1
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2025; 67:369-392. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
2
|
Liu B, Wu T, Miao BA, Ji F, Liu S, Wang P, Zhao Y, Zhong Y, Sundaram A, Zeng TB, Majcherska-Agrawal M, Keenan RJ, Pan T, He C. snoRNA-facilitated protein secretion revealed by transcriptome-wide snoRNA target identification. Cell 2025; 188:465-483.e22. [PMID: 39579764 PMCID: PMC11761385 DOI: 10.1016/j.cell.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs known for guiding RNA modifications, including 2'-O-methylation (Nm) and pseudouridine (Ψ). While snoRNAs may also interact with other RNAs, such as mRNA, the full repertoire of RNAs targeted by snoRNA remains elusive due to the lack of effective technologies that identify snoRNA targets transcriptome wide. Here, we develop a chemical crosslinking-based approach that comprehensively detects cellular RNA targets of snoRNAs, yielding thousands of previously unrecognized snoRNA-mRNA interactions in human cells and mouse brain tissues. Many interactions occur outside of snoRNA-guided RNA modification sites, hinting at non-canonical functions beyond RNA modification. We find that one of these snoRNAs, SNORA73, targets mRNAs that encode secretory proteins and membrane proteins. SNORA73 also interacts with 7SL RNA, part of the signal recognition particle (SRP) required for protein secretion. The mRNA-SNORA73-7SL RNA interactions enhance the association of the SNORA73-target mRNAs with SRP, thereby facilitating the secretion of encoded proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Bernadette A Miao
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Fei Ji
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Arunkumar Sundaram
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tie-Bo Zeng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Marta Majcherska-Agrawal
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Committee on Genetics, Genomics & System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
4
|
González-Pereira P, Trinh R, Vasuthasawat A, Bartsch-Jiménez A, Nuñez-Soto C, Altamirano C. Enhancing Antibody-Specific Productivity: Unraveling the Impact of XBP1s Overexpression and Glutamine Availability in SP2/0 Cells. Bioengineering (Basel) 2024; 11:201. [PMID: 38534475 DOI: 10.3390/bioengineering11030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Augmentation of glycoprotein synthesis requirements induces endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR) and triggering unconventional XBP1 splicing. As a result, XBP1s orchestrates the expression of essential genes to reduce stress and restore homeostasis. When this mechanism fails, chronic stress may lead to apoptosis, which is thought to be associated with exceeding a threshold in XBP1s levels. Glycoprotein assembly is also affected by glutamine (Gln) availability, limiting nucleotide sugars (NS), and preventing compliance with the increased demands. In contrast, increased Gln intake synthesizes ammonia as a by-product, potentially reaching toxic levels. IgA2m(1)-producer mouse myeloma cells (SP2/0) were used as the cellular mammalian model. We explored how IgA2m(1)-specific productivity (qIgA2m(1)) is affected by (i) overexpression of human XBP1s (h-XBP1s) levels and (ii) Gln availability, evaluating the kinetic behavior in batch cultures. The study revealed a two and a five-fold increase in qIgA2m(1) when lower and higher levels of XBP1s were expressed, respectively. High h-XBP1s overexpression mitigated not only ammonia but also lactate accumulation. Moreover, XBP1s overexpressor showed resilience to hydrodynamic stress in serum-free environments. These findings suggest a potential application of h-XBP1s overexpression as a feasible and cost-effective strategy for bioprocess scalability.
Collapse
Affiliation(s)
- Priscilla González-Pereira
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Ryan Trinh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Vasuthasawat
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Bartsch-Jiménez
- Escuela Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Constanza Nuñez-Soto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Av. Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso 2340000, Chile
| |
Collapse
|
5
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
6
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
7
|
Engineering of Chinese hamster ovary cells for co-overexpressing MYC and XBP1s increased cell proliferation and recombinant EPO production. Sci Rep 2023; 13:1482. [PMID: 36707606 PMCID: PMC9883479 DOI: 10.1038/s41598-023-28622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.
Collapse
|
8
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Kyeong M, Lee JS. Endogenous BiP reporter system for simultaneous identification of ER stress and antibody production in Chinese hamster ovary cells. Metab Eng 2022; 72:35-45. [PMID: 35182754 DOI: 10.1016/j.ymben.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone, and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development.
