1
|
Huang R, Zhang F, Zhou H, Yu H, Shen L, Jiang J, Qin Y, Liu Y, Song Y. Characterization of Trichoderma reesei endoglucanase displayed on the Saccharomyces cerevisiae cell surface and its effect on wine flavor in combination with β-glucosidase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Du G, Hua X, Xu B, Wang H, Zhou X, Xu Y. Environmental bio-oxidation of toxic furan by the co-recycling of waste fermented broth and rest cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Vanmarcke G, Deparis Q, Vanthienen W, Peetermans A, Foulquié-Moreno MR, Thevelein JM. A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors. PLoS Genet 2021; 17:e1009826. [PMID: 34624020 PMCID: PMC8500407 DOI: 10.1371/journal.pgen.1009826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.
Collapse
Affiliation(s)
- Gert Vanmarcke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Ward Vanthienen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Brussels (Jette), Belgium
| |
Collapse
|
4
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
5
|
Stress modulation as a means to improve yeasts for lignocellulose bioconversion. Appl Microbiol Biotechnol 2021; 105:4899-4918. [PMID: 34097119 DOI: 10.1007/s00253-021-11383-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published -omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains. KEYPOINTS: • Stress tolerance is a key driver to successful application of yeast strains in biorefineries. • A wealth of data regarding stress responses has been gained through omics studies. • Integration of this knowledge could inform engineering of fit for purpose strains.
Collapse
|
6
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
7
|
Palakawong Na Ayutthaya P, Charoenrat T, Krusong W, Pornpukdeewattana S. Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech 2019; 9:76. [PMID: 30800587 PMCID: PMC6370576 DOI: 10.1007/s13205-019-1607-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Large amount of cassava pulp is produced as by-product of industrial tapioca production. The value-added process of this low-cost waste is to use it as a substrate for bioethanol production. However, during the pulp pretreatment by acidification combined with steam explosion, many yeast inhibitors including acetic acid, formic acid, levulinic acid, furfural and 5-hydroxymethylfurfural are generated and these compounds have negative effects on the subsequent fermentation step. Therefore, the objective of this study was to investigate whether the repeated cultures of Saccharomyces cerevisiae SC90 could alleviate this problem. To obtain the inhibitor tolerable cells, the repeated culture was performed by growing yeast cells to a specific growth rate (µ) of 0.22 h-1 or higher (80% of the µ in control) and then transferring them to progressively higher concentrations of hydrolysate ranging from 20 to 100% (v/v). The results showed a tendency of longer lag phase as well as time to reach maximum cell number (t maxc) with an increase in hydrolysate concentration. However, the repeated culture at the same hydrolysate concentration could shorten both lag period and t maxc. Interestingly, the growth and fermentation efficiency of adapted cells in 100% hydrolysate were significantly higher (p ≤ 0.05) than those of non-adapted cells by 38% and 27%, respectively.
Collapse
Affiliation(s)
- Pakathamon Palakawong Na Ayutthaya
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani, 12120 Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Soisuda Pornpukdeewattana
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| |
Collapse
|
8
|
Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the health and environment impacts of fossil fuels utilization, biofuels have been investigated as a potential alternative renewable source of energy. Bioethanol is currently the most produced biofuel, mainly of first generation, resulting in food-fuel competition. Second generation bioethanol is produced from lignocellulosic biomass, but a costly and difficult pretreatment is required. The pulp and paper industry has the biggest income of biomass for non-food-chain production, and, simultaneously generates a high amount of residues. According to the circular economy model, these residues, rich in monosaccharides, or even in polysaccharides besides lignin, can be utilized as a proper feedstock for second generation bioethanol production. Biorefineries can be integrated in the existing pulp and paper industrial plants by exploiting the high level of technology and also the infrastructures and logistics that are required to fractionate and handle woody biomass. This would contribute to the diversification of products and the increase of profitability of pulp and paper industry with additional environmental benefits. This work reviews the literature supporting the feasibility of producing ethanol from Kraft pulp, spent sulfite liquor, and pulp and paper sludge, presenting and discussing the practical attempt of biorefineries implementation in pulp and paper mills for bioethanol production.
