteroatom-doped carbon quantum dots for the production of functional textiles. The resulting coated fabric shows superior ultraviolet (UV) protection behavior (UVA and UVB), thermal stability, breathability, mechanical strength, and antioxidant capabilities as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) experiment (>78%) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS assay (>90%). Rigorous testing against both gram positive and gram negative bacteria confirms that the coated fabric has excellent antibacterial activity. Results from time-dependent antibacterial assays indicate that the nanocomposite can markedly inhibit bacterial proliferation within a few hours. Molecular dynamics modeling, in conjunction with experimental investigations, is employed to elucidate the intermolecular interactions influencing the components of the treated cotton fabrics. The ongoing research can result in the creation of cost-effective smart textile substrates aimed at inhibiting microbial contamination in healthcare and medical applications, possibly rendering them commercially viable.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
| | - Shiza Hassan
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L7Canada
| | - Masoomeh Sherazee
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
| | - Mohamed Mahana
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonOntarioL8S 4L7Canada
| |
Collapse
|
5
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2025; 14:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
6
|
Ul Haq I, Pinto Vieira R, Lima WG, de Lima ME, Krukiewicz K. Antimicrobial polymers: elucidating the role of functional groups on antimicrobial activity. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 31:325-344. [DOI: 10.1080/25765299.2024.2366543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Pinto Vieira
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - William Gustavo Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina da Faculdade, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade de Saúde, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
7
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
8
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Alsawaf A, Lehnen AC, Dolynchuk O, Bapolisi AM, Beresowski C, Böker A, Bald I, Hartlieb M. Antibacterial Nanoplatelets via Crystallization-Driven Self-Assembly of Poly(l-lactide)-Based Block Copolymers. Biomacromolecules 2024; 25:6103-6114. [PMID: 39105693 PMCID: PMC11388454 DOI: 10.1021/acs.biomac.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Membrane-active antimicrobial materials are promising substances to fight antimicrobial resistance. Herein, crystallization-driven self-assembly (CDSA) is employed for the preparation of nanoparticles with different morphologies, and their bioactivity is explored. Block copolymers (BCPs) featuring a crystallizable and antimicrobial block were synthesized using a combination of ring-opening and photoiniferter RAFT polymerizations. Subsequently formed nanostructures formed by CDSA could not be deprotected without degradation of the structures. CDSA of deprotected BCPs yielded 2D diamond-shaped nanoplatelets in MeOH, while spherical nanostructures were observed for assembly in water. Platelets exhibited improved antibacterial capabilities against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) compared to their spherical counterparts. The absence of hemolytic activity leads to the excellent selectivity of platelets. A mechanism based on membrane permeabilization was confirmed via dye-leakage assays. This study emphasized the impact of the shape of nanostructures on their interaction with bacterial cells and how a controlled assembly can improve bioactivity.
Collapse
Affiliation(s)
- Ahmad Alsawaf
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Anne-Catherine Lehnen
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Oleksandr Dolynchuk
- Experimental
Polymer Physics, Martin Luther University
Halle-Wittenberg, Von-Danckelmann,
Platz 3, 06120 Halle, Germany
| | - Alain M. Bapolisi
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Christina Beresowski
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alexander Böker
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Matthias Hartlieb
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Santoro O, Izzo L. Antimicrobial Polymer Surfaces Containing Quaternary Ammonium Centers (QACs): Synthesis and Mechanism of Action. Int J Mol Sci 2024; 25:7587. [PMID: 39062830 PMCID: PMC11277267 DOI: 10.3390/ijms25147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic polymer surfaces provide an excellent opportunity for developing materials with inherent antimicrobial and/or biocidal activity, therefore representing an answer to the increasing demand for antimicrobial active medical devices. So far, biologists and material scientists have identified a few features of bacterial cells that can be strategically exploited to make polymers inherently antimicrobial. One of these is represented by the introduction of cationic charges that act by killing or deactivating bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). Among the possible cationic functionalities, the antimicrobial activity of polymers with quaternary ammonium centers (QACs) has been widely used for both soluble macromolecules and non-soluble materials. Unfortunately, most information is still unknown on the biological mechanism of action of QACs, a fundamental requirement for designing polymers with higher antimicrobial efficiency and possibly very low toxicity. This mini-review focuses on surfaces based on synthetic polymers with inherently antimicrobial activity due to QACs. It will discuss their synthesis, their antimicrobial activity, and studies carried out so far on their mechanism of action.