Collapse
Affiliation(s)
- Minji Kyeong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
10
|
Torres M, Dickson AJ. Reprogramming of Chinese hamster ovary cells towards enhanced protein secretion. Metab Eng 2021; 69:249-261. [PMID: 34929420 DOI: 10.1016/j.ymben.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The deficient secretory phenotype of Chinese hamster ovary (CHO) cells is a major limitation for high-level production of biopharmaceuticals, particularly for those with complex molecular architectures and post-translational modifications. To improve CHO cell secretory capacity, we recently engineered CHO cell hosts to overexpress BLIMP1 (CHOB), in a cell engineering strategy that transformed the cellular machinery and led to significantly higher product yields and cell-specific productivities for different rproteins. Here, as a follow-up to our previous study, we developed new CHO cell hosts that co-overexpress BLIMP1 and XBP1s ( CHOBX ), two transcription factors that together drive the professional secretory function of antibody-producing plasma cells. We found that the CHOBX cells presented an improved performance over that of CHOB cells, with better product yields and cell-specific productivities for a recombinant IgG1 and a 'difficult-to-express' EPO-Fc fusion protein. These improvements in the CHOBX-derived cell lines resulted from a series of physiological and metabolic changes due to the synergetic co-expression of BLIMP1 and XBP1s. Firstly, cells presented an inhibited cell growth and arrested cell cycle in G1/G0 phase, features that were directly linked to BLIMP1 expression levels. Secondly, cells increased protein translation (both overall and recombinant protein), expanded the endoplasmic reticulum and improved their capacity to secrete protein more effectively. Lastly, cells showed a metabolic profile favouring energy production, with a pronounced lactate switch and increased consumption of amino acids. This study highlights the value of transcription factors for reprogramming CHO cells towards a desired phenotype, offering the potential to engineer cells with new functionalities for enhanced manufacturing of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Overexpression of transcription factor BLIMP1/prdm1 leads to growth inhibition and enhanced secretory capacity in Chinese hamster ovary cells. Metab Eng 2021; 67:237-249. [PMID: 34265400 DOI: 10.1016/j.ymben.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023]
Abstract
Chinese hamster ovary (CHO) cells present inherent limitations for processing and secretion of large amounts of recombinant proteins, especially for those requiring complex post-translational processing. To tackle these limitations, we engineered CHO host cells (CHOK1 and CHOS) to overexpress the transcription factor BLIMP1/prdm1 (a master regulator of the highly-secreting phenotype of antibody-producing plasma cells), generating novel CHO cell lines (referred to as CHOB). The CHOB cell lines exhibited decreased cell densities, prolonged stationary phase and arrested cell cycle in G1/G0 phase but simultaneously had significantly greater product titre for recombinant IgG1 (> 2-fold increase) coupled with a significantly greater cell-specific productivities (> 3-fold increase). We demonstrated that the improved productive phenotype of CHOB cells resulted from a series of changes to cell physiology and metabolism. CHOB cells showed a significantly greater ER size and increased protein synthesis and secretion capacity compared to control cells. In addition, CHOB cells presented a metabolic profile that favoured energy production to support increased recombinant protein production. This study indicated that a cell engineering approach based on BLIMP1 expression offers great potential for improving the secretory capacity of CHO cell hosts utilised for manufacture of recombinant biopharmaceuticals. Our findings also provides a greater understanding of the relationship between cell growth and productivity, valuable generic information for improving productive phenotypes for CHO cell lines during industrial cell line development.