Collapse
|
9
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
10
|
Fernández-Niño M, Pulido S, Stefanoska D, Pérez C, González-Ramos D, van Maris AJA, Marchal K, Nevoigt E, Swinnen S. Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing. FEMS Yeast Res 2018; 18:5097782. [DOI: 10.1093/femsyr/foy100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel Fernández-Niño
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
- Department of Chemical Engineering, Universidad de los Andes, Cra 1 N° 18A - 12, 111711 Bogotá, Colombia
| | - Sergio Pulido
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Despina Stefanoska
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Camilo Pérez
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
11
|
Hossain Z, Pillai BVS, Gruber MY, Yu M, Amyot L, Hannoufa A. Transcriptome profiling of Brassica napus stem sections in relation to differences in lignin content. BMC Genomics 2018; 19:255. [PMID: 29661131 PMCID: PMC5903004 DOI: 10.1186/s12864-018-4645-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Brassica crops are cultivated widely for human consumption and animal feed purposes, and oilseed rape/canola (Brassica napus and rapa) is the second most important oilseed worldwide. Because of its natural diversity and genetic complexity, genomics studies on oilseed rape will be a useful resource base to modify the quantity and quality of biomass in various crops, and therefore, should have a positive impact on lignocellulosic biofuel production. The objective of this study was to perform microarray analysis on two variable lignin containing oilseed rape cultivars to target novel genes and transcription factors of importance in Brassica lignin regulation for applied research. RESULTS To gain insight into the molecular networks controlling cell wall biosynthetic and regulatory events, we conducted lignin and microarray analysis of top and basal stem sections of brown seeded Brassica napus DH12075 and yellow seeded YN01-429 cultivars. A total of 9500 genes were differentially expressed 2-fold or higher in the stem between the cultivars, with a higher number of expressed genes in the basal section. Of the upregulated genes, many were transcription factors and a considerable number of these were associated with secondary wall synthesis and lignification in B. napus and other plant species. The three largest groups of transcription factors with differential expression were C2H2 and C3HC4 zinc fingers and bHLH. A significant number of genes related to lignin and carbohydrate metabolism also showed differential expression patterns between the stem sections of the two cultivars. Within the same cultivar, the number of upregulated genes was higher in the top section relative to the basal one. CONCLUSION In this study, we identified and established expression patterns of many new genes likely involved in cell wall biosynthesis and regulation. Some genes with known roles in other biochemical pathways were also identified to have a potential role in cell wall biosynthesis. This stem transcriptome profiling will allow for selecting novel regulatory and structural genes for functional characterization, a strategy which may provide tools for modifying cell wall composition to facilitate fermentation for biofuel production.
Collapse
Affiliation(s)
- Zakir Hossain
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, 1 Airport Road, Swift Current, SK S9H 3X2 Canada
| | - Bhinu V.-S. Pillai
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Post Office Box 1000, Agassiz, BC V0M 1A0 Canada
| | - Margaret Y. Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Min Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
| |
Collapse
|
12
|
Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz J Microbiol 2018; 49:378-391. [PMID: 29154013 PMCID: PMC5914142 DOI: 10.1016/j.bjm.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/29/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022] Open
Abstract
High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51g/L and 33.84g/L at 37°C and 40°C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42°C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.
Collapse
Affiliation(s)
- Nuttaporn Chamnipa
- Khon Kaen University, Graduate School, Khon Kaen, Thailand; Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand
| | - Sudarat Thanonkeo
- Mahasarakam University, Walai Rukhavej Botanical Research Institute, Maha Sarakam, Thailand
| | - Preekamol Klanrit
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products, Khon Kaen, Thailand
| | - Pornthap Thanonkeo
- Khon Kaen University, Faculty of Technology, Department of Biotechnology, Khon Kaen, Thailand; Khon Kaen University, Fermentation Research Center for Value Added Agricultural Products, Khon Kaen, Thailand.
| |
Collapse
|
13
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Islam SMM, Elliott JR, Ju LK. Minimization of fermentation inhibitor generation by carbon dioxide-water based pretreatment and enzyme hydrolysis of guayule biomass. BIORESOURCE TECHNOLOGY 2018; 251:84-92. [PMID: 29272772 DOI: 10.1016/j.biortech.2017.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Guayule rubber production leaves >80% biomass as ground bagasse, which can be hydrolyzed to release sugars but also fermentation inhibitors. Here inhibitor generation and sugar conversion by the CO2-H2O pretreatment and enzyme hydrolysis were studied. Different pretreatment conditions: 550-4900 psi, 160-195 °C, 10-60 min and fixed 66.7% water, generated widely varying amounts of inhibitors (per dry-bagasse mass): 0.014-0.252% hydroxymethylfurfural, 0.012-0.794% furfural and 0.17-8.02% acetic acid. The condition (195 °C/3400 psi/30 min) giving highest reducing sugar (86.9 ± 1.5%) and cellulose (99.2 ± 1.3%) conversions generated more inhibitors. Kluyveromyces marxianus fermentation showed complete growth and ethanol production inhibition at ≥14 g/L combined inhibitors. Considering both sugars and inhibitors, the optimum condition was 180 °C, 1800 psi and 30 min, enabling 82.8 ± 2.8% reducing sugar, 74.8 ± 4.8% cellulose and 88.5 ± 6.9% hemicellulose conversions with low levels of hydroxymethylfurfural (0.07%), furfural (0.25%) and acetic acid (3.0%). The optimized CO2-H2O pretreatment gave much lower inhibitor formation and higher sugar conversion than other pretreatment methods.