Collapse
Affiliation(s)
| | - Lorella Izzo
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
11
|
Panthi VK, Fairfull-Smith KE, Islam N. Ciprofloxacin-Loaded Inhalable Formulations against Lower Respiratory Tract Infections: Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2024; 16:648. [PMID: 38794310 PMCID: PMC11125790 DOI: 10.3390/pharmaceutics16050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
12
|
Huan C, Yan P, Yang F, Pan H, Hou Y, Jiang L, Yao J, Chen H, Li J, Gao S. The 25-kDa linear polyethylenimine exerts specific antiviral activity against pseudorabies virus through interferencing its adsorption via electrostatic interaction. J Virol 2024; 98:e0000724. [PMID: 38305153 PMCID: PMC10949462 DOI: 10.1128/jvi.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ping Yan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Fan Yang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Yutong Hou
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haozhen Chen
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiarun Li
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Biscari G, Fan Y, Namata F, Fiorica C, Malkoch M, Palumbo FS, Pitarresi G. Antibacterial Broad-Spectrum Dendritic/Gellan Gum Hybrid Hydrogels with Rapid Shape-Forming and Self-Healing for Wound Healing Application. Macromol Biosci 2023; 23:e2300224. [PMID: 37590124 DOI: 10.1002/mabi.202300224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Treating wound infections is a difficult task ever since pathogenic bacteria started to develop resistance to common antibiotics. The present study develops hybrid hydrogels based on the formation of a polyelectrolyte complex between the anionic charges of dopamine-functionalized Gellan Gum (GG-DA) and the cationic moieties of the TMP-G2-alanine dendrimer. The hydrogels thus obtained can be doubly crosslinked with CaCl2 , obtaining solid hydrogels. Or, by oxidizing dopamine to GG-DA, possibly causing further interactions such as Schiff Base and Michael addition to take place, hydrogels called injectables can be obtained. The latter have shear-thinning and self-healing properties (efficiency up to 100%). Human dermal fibroblasts (HDF), human epidermal keratinocytes (HaCaT), and mouse monocyte cells (RAW 264.7), after incubation with hydrogels, in most cases show cell viability up to 100%. Hydrogels exhibit adhesive behavior on various substrates, including porcine skin. At the same time, the dendrimer serves to crosslink the hydrogels and endows them with excellent broad-spectrum microbial eradication activity within four hours, evaluated using Staphylococcus aureus 2569 and Escherichia coli 178. Using the same GG-DA/TMP-G2-alanine ratios hybrid hydrogels with tunable properties and potential for wound dressing applications can be produced.
Collapse
Affiliation(s)
- Giuseppina Biscari
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Yanmiao Fan
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Faridah Namata
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Calogero Fiorica
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Michael Malkoch
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | | | - Giovanna Pitarresi
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| |
Collapse
|
15
|
Madani M, Borandeh S, Teotia AK, Seppälä JV. Direct and Indirect Cationization of Cellulose Nanocrystals: Structure-Properties Relationship and Virus Capture Activity. Biomacromolecules 2023; 24:4397-4407. [PMID: 36464847 PMCID: PMC10565721 DOI: 10.1021/acs.biomac.2c01045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Due to increasing public concern over hygiene, there have been many studies investigating antimicrobial and antiviral agents recently. With the aim of developing biobased virucidal/virus capture agents, we report a chemical modification of the cellulose nanocrystals (CNCs) surface with poly(2-dimethylamino) ethyl acrylate) methyl chloride quaternary salt (Q-PDMAEA) to introduce the positively charged functional groups. The surface of CNCs was modified through direct and indirect graft polymerization. Subsequently, the direct and indirect cationization effect on the degree of functionalization, thermal stability, crystallinity, and antiviral activity of CNCs was investigated. Indirect cationization produced the highest degree of polymer grafting, increasing particle size and thermal stability. Further, the modified CNCs were tested for their ability to capture nonenveloped bacteriophages PhiX174 (ΦX174) and MS2. We observed a significant (>4.19 log10) reduction in total viral load by specific functionalized CNCs. However, the activity depended on the structure of functional groups, surface charge density, and the type of virus under study. Overall, the direct and indirect cationization of CNC leads to biobased agents with immobilized cationic charge, with good virus capture activity. Such agents can be used for various applications including textiles, packaging, wastewater treatment, etc.
Collapse
Affiliation(s)
- Maryam Madani
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Arun Kumar Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Jukka V. Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| |
Collapse
|
16
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
17
|
Tang Y, Xu H, Wang X, Dong S, Guo L, Zhang S, Yang X, Liu C, Jiang X, Kan M, Wu S, Zhang J, Xu C. Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology 2023; 21:300. [PMID: 37633883 PMCID: PMC10463510 DOI: 10.1186/s12951-023-02025-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023] Open
Abstract
Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shichen Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021 Jilin China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
18
|
Zaia R, Quinto GM, Camargo LCS, Ribeiro RT, Carmona-Ribeiro AM. Transient Coatings from Nanoparticles Achieving Broad-Spectrum and High Antimicrobial Performance. Pharmaceuticals (Basel) 2023; 16:816. [PMID: 37375764 DOI: 10.3390/ph16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cationic and hydrophilic coatings based on casting and drying water dispersions of two different nanoparticles (NPs) onto glass are here described and evaluated for antimicrobial activity. Discoid cationic bilayer fragments (BF) surrounded by carboxy-methylcellulose (CMC) and poly (diallyl dimethyl ammonium) chloride (PDDA) NPs and spherical gramicidin D (Gr) NPs dispersed in water solution were cast onto glass coverslips and dried, forming a coating quantitatively evaluated against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. From plating and colony forming units (CFU) counting, all strains interacting for 1 h with the coatings lost viability from 105 to 106, to zero CFU, at two sets of Gr and PDDA doses: 4.6 and 25 μg, respectively, or, 0.94 and 5 μg, respectively. Combinations produced broad spectrum, antimicrobial coatings; PDDA electrostatically attached to the microbes damaging cell walls, allowing Gr NPs interaction with the cell membrane. This concerted action promoted optimal activity at low Gr and PDDA doses. Further washing and drying of the deposited dried coatings showed that they were washed out so that antimicrobial activity was no longer present on the glass surface. Significant applications in biomedical materials can be foreseen for these transient coatings.