Collapse
|
13
|
Abaandou L, Quan D, Shiloach J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021; 10:cells10071667. [PMID: 34359846 PMCID: PMC8304725 DOI: 10.3390/cells10071667] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The HEK293 cell line has earned its place as a producer of biotherapeutics. In addition to its ease of growth in serum-free suspension culture and its amenability to transfection, this cell line’s most important attribute is its human origin, which makes it suitable to produce biologics intended for human use. At the present time, the growth and production properties of the HEK293 cell line are inferior to those of non-human cell lines, such as the Chinese hamster ovary (CHO) and the murine myeloma NSO cell lines. However, the modification of genes involved in cellular processes, such as cell proliferation, apoptosis, metabolism, glycosylation, secretion, and protein folding, in addition to bioprocess, media, and vector optimization, have greatly improved the performance of this cell line. This review provides a comprehensive summary of important achievements in HEK293 cell line engineering and on the global engineering approaches and functional genomic tools that have been employed to identify relevant genes for targeted engineering.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Department of Chemistry and Biochemistry, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - David Quan
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
| | - Joseph Shiloach
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Correspondence:
| |
Collapse
|
14
|
Dong H, Wang B, Pan L. Study on the interaction mechanism of phospholipid imbalance and endoplasmic reticulum protein secretion imbalance in Aspergillus niger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183530. [PMID: 33309775 DOI: 10.1016/j.bbamem.2020.183530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
As the largest membrane organelle, the endoplasmic reticulum (ER) is the main location for protein preliminary processing and phospholipid synthesis. Phospholipid bilayer is the main component of the ER, so it plays an intuitively important role in the steady state of protein synthesis in the ER. Despite of their importance, relationship between phospholipid homeostasis and protein processing in Aspergillus niger remains poorly understood. In this study, phosphatidyl ethanolamine (PE)/phosphatidyl choline (PC) and phosphatidyl acid (PA) metabolic mutants and ER protein processing mutants were established by knockout the key genes in phospholipid synthesis or UPR effector hacA. Based on global transcriptome and lipidome analysis, the relationship between the phospholipids imbalance and ER protein secretory imbalance was revealed as followed: The cells compensate for the damage caused by ER protein secretory deficiency or phospholipid deficiency from enhancing the protein processing and the synthesis of phospholipids at the transcription level, therefore phospholipid deficiency (Δopi3) and continuous activation of UPR (hacAi) have a synergistic effect in promoting protein secretion and phospholipid biosynthesis. At the same time, the metabolic deficiencies of phospholipid homeostasis and the processing deficiencies of ER protein will also cause cells sensitive to oxidative stress, cell wall inhibition and DNA damage.
Collapse
Affiliation(s)
- Hongzhi Dong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
15
|
Lin PC, Liu R, Alvin K, Wahyu S, Murgolo N, Ye J, Du Z, Song Z. Improving Antibody Production in Stably Transfected CHO Cells by CRISPR-Cas9-Mediated Inactivation of Genes Identified in a Large-Scale Screen with Chinese Hamster-Specific siRNAs. Biotechnol J 2020; 16:e2000267. [PMID: 33079482 DOI: 10.1002/biot.202000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/07/2022]
Abstract
The Chinese hamster ovary (CHO) cell line is commonly used for the production of biotherapeutics. As cell productivity directly affects the cost of production, methods are developed to manipulate the expression of specific genes that are known to be involved in protein synthesis, folding, and secretion to increase productivity. However, there are no large-scale CHO-specific functional screens to identify novel gene targets that impact the production of secreted recombinant proteins. Here, a large-scale, CHO cell-specific small interfering RNA screen is performed to identify genes that consistently enhance antibody production when silenced in a panel of seven CHO cell lines. Four genes, namely, Cyp1a2, Atp5s, Dgki, and P3h2, are identified, and then selected for CRISPR-Cas9 knockout validation in recombinant CHO cell lines. Single knockout of Cyp1a2, Atp5s, or Dgki, but not P3h2, results in a more than 90% increase in specific antibody productivity. Overall, the knockout of Cyp1a2 demonstrates the most significant improvement of antibody production, with a minimal impact on cell growth.
Collapse
Affiliation(s)
- Pao-Chun Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Ren Liu
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Krista Alvin
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shahreel Wahyu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| | - Nicholas Murgolo
- Bioinformatics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jianxin Ye
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhimei Du
- Cell Line Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #04-01 Centros, Singapore, 138668, Singapore
| |
Collapse
|
16
|