Collapse
Affiliation(s)
- S M Mahfuzul Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - J Richard Elliott
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA.
| |
Collapse
|
15
|
Aulitto M, Fusco S, Bartolucci S, Franzén CJ, Contursi P. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:210. [PMID: 28904563 PMCID: PMC5590179 DOI: 10.1186/s13068-017-0896-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. RESULTS A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans, named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. CONCLUSIONS The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto employed for the depolymerisation of lignocellulosic biomasses to fermentable sugars. Moreover, the robustness of B. coagulans MA-13 is a desirable trait, given the presence of microbial growth inhibitors in the pre-treated biomass hydrolysate.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Salvatore Fusco
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
16
|
Johnson AM, Kim H, Ralph J, Mansfield SD. Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:48. [PMID: 28250816 PMCID: PMC5322675 DOI: 10.1186/s13068-017-0734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. During pretreatment, endogenous acetate hydrolyzes to acetic acid that can subsequently catalyze the breakdown of poplar wood, increasing the efficiency of biomass pretreatment. RESULTS Poplar genotypes varying in cell wall composition were pretreated in 0.3% H2SO4 in non-isothermal batch reactors. Acetic acid released from the wood was positively related to sugar release during pretreatment (R ≥ 0.9), and inversely proportional to the lignin content of the poplar wood (R = 0.6). CONCLUSION There is significant variation in wood chemistry among P. trichocarpa genotypes. This study elucidated patterns of cell wall deconstruction and clearly links carbohydrate solubilization to acetate release. Tailoring biomass feedstocks for acetate release could enhance pretreatment efficiencies.
Collapse
Affiliation(s)
- Amanda M. Johnson
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC Canada
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI USA
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI USA
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC Canada
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI USA
| |
Collapse
|
17
|
Ko JK, Um Y, Lee SM. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress. BIORESOURCE TECHNOLOGY 2016; 222:422-430. [PMID: 27744166 DOI: 10.1016/j.biortech.2016.09.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.
Collapse
Affiliation(s)
- Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
18
|
Guo W, Chen Y, Wei N, Feng X. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. PLoS One 2016; 11:e0161448. [PMID: 27532329 PMCID: PMC4988770 DOI: 10.1371/journal.pone.0161448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The fermentation inhibitors from the pretreatment of lignocellulosic materials, e.g., acetic acid and furfural, are notorious due to their negative effects on the cell growth and chemical production. However, the metabolic reprogramming of the cells under these stress conditions, especially metabolic response for resistance to mixed inhibitors, has not been systematically investigated and remains mysterious. Therefore, in this study, 13C metabolic flux analysis (13C-MFA), a powerful tool to elucidate the intracellular carbon flux distributions, has been applied to two Saccharomyces cerevisiae strains with different tolerances to the inhibitors under acetic acid, furfural, and mixed (i.e., acetic acid and furfural) stress conditions to unravel the key metabolic responses. By analyzing the intracellular carbon fluxes as well as the energy and cofactor utilization under different conditions, we uncovered varied metabolic responses to different inhibitors. Under acetate stress, ATP and NADH production was slightly impaired, while NADPH tended towards overproduction. Under furfural stress, ATP and cofactors (including both NADH and NADPH) tended to be overproduced. However, under dual-stress condition, production of ATP and cofactors was severely impaired due to synergistic stress caused by the simultaneous addition of two fermentation inhibitors. Such phenomenon indicated the pivotal role of the energy and cofactor utilization in resisting the mixed inhibitors of acetic acid and furfural. Based on the discoveries, valuable insights are provided to improve the tolerance of S. cerevisiae strain and further enhance lignocellulosic fermentation.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Yingying Chen
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
- * E-mail: (NW); (XF)
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
- * E-mail: (NW); (XF)
| |
Collapse
|
19
|
Loman AA, Ju LK. Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Aghazadeh M, Ladisch MR, Engelberth AS. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact onSaccharomyces cerevisiaebioethanol fermentation. Biotechnol Prog 2016; 32:929-37. [PMID: 27090191 DOI: 10.1002/btpr.2282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Mahdieh Aghazadeh
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
| | - Michael R. Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN 47907
| | - Abigail S. Engelberth
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
- Div. of Environmental and Ecological Engineering; Purdue University; West Lafayette IN 47907
| |
Collapse
|
22
|
Ferreira SS, Hotta CT, Poelking VGDC, Leite DCC, Buckeridge MS, Loureiro ME, Barbosa MHP, Carneiro MS, Souza GM. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. PLANT MOLECULAR BIOLOGY 2016; 91:15-35. [PMID: 26820137 PMCID: PMC4837222 DOI: 10.1007/s11103-016-0434-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.