Collapse
Affiliation(s)
- Rachel Zaia
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo 05508-000, Brazil
| | - Giovanna M Quinto
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo 05508-000, Brazil
| | - Livia C S Camargo
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo 05508-000, Brazil
| | - Rodrigo T Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo 05508-000, Brazil
| | - Ana M Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo 05508-000, Brazil
| |
Collapse
|
19
|
Stancheva R, Paunova-Krasteva T, Topouzova-Hristova T, Stoitsova S, Petrov P, Haladjova E. Ciprofloxacin-Loaded Mixed Polymeric Micelles as Antibiofilm Agents. Pharmaceutics 2023; 15:pharmaceutics15041147. [PMID: 37111633 PMCID: PMC10145464 DOI: 10.3390/pharmaceutics15041147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, mixed polymeric micelles (MPMs) based on a cationic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA29-b-PCL70-b-PDMAEMA29) and a non-ionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO99-b-PPO67-b-PEO99) triblock copolymers, blended at different molar ratios, were developed. The key physicochemical parameters of MPMs, including size, size distribution, and critical micellar concentration (CMC), were evaluated. The resulting MPMs are nanoscopic with a hydrodynamic diameter of around 35 nm, and the ζ-potential and CMC values strongly depend on the MPM's composition. Ciprofloxacin (CF) was solubilized by the micelles via hydrophobic interaction with the micellar core and electrostatic interaction between the polycationic blocks, and the drug localized it, to some extent, in the micellar corona. The effect of a polymer-to-drug mass ratio on the drug-loading content (DLC) and encapsulation efficiency (EE) of MPMs was assessed. MPMs prepared at a polymer-to-drug mass ratio of 10:1 exhibited very high EE and a prolonged release profile. All micellar systems demonstrated their capability to detach pre-formed Gram-positive and Gram-negative bacterial biofilms and significantly reduced their biomass. The metabolic activity of the biofilm was strongly suppressed by the CF-loaded MPMs indicating the successful drug delivery and release. The cytotoxicity of empty and CF-loaded MPMs was evaluated. The test reveals composition-dependent cell viability without cell destruction or morphological signs of cell death.
Collapse
Affiliation(s)
- Rumena Stancheva
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University "St. K. Ohridski", 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
20
|
Namata F, Sanz Del Olmo N, Molina N, Malkoch M. Synthesis and Characterization of Amino-Functional Polyester Dendrimers Based On Bis-MPA with Enhanced Hydrolytic Stability and Inherent Antibacterial Properties. Biomacromolecules 2023; 24:858-867. [PMID: 36689269 PMCID: PMC9930107 DOI: 10.1021/acs.biomac.2c01286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyester dendrimers based on 2,2 bis(hydroxymethyl)propionic acid have been reported to be degradable, non-toxic, and exhibit good antimicrobial activity when decorated with cationic charges. However, these systems exhibit rapid depolymerization, from the outer layer inwards in physiological neutral pHs, which potentially restricts their use in biomedical applications. In this study, we present a new generation of amine functional bis-MPA polyester dendrimers with increased hydrolytic stability as well as antibacterial activity for Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) planktonic bacteria strains. These new derivatives show generally good cytocompatibility for the concentrations they are active toward bacteria, in monocyte/macrophage-like cells (Raw 264.7), and human dermal fibroblasts. Fluoride - promoted esterification chemistry, anhydride chemistry, and click reactions were utilized to produce a library from generations 1-3 and with cationic peripheral groups ranging from 6 to 24 groups, respectively. The dendrimers were successfully purified using conventional purification techniques as well as characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. As proof of synthetic versatility, dendritic-linear-dendritic block copolymer were successfully synthesized to display cysteamine peripheral functionalities as well as the scaffolding ability with biomedically relevant lipoic acid and methoxy polyethylene glycol.
Collapse
Affiliation(s)
- Faridah Namata
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Natalia Sanz Del Olmo
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Noemi Molina
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| |
Collapse
|
21
|
Atmospheric Pressure Plasma Polymerisation of D-Limonene and Its Antimicrobial Activity. Polymers (Basel) 2023; 15:polym15020307. [PMID: 36679188 PMCID: PMC9861354 DOI: 10.3390/polym15020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli (E. coli) compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.