Berger A, Le Fourn V, Masternak J, Regamey A, Bodenmann I, Girod P, Mermod N. Overexpression of transcription factor Foxa1 and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells. Biotechnol Bioeng 2020; 117:1101-1116. [PMID: 31956982 PMCID: PMC7079004 DOI: 10.1002/bit.27274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Despite extensive research conducted to increase protein production from Chinese hamster ovary (CHO) cells, cellular bottlenecks often remain, hindering high yields. In this study, a transcriptomic analysis led to the identification of 32 genes that are consistently upregulated in high producer clones and thus might mediate high productivity. Candidate genes were associated with functions such as signaling, protein folding, cytoskeleton organization, and cell survival. We focused on two engineering targets, Erp27, which binds unfolded proteins and the Erp57 disulfide isomerase in the endoplasmic reticulum, and Foxa1, a pioneering transcription factor involved in organ development. Erp27 moderate overexpression increased production of an easy-to-express antibody, whereas Erp27 and Erp57 co-overexpression increased cell density, viability, and the yield of difficult-to-express proteins. Foxa1 overexpression increased cell density, cell viability, and easy- and difficult-to-express protein yields, whereas it decreased reactive oxygen species late in fed-batch cultures. Foxa1 overexpression upregulated two other candidate genes that increased the production of difficult- and/or easy-to-express proteins, namely Ca3, involved in protecting cells from oxidative stress, and Tagap, involved in signaling and cytoskeleton remodeling. Overall, several genes allowing to overcome CHO cell bottlenecks were identified, including Foxa1, which mediated multiple favorable metabolic changes that improve therapeutic protein yields.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
- Present address: Laboratory of Microsystems LMIS4Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Jacqueline Masternak
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
17
|
A platform for context-specific genetic engineering of recombinant protein production by CHO cells. J Biotechnol 2020; 312:11-22. [DOI: 10.1016/j.jbiotec.2020.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
|
18
|
Gutierrez JM, Feizi A, Li S, Kallehauge TB, Hefzi H, Grav LM, Ley D, Baycin Hizal D, Betenbaugh MJ, Voldborg B, Faustrup Kildegaard H, Min Lee G, Palsson BO, Nielsen J, Lewis NE. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat Commun 2020; 11:68. [PMID: 31896772 PMCID: PMC6940358 DOI: 10.1038/s41467-019-13867-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
In mammalian cells, >25% of synthesized proteins are exported through the secretory pathway. The pathway complexity, however, obfuscates its impact on the secretion of different proteins. Unraveling its impact on diverse proteins is particularly important for biopharmaceutical production. Here we delineate the core secretory pathway functions and integrate them with genome-scale metabolic reconstructions of human, mouse, and Chinese hamster ovary cells. The resulting reconstructions enable the computation of energetic costs and machinery demands of each secreted protein. By integrating additional omics data, we find that highly secretory cells have adapted to reduce expression and secretion of other expensive host cell proteins. Furthermore, we predict metabolic costs and maximum productivities of biotherapeutic proteins and identify protein features that most significantly impact protein secretion. Finally, the model successfully predicts the increase in secretion of a monoclonal antibody after silencing a highly expressed selection marker. This work represents a knowledgebase of the mammalian secretory pathway that serves as a novel tool for systems biotechnology.
Collapse
Affiliation(s)
- Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Amir Feizi
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas B Kallehauge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lise M Grav
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daniel Ley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218-2686, USA
| | - Bjorn Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
21
|
Ha TK, Hansen AH, Kildegaard HF, Lee GM. BiP Inducer X: An ER Stress Inhibitor for Enhancing Recombinant Antibody Production in CHO Cell Culture. Biotechnol J 2019; 14:e1900130. [PMID: 31161665 DOI: 10.1002/biot.201900130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Prolonged endoplasmic reticulum (ER) stress reduces protein synthesis and induces apoptosis in mammalian cells. When dimethyl sulfoxide (DMSO), a specific monoclonal antibody productivity (qmAb )-enhancing reagent, is added to recombinant Chinese hamster ovary (rCHO) cell cultures (GSR cell line), it induces ER stress and apoptosis in a dose-dependent manner. To determine an effective ER stress inhibitor, three ER stress inhibitors (BiP inducer X [BIX], tauroursodeoxycholic acid, and carbazole) are examined and BIX shows the best production performance. Coaddition of BIX (50 μm) with DMSO extends the culture longevity and enhances qmAb . As a result, the maximum mAb concentration is significantly increased with improved galactosylation. Coaddition of BIX significantly increases the expression level of binding immunoglobulin protein (BiP) followed by increased expression of chaperones (calnexin and GRP94) and galactosyltransferase. Furthermore, the expression levels of CHOP, a well-known ER stress marker, and cleaved caspase-3 are significantly reduced, suggesting that BIX addition reduces ER stress-induced cell death by relieving ER stress. The beneficial effect of BIX on mAb production is also demonstrated with another qmAb -enhancing reagent (sodium butyrate) and a different rCHO cell line (CS13-1.00). Taken together, BIX is an effective ER stress inhibitor that can be used to increase mAb production in rCHO cells.
Collapse
Affiliation(s)
- Tae Kwang Ha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Anders H Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Helene F Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.,Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst 2019; 4:262-275. [PMID: 28334575 DOI: 10.1016/j.cels.2017.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.