Collapse
Affiliation(s)
| | | | - Viviane Guzzo de Carli Poelking
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Papapetridis I, van Dijk M, Dobbe APA, Metz B, Pronk JT, van Maris AJA. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact 2016; 15:67. [PMID: 27118055 PMCID: PMC5574463 DOI: 10.1186/s12934-016-0465-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. RESULTS Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. CONCLUSIONS The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor specificity of the oxidative branch of the pentose-phosphate pathway in S. cerevisiae can also be used to increase glycerol production in wine fermentation and to improve NADH generation and/or generation of precursors derived from the pentose-phosphate pathway in other industrial applications of this yeast.
Collapse
Affiliation(s)
- Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marlous van Dijk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Arthur PA Dobbe
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Benjamin Metz
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
24
|
Jones DB, Neves RFC, Lopes MCA, da Costa RF, do N Varella MT, Bettega MHF, Lima MAP, García G, Limão-Vieira P, Brunger MJ. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural. J Chem Phys 2016; 144:124309. [PMID: 27036450 DOI: 10.1063/1.4944615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.
Collapse
Affiliation(s)
- D B Jones
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - R F C Neves
- Instituto Federal do Sul de Minas Gerais, Câmpus Poços de Caldas, Minas Gerais, Brazil
| | - M C A Lopes
- Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - R F da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - M T do N Varella
- Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, Brazil
| | - M H F Bettega
- Departamento de Física, Universidade Federal do Paraná, CP 19044, Curitiba, Paraná 81531-990, Brazil
| | - M A P Lima
- Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas, Campinas, São Paulo 13083-859, Brazil
| | - G García
- Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain
| | - P Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M J Brunger
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
25
|
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Sci Rep 2016; 6:20361. [PMID: 26837707 PMCID: PMC4738253 DOI: 10.1038/srep20361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.
Collapse
|
26
|
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC PLANT BIOLOGY 2016; 16:28. [PMID: 26811086 PMCID: PMC4727291 DOI: 10.1186/s12870-016-0717-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Mark C Jordan
- Morden Reasearch and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
27
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
28
|
Ferreira da Silva F, Lange E, Limão-Vieira P, Jones NC, Hoffmann SV, Hubin-Franskin MJ, Delwiche J, Brunger MJ, Neves RFC, Lopes MCA, de Oliveira EM, da Costa RF, Varella MTDN, Bettega MHF, Blanco F, García G, Lima MAP, Jones DB. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations. J Chem Phys 2015; 143:144308. [DOI: 10.1063/1.4932603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - E. Lange
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - P. Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - N. C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C, Denmark
| | - S. V. Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C, Denmark
| | - M.-J. Hubin-Franskin
- Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1, Belgium
| | - J. Delwiche
- Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1, Belgium
| | - M. J. Brunger
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - R. F. C. Neves
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Departamento de Física, Universidade Federal de Juíz de Fora, Juíz de Fora, MG, Brazil
- Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais, Brazil
| | - M. C. A. Lopes
- Departamento de Física, Universidade Federal de Juíz de Fora, Juíz de Fora, MG, Brazil
| | - E. M. de Oliveira
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - R. F. da Costa
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo, Brazil
| | - M. T. do N. Varella
- Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, Brazil
| | - M. H. F. Bettega
- Departamento de Física, Universidade Federal do Paraná, CP 19044, Curitiba, Paraná 81531-990, Brazil
| | - F. Blanco
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - G. García
- Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain
| | - M. A. P. Lima
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - D. B. Jones
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
29
|
Oshoma CE, Greetham D, Louis EJ, Smart KA, Phister TG, Powell C, Du C. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation. PLoS One 2015; 10:e0135626. [PMID: 26284784 PMCID: PMC4540574 DOI: 10.1371/journal.pone.0135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.