Collapse
|
22
|
Asgari S, Mohammadi Ziarani G, Badiei A, Rostami M, Kiani M. Reduced cytotoxicity and boosted antibacterial activity of a hydrophilic nano-architecture magnetic nitrogen-rich copper-based MOF. MATERIALS TODAY COMMUNICATIONS 2022; 33:104393. [DOI: 10.1016/j.mtcomm.2022.104393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
23
|
Innovative bifunctional heat storage nanocapsules containing polymerizable surfactant for antimicrobial thermoregulating clothes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Characterization and Differential Cytotoxicity of Gramicidin Nanoparticles Combined with Cationic Polymer or Lipid Bilayer. Pharmaceutics 2022; 14:pharmaceutics14102053. [PMID: 36297488 PMCID: PMC9610547 DOI: 10.3390/pharmaceutics14102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 μM Gr/10 μg·mL−1 PDDA, 0.5 μM Gr/0. 5μg·mL−1 PDDA, and 0.5 μM Gr/0.5 μg·mL−1 PDDA, respectively. In comparison to individual Gr doses, the combinations reduced doses by half (S. aureus) and a quarter (C. albicans); in comparison to individual PDDA doses, the combinations reduced doses by 6 times (P. aeruginosa) and 10 times (C. albicans). Gr in supported or free cationic lipid bilayers reduced Gr activity against S. aureus due to reduced Gr access to the pathogen. Facile Gr NPs/PDDA disassembly favored access of each agent to the pathogen: PDDA suctioned the pathogen cell wall facilitating Gr insertion in the pathogen cell membrane. Gr NPs/PDDA differential cytotoxicity suggested the possibility of novel systemic uses for the combination.
Collapse
|
25
|
He X, Ye L, He R, He J, Ouyang S, Zhang J. Antibacterial dental resin composites (DRCs) with synthesized bis-quaternary ammonium monomethacrylates as antibacterial agents. J Mech Behav Biomed Mater 2022; 135:105487. [PMID: 36179614 DOI: 10.1016/j.jmbbm.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Three bi-quaternary ammonium methacrylates (biQAMA-12, biQAMA-14, and biQAMA-16) with different alkyl chain length were synthesized with the purpose of endowing dental resin composites (DRCs) with antibacterial activity without sacrificing physicochemical properties of DRCs. All of biQAMAs were confirmed by 1H-NMR spectra and incorporated into Bis-GMA/TEGDMA (60 wt/40 wt) resin matrix with a mass fraction of 5 wt% as antibacterial agent. The obtained resin matrixes were mixed with commercial silaned glass fillers at a mass ratio of 30 wt/70 wt to prepare antibacterial DRCs. The double bond conversion (DC), antibacterial activity against S. mutans., surface charge density, water contact angle, water sorption (WS) and solubility (SL), mechanical properties, and cytotoxicity of biQAMAs containing DRCs were investigated. The DRC without biQAMAs was used as control. The results showed that all biQAMAs containing DRCs had antibacterial rate higher than 90%, and DRC with biQAMA-12 had the highest antibacterial rate due to its highest surface charge density. Adding 5 wt% of biQAMAs would not bring out negative effect on physicochemical properties of DRCs, except for increasing WS, but the resultant WS still met the ISO requirement on WS of restorative materials. Both biQAMA-14 and biQAMA-16 containing DRCs showed higher cytotoxicity than control, thus biQAMA-12 was considered as the optimal antibacterial agent in this research.
Collapse
Affiliation(s)
- Xiaoling He
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Linyan Ye
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Rouye He
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, China.
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523710, Guangdong, China
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, China.
| |
Collapse
|
26
|
Li B. Antimicrobial Popymers: Homopolymers and Copolymers of Cefotiam-Binding Acrylamide. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Liu Y, Mao J, Guo Z, Hu Y, Wang S. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties. Int J Biol Macromol 2022; 220:211-222. [PMID: 35970368 DOI: 10.1016/j.ijbiomac.2022.08.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/23/2023]
Abstract
Hydrogel materials are gradually increasing research in biological aspects due to their unique properties. In order to prepare hydrogels with the potential to be used in clinical wound therapy, the authors prepared a bifunctional hydrogel with antibacterial and self-healing properties. The hydrogel was composed of borax cross-linked polyvinyl alcohol (PVA) and carboxymethyl chitosan (CMCS), which realizes self-healing between polymers through hydrogen bonds and borate ester bonds. The double cross-linking of hydrogen bonds and borate ester bonds also endows the hydrogel with better mechanical properties (toughness and tensile stress can reach 22.30 MJ/m3 and 70.35 KPa, respectively). On this basis, adding highly stable silver nanoparticles (AgNPs) to the hydrogel can effectively inhibit the growth of E. coli and S. aureus. This idea provides the possibility for the application of hydrogels in the process of biological wound healing.