Collapse
Affiliation(s)
- Anne Mathilde Davy
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
23
|
Gutiérrez-González M, Latorre Y, Zúñiga R, Aguillón JC, Molina MC, Altamirano C. Transcription factor engineering in CHO cells for recombinant protein production. Crit Rev Biotechnol 2019; 39:665-679. [PMID: 31030575 DOI: 10.1080/07388551.2019.1605496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The continuous increase of approved biopharmaceutical products drives the development of more efficient recombinant protein expression systems. Chinese hamster ovary (CHO) cells are the mainstay for this purpose but have some drawbacks, such as low levels of expression. Several strategies have been applied to increase the productivity of CHO cells with different outcomes. Transcription factor (TF) engineering has emerged as an interesting and successful approach, as these proteins can act as master regulators; the expression and function of a TF can be controlled by small molecules, and it is possible to design tailored TFs and promoters with desired features. To date, the majority of studies have focused on the use of TFs with growth, metabolic, cell cycle or endoplasmic reticulum functions, although there is a trend to develop new, synthetic TFs. Moreover, new synthetic biological approaches are showing promising advances for the development of specific TFs, even with tailored ligand sensitivity. In this article, we summarize the strategies to increase recombinant protein expression by modulating and designing TFs and with advancements in synthetic biology. We also illustrate how this class of proteins can be used to develop more robust expression systems.
Collapse
Affiliation(s)
| | - Yesenia Latorre
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Roberto Zúñiga
- a Centro de InmunoBiotecnología, Universidad de Chile , Santiago , Chile
| | | | | | - Claudia Altamirano
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| |
Collapse
|
24
|
Kaneyoshi K, Uchiyama K, Onitsuka M, Yamano N, Koga Y, Omasa T. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. J Biosci Bioeng 2019; 127:107-113. [DOI: 10.1016/j.jbiosc.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
|
25
|
Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell Line Techniques and Gene Editing Tools for Antibody Production: A Review. Front Pharmacol 2018; 9:630. [PMID: 29946262 PMCID: PMC6006397 DOI: 10.3389/fphar.2018.00630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The present day modern formulation practices for drugs are based on newer tools and techniques toward effective utilization. The methods of antibody formulations are to be revolutionized based on techniques of cell engineering and gene editing. In the present review, we have discussed innovations in cell engineering toward production of novel antibodies for therapeutic applications. Moreover, this review deciphers the use of RNAi, ribozyme engineering, CRISPR-Cas-based techniques for better strategies for antibody production. Overall, this review describes the multidisciplinary aspects of the production of therapeutic proteins that has gained more attention due to its increasing demand.
Collapse
Affiliation(s)
- Arun K. Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | | | - Shailja Dwivedi
- Advanced Biotech Lab, Ipca Laboratories Limited, Mumbai, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
26
|
Bankefa OE, Wang M, Zhu T, Li Y. Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris. Biotechnol Lett 2018; 40:1149-1156. [PMID: 29785668 DOI: 10.1007/s10529-018-2571-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To systematically explore the effects of overexpressing Hac1p homologues from different sources on protein secretion in Pichia pastoris system. RESULTS Effects of Hac1p homologues encompassing P. pastoris (PpHac1p), S. cerevisiae (ScHac1p), Trichoderma reesei (TrHac1p) and Homo sapiens (HsXbp1), on secretion of three reporter proteins-β-galactosidase, β-mannanase and glucose oxidase were investigated. No individual Hac1p was optimal for all the enzymes. Rather, by testing a set of Hac1p, the secretory expression of each of the enzymes was improved. Notably, HsXbp1 overexpression improved β-mannanase production from 73 to 108.5 U β-mannanase mL-1 while PpHac1p had no impact in shake flask culture. Moreover, HsXbp1 led to 41 and 67% increases in β-mannanase production in the single- and four-copy strain, respectively in 1-L laboratory fermenter. Transcription analysis of indicative chaperones suggested that HsXbp1 may cause a stronger and prolonged activation of the UPR target chaperone genes. CONCLUSION Mammalian HsXbp1 worked better than yeast Hac1p in terms of improving β-mannanase secretion in P. pastoris, and Hac1p screening may offer an effective strategy to engineer the secretion pathway of eukaryotic expression systems.