Collapse
Affiliation(s)
- Cyprian E. Oshoma
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Darren Greetham
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Edward J. Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, Leicester, United Kingdom
| | | | - Trevor G. Phister
- PepsiCo Int. Beaumont Park, Leycroft Road, Leicester, United Kingdom
| | - Chris Powell
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Chenyu Du
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
30
|
Zhang J, Gu F, Zhu JY, Zalesny RS. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification. BIORESOURCE TECHNOLOGY 2015; 186:223-231. [PMID: 25817033 DOI: 10.1016/j.biortech.2015.03.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 05/16/2023]
Abstract
Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated solids enzymatic digestibility, sugar yield, and the formations of furfural and acetic acid were obtained. Therefore, CHF was used to balance sugar yield with the formation of fermentation inhibitors for high titer ethanol production without detoxification. The results indicated that optimal sugar yield can be achieved at CHF=3.1, however, fermentation using un-detoxified whole slurries of NE222 pretreated at different severities by SPORL indicated CHF≈2 produced best results. An ethanol titer of 41 g/L was achieved at total solids of approximately 20 wt% without detoxification with a low cellulase loading of 15 FPU/g glucan (27 mL/kg untreated wood).
Collapse
Affiliation(s)
- Jingzhi Zhang
- School of Life Sci. Technol., Beijing Univ. Chem. Technol., Beijing, China; USDA Forest Service, Forest Products Laboratory, Madison, WI, USA
| | - Feng Gu
- USDA Forest Service, Forest Products Laboratory, Madison, WI, USA; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, China
| | - J Y Zhu
- USDA Forest Service, Forest Products Laboratory, Madison, WI, USA.
| | - Ronald S Zalesny
- USDA Forest Service, Northern Research Station, Rhinelander, WI, USA
| |
Collapse
|
31
|
dos Santos AB, Bottcher A, Kiyota E, Mayer JLS, Vicentini R, Brito MDS, Creste S, Landell MGA, Mazzafera P. Water stress alters lignin content and related gene expression in two sugarcane genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4708-4720. [PMID: 25936563 DOI: 10.1021/jf5061858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The lignin deposition in the stem of two sugarcane genotypes was assessed on exposure to water stress. The lignin content and the morphoanatomical characterization of the stem indicated that IACSP94-2094 plants are more lignified than those of IACSP95-5000 genotype, under normal water supply conditions, which was especially associated with higher lignin contents in the rind of mature internodes. Water deficit had negative impact on the biomass production, mostly with IACSP94-2094 plants, possibly due to stress severity or higher susceptibility of that genotype during the stem-lengthening phase. Water deficit led to significant alterations in the expression levels of lignin biosynthesis genes and led to an approximate 60% increase of lignin content in the rind of young internodes in both genotypes. It is concluded that the young rind region was more directly affected by water stress and, depending on the genotype, a higher lignin accumulation may occur in the stem, thus implying lower quality biomass for bioethanol production.
Collapse
Affiliation(s)
- Adriana Brombini dos Santos
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
- ‡Embrapa Soja, Rodovia Carlos João Strass, s/n°, Acesso Orlando Amaral, Distrito de Warta, CP 231, CEP 86001-970 Londrina, PR, Brazil
| | - Alexandra Bottcher
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
- §Centro de Tecnologia Canavieira (CTC), Rua Santo Antônio, Centro, CEP 13400-160 Piracicaba, SP, Brazil
| | - Eduardo Kiyota
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
| | - Juliana Lischka Sampaio Mayer
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
| | - Renato Vicentini
- ∥Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875 Campinas, SP, Brazil
| | - Michael dos Santos Brito
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
- ⊥Centro de Cana, Instituto Agronômico de Campinas, CEP 14001-970 Ribeirão Preto, SP, Brazil
| | - Silvana Creste
- ⊥Centro de Cana, Instituto Agronômico de Campinas, CEP 14001-970 Ribeirão Preto, SP, Brazil
| | - Marcos G A Landell
- ⊥Centro de Cana, Instituto Agronômico de Campinas, CEP 14001-970 Ribeirão Preto, SP, Brazil
| | - Paulo Mazzafera
- †Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, CEP 13083-970 Campinas, SP, Brazil
| |
Collapse
|
32
|
Schneiderman SJ, Johnson RW, Menkhaus TJ, Gilcrease PC. Quantifying second generation ethanol inhibition: Design of Experiments approach and kinetic model development. BIORESOURCE TECHNOLOGY 2015; 179:219-226. [PMID: 25545091 DOI: 10.1016/j.biortech.2014.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development.