Collapse
Affiliation(s)
- Yalei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jie Mao
- Department of Basic, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China.
| |
Collapse
|
28
|
Zhang K, Yang C, Cheng C, Shi C, Sun M, Hu H, Shi T, Chen X, He X, Zheng X, Li M, Shao D. Bioactive Injectable Hydrogel Dressings for Bacteria-Infected Diabetic Wound Healing: A "Pull-Push" Approach. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26404-26417. [PMID: 35649246 DOI: 10.1021/acsami.2c04300] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic diabetic wound healing remains a challenge due to the existence of excessive danger molecules and bacteria in the inflammatory microenvironment. There is an urgent need for advanced wound dressings that target both inflammation and infection. Here, a bioactive hydrogel without loading any anti-inflammatory ingredients is rationally designed to achieve a "Pull-Push" approach for efficient and safe bacteria-infected diabetic wound healing by integrating danger molecule scavenging (Pull) with antibiotic delivery (Push) in the inflammatory microenvironment. The cationic hydrogel, termed the OCMC-Tob/PEI hydrogel, is fabricated by the conjugation of polyethylenimine (PEI) and tobramycin (Tob) on an oxidized carboxymethyl cellulose (OCMC) backbone via the Schiff base reaction with injectable, self-healing, and biocompatible properties. The OCMC-Tob/PEI hydrogel not only displays the remarkable capability of capturing multiple negatively charged danger molecules (e.g., cell-free DNA, lipopolysaccharides, and tumor necrosis factor-α) to ameliorate anti-inflammation effects but also achieves controllable long-term antibacterial activity by the pH-sensitive release of Tob. Consequently, this multifunctional hydrogel greatly expedites the wound closure rate with combined anti-inflammation and anti-infection effects on Pseudomonas aeruginosa-infected diabetic wounds. Our work provides a highly versatile treatment approach for chronic diabetic wounds and a promising dressing for regenerative medicine.
Collapse
Affiliation(s)
- Kunbao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Chuanxu Cheng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Madi Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Xuenian Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Xuan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Xiao Zheng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
29
|
Huang K, Yi J, Young GM, Nitin N. Cell-based carriers incorporated antimicrobial coatings on diverse food contact surfaces for preventing cross-contamination of fresh produce. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Li Z, Pearce AK, Du J, Dove AP, O'Reilly RK. Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zehua Li
- Department of Chemistry University of Warwick Coventry UK
- School of Chemistry University of Birmingham Birmingham UK
- Department of Polymeric Materials, School of Materials Science and Engineering Tongji University Shanghai China
| | | | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering Tongji University Shanghai China
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham UK
| | | |
Collapse
|
31
|
Gupta S, Puttaiahgowda YM, Nagaraja A, Jalageri MD. Antimicrobial polymeric paints: An up‐to‐date review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | | | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - Manohara Dhulappa Jalageri
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| |
Collapse
|
32
|
Wang B, Guo W, Li T, Wang R, Song P, He Y, Cheng X. Synthesis of antibacterial Janus sheets containing dual-active centers by quaternization fracture. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Borgolte M, Riester O, Kacerova T, Rentschler S, Schmidt MS, Jacksch S, Egert M, Laufer S, Csuk R, Deigner HP. Methacryloyl-GlcNAc Derivatives Copolymerized with Dimethacrylamide as a Novel Antibacterial and Biocompatible Coating. Pharmaceutics 2021; 13:pharmaceutics13101647. [PMID: 34683942 PMCID: PMC8541365 DOI: 10.3390/pharmaceutics13101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
Improving medical implants with functional polymer coatings is an effective way to further improve the level of medical care. Antibacterial and biofilm-preventing properties are particularly desirable in the area of wound healing, since there is a generally high risk of infection, often with a chronic course in the case of biofilm formation. To prevent this we here report a polymeric design of polymer-bound N-acetyl-glucosamine-oligoethylene glycol residues that mimic a cationic, antibacterial, and biocompatible chitosan surface. The combination of easy to use, crosslinkable, thin, potentially 3D-printable polymethacrylate layering with antibacterial and biocompatible functional components will be particularly advantageous in the medical field to support a wide range of implants as well as wound dressings. Different polymers containing a N-acetylglucosamine-methacryloyl residue with oligoethylene glycol linkers and a methacryloyl benzophenone crosslinker were synthesized by free radical polymerization. The functional monomers and corresponding polymers were characterized by 1H, 13C NMR, and infrared (IR) spectroscopy. The polymers showed no cytotoxic or antiadhesive effects on fibroblasts as demonstrated by extract and direct contact cell culture methods. Biofilm formation was reduced by up to 70% and antibacterial growth by 1.2 log, particularly for the 5% GlcNAc-4EG polymer, as observed for Escherichia coli and Staphylococcus aureus as clinically relevant Gram-negative and Gram-positive model pathogens.
Collapse
Affiliation(s)
- Max Borgolte
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tereza Kacerova
- Department of Chemistry, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic;
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Magnus S. Schmidt
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Susanne Jacksch
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Markus Egert
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
34
|
Shatan AB, Patsula V, Dydowiczová A, Gunár K, Velychkivska N, Hromádková J, Petrovský E, Horák D. Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization. Antibiotics (Basel) 2021; 10:1077. [PMID: 34572658 PMCID: PMC8471980 DOI: 10.3390/antibiotics10091077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/04/2022] Open
Abstract
Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.