Collapse
Affiliation(s)
- Steven J Schneiderman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Roger W Johnson
- Department of Mathematics and Computer Science, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Todd J Menkhaus
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Patrick C Gilcrease
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States.
| |
Collapse
|
33
|
Pinel D, Colatriano D, Jiang H, Lee H, Martin VJJ. Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:53. [PMID: 25866561 PMCID: PMC4393574 DOI: 10.1186/s13068-015-0241-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Identifying the genetic basis of complex microbial phenotypes is currently a major barrier to our understanding of multigenic traits and our ability to rationally design biocatalysts with highly specific attributes for the biotechnology industry. Here, we demonstrate that strain evolution by meiotic recombination-based genome shuffling coupled with deep sequencing can be used to deconstruct complex phenotypes and explore the nature of multigenic traits, while providing concrete targets for strain development. RESULTS We determined genomic variations found within Saccharomyces cerevisiae previously evolved in our laboratory by genome shuffling for tolerance to spent sulphite liquor. The representation of these variations was backtracked through parental mutant pools and cross-referenced with RNA-seq gene expression analysis to elucidate the importance of single mutations and key biological processes that play a role in our trait of interest. Our findings pinpoint novel genes and biological determinants of lignocellulosic hydrolysate inhibitor tolerance in yeast. These include the following: protein homeostasis constituents, including Ubp7p and Art5p, related to ubiquitin-mediated proteolysis; stress response transcriptional repressor, Nrg1p; and NADPH-dependent glutamate dehydrogenase, Gdh1p. Reverse engineering a prominent mutation in ubiquitin-specific protease gene UBP7 in a laboratory S. cerevisiae strain effectively increased spent sulphite liquor tolerance. CONCLUSIONS This study advances understanding of yeast tolerance mechanisms to inhibitory substrates and biocatalyst design for a biomass-to-biofuel/biochemical industry, while providing insights into the process of mutation accumulation that occurs during genome shuffling.
Collapse
Affiliation(s)
- Dominic Pinel
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
- />Current address: Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94704 USA
| | - David Colatriano
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
| | - Heng Jiang
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
- />Current address: Crabtree Nutrition Laboratories, McGill University Health Center, Montreal, Quebec H3A 1A1 Canada
| | - Hung Lee
- />School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2 W1 Canada
| | - Vincent JJ Martin
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
| |
Collapse
|
34
|
Tang X, da Costa Sousa L, Jin M, Chundawat SPS, Chambliss CK, Lau MW, Xiao Z, Dale BE, Balan V. Designer synthetic media for studying microbial-catalyzed biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:1. [PMID: 26339291 PMCID: PMC4311453 DOI: 10.1186/s13068-014-0179-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/04/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. RESULTS The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. CONCLUSIONS The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.
Collapse
Affiliation(s)
- Xiaoyu Tang
- />Biogas Institute of Ministry of Agriculture, Section 4-13 Remin South Road, Chengdu, 610041 P. R. China
| | - Leonardo da Costa Sousa
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Mingjie Jin
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Shishir PS Chundawat
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
- />Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Room C-150A, Piscataway, NJ 08854 USA
| | | | - Ming W Lau
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Zeyi Xiao
- />School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065 P. R. China
| | - Bruce E Dale
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| | - Venkatesh Balan
- />DOE Great Lakes Bioenergy Research Center, Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Suite 1045, Lansing, 48910 USA
| |
Collapse
|
35
|
Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ. Modifying plants for biofuel and biomaterial production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1246-58. [PMID: 25431201 DOI: 10.1111/pbi.12300] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 05/08/2023]
Abstract
The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel.
Collapse
Affiliation(s)
- Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Poovaiah CR, Nageswara-Rao M, Soneji JR, Baxter HL, Stewart CN. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1163-73. [PMID: 25051990 DOI: 10.1111/pbi.12225] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 05/30/2014] [Indexed: 05/19/2023]
Abstract
Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of lignocellulosic biofuels. Even though we have learned a great deal about the biosynthesis of lignin, we do not fully understand its role in plant biology, which is needed for the rational design of engineered cell walls for lignocellulosic feedstocks. This review will recapitulate our knowledge of lignin biosynthesis and discuss how lignin has been modified and the consequences for the host plant.
Collapse
Affiliation(s)
- Charleson R Poovaiah
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Oak Ridge National Laboratory, BioEnergy Science Center, Oak Ridge, TN, USA
| | | | | | | | | |
Collapse
|
37
|
Chen H, Han Q, Daniel K, Venditti R, Jameel H. Conversion of Industrial Paper Sludge to Ethanol: Fractionation of Sludge and Its Impact. Appl Biochem Biotechnol 2014; 174:2096-113. [DOI: 10.1007/s12010-014-1083-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
38
|
Zhang J, Zhang WX, You L, Yin LG, Du YH, Yang J. Modified method combining in situ detoxification with simultaneous saccharification and cofermentation (SSCF) as a single step for converting exploded rice straw into ethanol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7486-7495. [PMID: 24999552 DOI: 10.1021/jf501703j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper reports an improved fermentation process that includes simultaneous saccharification, detoxification, and cofermentation as steps for producing bioethanol. Rice straw was first steam exploded (SE) or butanone solution exploded (BSE) and then cofermented with Saccharomyces cerevisiae and Candida shehatae. To overcome the inhibitors, the exploded rice straw was continuously and slowly introduced into a 10 L ventilated fermenter. When the fermentation conditions were set to 1.0% initial dry matter, 10% total dry matter, addition rate of 120 mg/min, total fermentation time of 234 h, and dose of 0.1% (NH4)2SO4, yields of 25.8 g/100 g of dry matter ethanol and 88% total sugar use were obtained for BSE rice straw. The ethanol yields were not significantly different between detoxified materials and non-detoxified materials. Most of the furfural, hydroxymethylfurfural (5-HMF), acetic acid, and butanone were removed during the fermentation of non-detoxified materials, and the sugar concentrations were very low. The in situ detoxification and fermentation was effective and inexpensive when the pre-detoxification of exploded materials and the pre-adaptation of strains steps were omitted.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Fermentation Resource and Application of Institutes of Higher Learning in Sichuan/Department of Life Science and Food Engineering, Yibin University , Yibin, Sichuan 644005, China
| | | | | | | | | | | |
Collapse
|
39
|
Zhou H, Lan T, Dien BS, Hector RE, Zhu JY. Comparisons of fiveSaccharomyces cerevisiaestrains for ethanol production from SPORL-pretreated lodgepole pine. Biotechnol Prog 2014; 30:1076-83. [DOI: 10.1002/btpr.1937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/08/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Haifeng Zhou
- School of Chemistry Chemical Eng.; South China University Technol.; Guangzhou China
- USDA Forest Service, Forest Products Laboratory; Madison WI
| | - Tianqing Lan
- School of Light Industry and Food Sciences; Kunming Polytechnic University; Kunming China
- USDA Forest Service, Forest Products Laboratory; Madison WI
| | - Bruce S. Dien
- USDA Agricultural Research Service; National Center for Agricultural Utilization Research; Peoria IL
| | - Ronald E. Hector
- USDA Agricultural Research Service; National Center for Agricultural Utilization Research; Peoria IL
| | - J. Y. Zhu
- USDA Forest Service, Forest Products Laboratory; Madison WI
| |
Collapse
|
40
|
Vincent M, Pometto AL, van Leeuwen JH. Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. BIORESOURCE TECHNOLOGY 2014; 158:1-6. [PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
Collapse
Affiliation(s)
- Micky Vincent
- Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States
| | - Anthony L Pometto
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - J Hans van Leeuwen
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States; Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
41
|
Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 2014; 14:22. [PMID: 24655423 PMCID: PMC3998114 DOI: 10.1186/1472-6750-14-22] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter J Punt
- TNO Microbiology & Systems Biology, Utrechtsweg 48, Zeist 3704 HE, The Netherlands.
| |
Collapse
|
42
|
Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production. Appl Environ Microbiol 2014; 80:2880-8. [PMID: 24584246 DOI: 10.1128/aem.03804-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adaptive evolution was employed to generate sodium (Na(+))-tolerant mutants of Escherichia coli MG1655. Four mutants with elevated sodium tolerance, designated ALS1184, ALS1185, ALS1186, and ALS1187, were independently isolated after 73 days of serial transfer in medium containing progressively greater Na(+) concentrations. The isolates also showed increased tolerance of K(+), although this cation was not used for selective pressure. None of the adapted mutants showed increased tolerance to the nonionic osmolyte sucrose. Several physiological parameters of E. coli MG1655 and ALS1187, the isolate with the greatest Na(+) tolerance, were calculated and compared using glucose-limited chemostats. Genome sequencing showed that the ALS1187 isolate contained mutations in five genes, emrR, hfq, kil, rpsG, and sspA, all of which could potentially affect the ability of E. coli to tolerate Na(+). Two of these genes, hfq and sspA, are known to be involved in global regulatory processes that help cells endure a variety of cellular stresses. Pyruvate formate lyase knockouts were constructed in strains MG1655 and ALS1187 to determine whether increased Na(+) tolerance afforded increased anaerobic generation of lactate. In fed-batch fermentations, E. coli ALS1187 pflB generated 76.2 g/liter lactate compared to MG1655 pflB, which generated only 56.3 g/liter lactate.