Collapse
Affiliation(s)
- Anastasiia B. Shatan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Aneta Dydowiczová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| | - Eduard Petrovský
- Institute of Geophysics, Czech Academy of Sciences, Boční II/1401, 141 31 Prague 4, Czech Republic;
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (A.B.S.); (V.P.); (A.D.); (K.G.); (N.V.); (J.H.)
| |
Collapse
|
35
|
Lou Y, Schapman D, Mercier D, Ceren Süer N, Eren T, Thebault P, Kébir N. Preparation of bactericidal PDMS surfaces by benzophenone photo-initiated grafting of polynorbornenes functionalized with quaternary phosphonium or pyridinium groups. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Lou Y, Schapman D, Mercier D, Alexandre S, Burel F, Thebault P, Kébir N. Self-disinfecting PDMS surfaces with high quaternary ammonium functionality by direct surface photoinitiated polymerization of vinylbenzyl dimethylbutylammonium chloride. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Zhang H, Wang W, Wei L, Wu D, Cheng J, Gao F. Fabrication of PAMAM antimicrobial monolayer via UV induced grafting on the surface of polyethylene terephthalate. Colloids Surf B Biointerfaces 2021; 201:111601. [PMID: 33618083 DOI: 10.1016/j.colsurfb.2021.111601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/18/2022]
Abstract
Poly (amidoamine) (PAMAM) with 3rd and 5th generation was covalently grafted as the contact active biocidal agent on the surface of polyethylene terephthalate (PET) with the help of UV induced carbene chemistry (PAMAM-g-PET). The graft density and the surface roughness were controlled by turning UV irradiation time and the PAMAM generation. The PAMAM graft monolayer was characterized via the contact angle, XPS, nanoIR, SEM and AFM. The antibacterial ability of PAMAM-g-PET was evaluated ex-vivo with the help of laser scanning confocal microscope (CLSM), and the results indicated that the decorated PET was able to kill both S. aureus and E. coli in the aqueous environment. Increasing the surface graft concentration and using the dendrimer with higher generation enhanced the lethality towards the bacterial. The decorated film was still able to kill the contact bacterial strain when the cationic primary amine groups were shielded by acetyl chloride, however, the bacterial in the suspension was hardly affected in this case. The un-selectivity and instantaneity of carbene chemistry endowed this grafting strategy the potential to be extended to other organic substances.
Collapse
Affiliation(s)
- Haobo Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Weihan Wang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Lilong Wei
- China-Japan Friendship Hospital, Yinghuayuan North Street 2, Chaoyang District, Beijing, 100029, China.
| | - Dezhen Wu
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Jue Cheng
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Feng Gao
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
38
|
Wang B, Li T, Guo W, Wang R, Li Y, Zhu X, Song P, He Y. Synthesis of Ag@chitosan/copolymer with dual-active centers for high antibacterial activity. Int J Biol Macromol 2021; 174:198-206. [PMID: 33516853 DOI: 10.1016/j.ijbiomac.2021.01.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
The prevention and treatment of microorganism contamination on substrate surfaces have recently generated significant concern of scientists. In this paper, a novel diblock copolymer containing antibacterial quaternary ammonium groups as pendant groups, poly(3-(methacryloylamino) propyltrimethyl ammonium chloride)-b-poly(styrene) (PMS), was synthesized by interfacial polymerization. Also, PMS anisotropic particles (APs) could be successfully obtained based on different assembly behaviors by adjusting the ratios of monomers and the toluene/styrene (Tol/St). Moreover, silver loaded chitosan (Ag@CS) and PMS APs were combined to prepare natural/synthetic polymer antibacterial materials with dual-active centers (Ag@CS/PMS-4 APs), aiming to expand the application of carbohydrate polymers and improve the antibacterial activity of composite materials. Remarkably, the resulting series of PMS particles, especially worm-like PMS-4 APs, and Ag@CS/PMS-4 APs composite film ((Ag@CS/PMS-4 APs)-F) exhibited excellent antibacterial properties, which can be employed as interface materials to prevent the transmission of infectious diseases caused by microorganism contamination.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenling Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yue Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinhua Zhu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
39
|
Shahid A, Aslam B, Muzammil S, Aslam N, Shahid M, Almatroudi A, Allemailem KS, Saqalein M, Nisar MA, Rasool MH, Khurshid M. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater 2021; 19:22808000211040304. [PMID: 34409896 DOI: 10.1177/22808000211040304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The implants are increasingly being a part of modern medicine in various surgical procedures for functional or cosmetic purposes. The progressive use of implants is associated with increased infectious complications and prevention of such infections always remains precedence in the clinical settings. The preventive approaches include the systemic administration of antimicrobial agents before and after the surgical procedures as well as the local application of antibiotics. The relevant literature and existing clinical practices have highlighted the role of antimicrobial coating approaches in the prevention of implants associated infections, although the applications of these strategies are not yet standardized, and the clinical efficacy is not much clear. The adequate data from the randomized control trials is challenging because of the unavailability of a large sample size although it is compulsory in this context to assess the clinical efficacy of preemptive practices. This review compares the efficacy of preventive approaches and the prospects of antimicrobial-coated implants in preventing implant-related infections.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
40
|
Ifra, Kongkham B, Sharma S, Chaurasiya A, Biswal AK, Hariprasad P, Saha S. Development of non‐leaching antibacterial coatings through quaternary ammonium salts of styrene based copolymers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Bhani Kongkham
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Shivangi Sharma
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Alok Chaurasiya
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Agni K. Biswal
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - P. Hariprasad
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
41
|
Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity. Pharmaceutics 2020; 12:pharmaceutics12121139. [PMID: 33255607 PMCID: PMC7761394 DOI: 10.3390/pharmaceutics12121139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Abstract
Cationic dendrimers are intriguing materials that can be used as antibacterial materials; however, they display significant cytotoxicity towards diverse cell lines at high generations or high doses, which limits their applications in biomedical fields. In order to decrease the cytotoxicity, a series of biocompatible hybrid hydrogels based on cationic dendrimers and carboxylated cellulose nanofibrils were easily synthesized by non-covalent self-assembly under physiological conditions without external stimuli. The cationic dendrimers from generation 2 (G2) to generation 4 (G4) based on trimethylolpronane (TMP) and 2,2-bis (methylol)propionic acid (bis-MPA) were synthesized through fluoride promoted esterification chemistry (FPE chemistry). FTIR was used to show the presence of the cationic dendrimers within the hybrid hydrogels, and the distribution of the cationic dendrimers was even verified using elemental analysis of nitrogen content. The hybrid hydrogels formed from G3 and G4 showed 100% killing efficiency towards Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) with bacterial concentrations ranging from 105 CFU/mL to 107 CFU/mL. Remarkably, the hybrid hydrogels also showed good biocompatibility most probably due to the incorporation of the biocompatible CNFs that slowed down the release of the cationic dendrimers from the hybrid hydrogels, hence showing great promise as an antibacterial material for biomedical applications.
Collapse
|
42
|
Claus J, Jastram A, Piktel E, Bucki R, Janmey PA, Kragl U. Polymerized ionic l
iquids‐based
hydrogels with intrinsic antibacterial activity: Modern weapons against a
ntibiotic‐resistant
infections. J Appl Polym Sci 2020. [DOI: 10.1002/app.50222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johanna Claus
- Department Life, Light & Matter, Faculty for Interdisciplinary Research University of Rostock Rostock Germany
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| | - Ann Jastram
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering Medical University of Bialystok Bialystok Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering Medical University of Bialystok Bialystok Poland
- Institute for Medicine and Engineering University of Pennsylvania Philadelphia Pennsylvania USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering University of Pennsylvania Philadelphia Pennsylvania USA
| | - Udo Kragl
- Department Life, Light & Matter, Faculty for Interdisciplinary Research University of Rostock Rostock Germany
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| |
Collapse
|
43
|
Qian Y, Deng S, Lu Z, She Y, Xie J, Cong Z, Zhang W, Liu R. Using In Vivo Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS APPLIED BIO MATERIALS 2020; 4:3811-3829. [DOI: 10.1021/acsabm.0c01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziyi Lu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunrui She
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, Zheng Y, Cui Z, Yeung KWK, Liang Y, Zhu S, Wu S. Antibacterial Hybrid Hydrogels. Macromol Biosci 2020; 21:e2000252. [PMID: 32881309 DOI: 10.1002/mabi.202000252] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria-killing modes of hydrogels, several representative hydrogels such as silver nanoparticles-based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self-bacteria-killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics-loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.
Collapse
Affiliation(s)
- Zhongming Cao
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Yue Luo
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Yanqin Liang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
45
|
Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers. Macromol Rapid Commun 2020; 41:e2000175. [DOI: 10.1002/marc.202000175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/12/2020] [Indexed: 12/19/2022]
|
46
|
Bernardi S, Renault M, Malabirade A, Debou N, Leroy J, Herry JM, Guilbaud M, Arluison V, Bellon-Fontaine MN, Carrot G. Robust Grafting of Polyionenes: New Potent and Versatile Antimicrobial Surfaces. Macromol Biosci 2020; 20:e2000157. [PMID: 32734716 DOI: 10.1002/mabi.202000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Indexed: 11/11/2022]
Abstract
Polyionenes (PI) with stable positive charges and tunable hydrophobic spacers in the polymer backbone, are shown to be particularly efficient regarding antimicrobial properties. This effect can be modulated since it increases with the length of hydrophobic spacers, i.e., the number of methylene groups between quaternary ammoniums. Now, to further explore these properties and provide efficient antimicrobial surfaces, polyionenes should be grafted onto materials. Here a robust grafting strategy to covalently attach polyionenes is described. The method consisted in a sequential surface chemistry procedure combining polydopamine coating, diazonium-induced polymerization, and polyaddition. To the best of knowledge, grafting of PI onto surfaces is not reported earlier. All chemical steps are characterized in detail via various surface analysis techniques (FTIR, X-ray photoelectron spectroscopy, contact angle, and surface energy measurements). The antibacterial properties of polyionene-grafted surfaces are then studied through bacterial adhesion experiments consisting in enumeration of adherent bacteria (total and viable cultivable cells). PI-grafted surfaces are showed to display effective and versatile bacteriostatic/bactericidal properties associated with a proadhesive effect.