Collapse
|
43
|
Preisner M, Kulma A, Zebrowski J, Dymińska L, Hanuza J, Arendt M, Starzycki M, Szopa J. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties. BMC PLANT BIOLOGY 2014; 14:50. [PMID: 24552628 PMCID: PMC3945063 DOI: 10.1186/1471-2229-14-50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production).Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. RESULTS Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the "bona-fide" CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber's tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants' development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. CONCLUSION The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and organization of cellulose and pectin. However, to conclude that all observed changes are trustworthy and correlated exclusively to CAD repression, further analysis of the modified plants genome is necessary. Secondly, this is one of the first studies on the crop from the low-lignin plants from the field trail which demonstrates that such plants could be successfully cultivated in a field.
Collapse
Affiliation(s)
- Marta Preisner
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw 51-148, Poland
- Wroclaw Research Center EIT +, Stabłowicka 147/149, Wroclaw 54-066, Poland
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw 51-148, Poland
- Wroclaw Research Center EIT +, Stabłowicka 147/149, Wroclaw 54-066, Poland
| | - Jacek Zebrowski
- Centre of Applied Biotechnology and Basic Sciences, Faculty of Biotechnology, Rzeszow University, Aleja Rejtana 16, Rzeszow, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Wroclaw University of Economics, Komandorska 118/120, Wroclaw 50-345, Poland
| | - Jerzy Hanuza
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Wroclaw University of Economics, Komandorska 118/120, Wroclaw 50-345, Poland
- Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław 50-422, Poland
| | - Malgorzata Arendt
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw 51-148, Poland
| | - Michal Starzycki
- The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Research Division Poznan, ul. Strzeszynska 36, Poznan 60-479, Poland
| | - Jan Szopa
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw 51-148, Poland
- Wroclaw Research Center EIT +, Stabłowicka 147/149, Wroclaw 54-066, Poland
- Linum Foundation, Stabłowicka 147/149, Wroclaw 54-066, Poland
| |
Collapse
|
44
|
Lee MB, Kim DY, Hong MJ, Lee YJ, Seo YW. Identification of gamma irradiated Brachypodium mutants with altered genes responsible for lignin biosynthesis. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 2014; 98:2207-21. [PMID: 24442506 DOI: 10.1007/s00253-014-5519-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/24/2022]
Abstract
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.
Collapse
Affiliation(s)
- Ya-Jin Lv
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park YJ, Kim JC. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. BIORESOURCE TECHNOLOGY 2014; 151:227-235. [PMID: 24240182 DOI: 10.1016/j.biortech.2013.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
Abstract
This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.
Collapse
Affiliation(s)
- Cuong Mai Nguyen
- Department of Green Chemistry and Environmental Biotechnology, University of Science and Technology, 217, Gajungro, Yuseong-gu, Daejeon 305-333, Republic of Korea; Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Lujan-Rhenals DE, Morawicki RO, Ricke SC. Tolerance of S. cerevisiae and Z. mobilis to inhibitors produced during dilute acid hydrolysis of soybean meal. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:305-11. [PMID: 24502218 DOI: 10.1080/03601234.2014.868683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The objective of this research was to determine the minimum inhibitory concentration of 5-hydroxymethyl furfural, furfural, and acetic acid on Saccharomyces cerevisiae (NRRL Y-2233) and Zymomonas mobilis subspecies mobilis (NRRL B-4286) in both detoxified hydrolyzed soybean meal and synthetic YM broth spiked with the three compounds. Soybean meal was hydrolyzed with dilute sulfuric acid (0.0, 0.5, 1.25, and 2.0% wt v(-1)) at three temperatures (105, 120, and 135°C) and three durations (15, 30, and 45 min) followed by detoxification with activated carbon. Of all the combinations, only the treatments obtained at 135°C, 2.0% H2SO4, and 45 min and the one at 135°C, 1.25% H2SO4, and 45 min showed inhibition in the growth of the tested microorganisms. Spiked YM broths showed inhibition for the highest levels of inhibitors, either applied individually or in combination.
Collapse
|
48
|
Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Appl Environ Microbiol 2013; 80:540-54. [PMID: 24212571 DOI: 10.1128/aem.01885-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na(+), acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.
Collapse
|
49
|
Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Antonie Van Leeuwenhoek 2013; 105:29-43. [DOI: 10.1007/s10482-013-0050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
|
50
|
Li Z, Xiao H, Jiang W, Jiang Y, Yang S. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 2013; 171:555-68. [PMID: 23949683 DOI: 10.1007/s12010-013-0414-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40% of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the D-xylose proton-symporter, D-xylose isomerase, and xylulokinase was able to completely utilize glucose and L-arabinose, and 88% xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50% enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone-butanol-ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.
Collapse
Affiliation(s)
- Zhilin Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|