Collapse
Affiliation(s)
- Sarah Bernardi
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Margareth Renault
- SayFood, AgroParisTech, INRAE UMR 782, Université Paris-Saclay, Massy, 91300, France
| | - Antoine Malabirade
- LLB, CEA, CNRS UMR 012, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Nabila Debou
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Jocelyne Leroy
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Jean-Marie Herry
- SayFood, AgroParisTech, INRAE UMR 782, Université Paris-Saclay, Massy, 91300, France
| | - Morgan Guilbaud
- SayFood, AgroParisTech, INRAE UMR 782, Université Paris-Saclay, Massy, 91300, France
| | - Veronique Arluison
- LLB, CEA, CNRS UMR 012, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | | | - Geraldine Carrot
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| |
Collapse
|
47
|
Fontelo R, Soares da Costa D, Reis R, Novoa-Carballal R, Pashkuleva I. Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomater 2020; 112:174-181. [PMID: 32525051 DOI: 10.1016/j.actbio.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
We describe the bactericidal capacity of nanopatterned surfaces created by self-assembly of block copolymers. Distinct nanotopographies were generated by spin-coating with polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) followed by solvent vapor annealing. We demonstrate that the bactericidal efficiency of the developed coatings depends on the morphology and the chemistry of the surface: cylindrical nanotopographies presenting both blocks at the surface have stronger bactericidal effect on Escherichia coli than micellar patterns with only PS exposed at the surface. The identified mechanism of bacterial death is a mechanical stress exerted by the nanostructures on the cell-wall. Moreover, the developed nanopatterns are not cytotoxic, which makes them an excellent option for coating of implantable materials and devices. The proposed approach represents an efficient tool in the fight against bacteria, which acts via compromising the bacterial wall integrity. STATEMENT OF SIGNIFICANCE: Bacterial infections represent an important risk during biomaterial implantation in surgeries due to the increase of antibiotic resistance. Bactericidal surfaces are a promising solution to avoid the use of antibiotics, but most of those systems do not allow mammalian cell survival. Nanopatterned silicon surfaces have demonstrated to be simultaneously bactericidal and allow mammalian cell culture but are made by physical methods (e.g. plasma etching) applicable to few materials and small surfaces. In this article we show that block copolymer self-assembly can be used to develop surfaces that kill bacteria (E. coli) but do not harm mammalian cells. Block copolymer self-assembly has the advantage of being applicable to many different types of substrates and large surface areas.
Collapse
|
48
|
Positively Charged Polymers as Promising Devices against Multidrug Resistant Gram-Negative Bacteria: A Review. Polymers (Basel) 2020; 12:polym12051195. [PMID: 32456255 PMCID: PMC7285334 DOI: 10.3390/polym12051195] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance has increased markedly in Gram-negative bacteria, causing severe infections intractable with traditional drugs and amplifying mortality and healthcare costs. Consequently, to find novel antimicrobial compounds, active on multidrug resistant bacteria, is mandatory. In this regard, cationic antimicrobial peptides (CAMPs)—able to kill pathogens on contact—could represent an appealing solution. However, low selectivity, hemolytic toxicity and cost of manufacturing, hamper their massive clinical application. In the recent years—starting from CAMPs as template molecules—less toxic and lower-cost synthetic mimics of CAMPs, including cationic peptides, polymers and dendrimers, have been developed. Although the pending issue of hemolytic toxicity and biodegradability is still left not completely solved, cationic antimicrobial polymers (CAPs), compared to small drug molecules, thanks to their high molecular weight, own appreciable selectivity, reduced toxicity toward eukaryotic cells, more long-term activity, stability and non-volatility. With this background, an updated overview concerning the main manufactured types of CAPs, active on Gram-negative bacteria, is herein reported, including synthetic procedure and action’s mechanism. Information about their structures, antibacterial activity, advantages and drawbacks, was reported in the form of tables, which allow faster consultation and quicker learning concerning current CAPs state of the art, in order not to retrace reviews already available.
Collapse
|
49
|
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020; 75:1071-1086. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Richard Kuehl
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laura Morata
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sylvain Meylan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Division de Maladies Infectieuses, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Josep Mensa
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
50
|
Sahiner N. Amino acid‐derived Poly(
L
‐Lysine
) (p
(LL
)) microgel as a versatile biomaterial: Hydrolytically degradable, drug carrying, chemically modifiable and antimicrobial material. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application CenterCanakkale Onsekiz Mart University Canakkale Turkey
- Department of OphthalmologyMorsani College of Medicine Tampa FL USA
| |
Collapse
|