Collapse
Affiliation(s)
- Olufemi Emmanuel Bankefa
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Meiyu Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Taicheng Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
27
|
Torres M, Zúñiga R, Gutierrez M, Vergara M, Collazo N, Reyes J, Berrios J, Aguillon JC, Molina MC, Altamirano C. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS One 2018; 13:e0194510. [PMID: 29566086 PMCID: PMC5864046 DOI: 10.1371/journal.pone.0194510] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most frequently used host for commercial production of therapeutic proteins. However, their low protein productivity in culture is the main hurdle to overcome. Mild hypothermia has been established as an effective strategy to enhance protein specific productivity, although the causes of such improvement still remain unclear. The self-regulation of global transcriptional regulatory factors, such as Myc and XBP1s, seems to be involved in increased the recombinant protein production at low temperature. This study evaluated the impact of low temperature in CHO cell cultures on myc and xbp1s expression and their effects on culture performance and cell metabolism. Two anti-TNFα producing CHO cell lines were selected considering two distinct phenotypes: i.e. maximum cell growth, (CN1) and maximum specific anti-TNFα production (CN2), and cultured at 37, 33 and 31°C in a batch system. Low temperature led to an increase in the cell viability, the expression of the recombinant anti-TNFα and the production of anti-TNFα both in CN1 and CN2. The higher production of anti-TNFα in CN2 was mainly associated with the large expression of anti-TNFα. Under mild hypothermia myc and xbp1s expression levels were directly correlated to the maximal viable cell density and the specific anti-TNFα productivity, respectively. Moreover, cells showed a simultaneous metabolic shift from production to consumption of lactate and from consumption to production of glutamine, which were exacerbated by reducing culture temperature and coincided with the increased anti-TNFα production. Our current results provide new insights of the regulation of myc and xbp1s in CHO cells at low temperature, and suggest that the presence and magnitude of the metabolic shift might be a relevant metabolic marker of productive cell line.
Collapse
Affiliation(s)
- Mauro Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Roberto Zúñiga
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Matias Gutierrez
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Norberto Collazo
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Julio Berrios
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Carlos Aguillon
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Carmen Molina
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS CONICYT Regional GORE, Valparaiso, Chile
- * E-mail:
| |
Collapse
|
28
|
Segar KP, Chandrawanshi V, Mehra S. Activation of unfolded protein response pathway is important for valproic acid mediated increase in immunoglobulin G productivity in recombinant Chinese hamster ovary cells. J Biosci Bioeng 2017; 124:459-468. [DOI: 10.1016/j.jbiosc.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
|
29
|
Hussain H, Fisher DI, Abbott WM, Roth RG, Dickson AJ. Use of a protein engineering strategy to overcome limitations in the production of “Difficult to Express” recombinant proteins. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hirra Hussain
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| | - David I. Fisher
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | - W. Mark Abbott
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | | | - Alan J. Dickson
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| |
Collapse
|
30
|
Soo BPC, Tay J, Ng S, Ho SCL, Yang Y, Chao SH. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter. Mol Biotechnol 2017; 59:315-322. [DOI: 10.1007/s12033-017-0019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
32
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
33
|
Prats Mateu B, Harreither E, Schosserer M, Puxbaum V, Gludovacz E, Borth N, Gierlinger N, Grillari J. Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines. Biotechnol J 2016; 12. [PMID: 27440252 PMCID: PMC5244663 DOI: 10.1002/biot.201600037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
As a possible viable and non-invasive method to identify high producing cells, Confocal Raman Microscopy was shown to be able to differentiate CHO host cell lines and derivative production clones. Cluster analysis of spectra and their derivatives was able to differentiate between different producer cell lines and a host, and also distinguished between an intracellular region of high lipid and protein content that in structure resembles the Endoplasmic Reticulum. This ability to identify the ER may be a major contributor to the identification of high producers. PCA enabled the discrimination even of host cell lines and their subclones with inherently higher production capacity. The method is thus a promising option that may contribute to early, non-invasive identification of high potential candidates during cell line development and possibly could also be used for proof of identity of established production clones.
Collapse
Affiliation(s)
- Batirtze Prats Mateu
- Institute of Physics and Materials Sciences, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva Harreither
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Verena Puxbaum
- ACIB Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Elisabeth Gludovacz
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,ACIB Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Notburga Gierlinger
- Institute of Physics and Materials Sciences, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,ACIB Austrian Center of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
34
|
Omasa T. Application of Unfolded Protein Response for Production of Biologics. YAKUGAKU ZASSHI 2016; 136:831-9. [PMID: 27252063 DOI: 10.1248/yakushi.15-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvements in the productivity of established mammalian cell lines used for biopharmaceutical production are desirable to increase product yields. Chinese hamster ovary (CHO) cells are the workhorse used for more than 60% of industrial therapeutic antibody production. Glycoprotein secretion by CHO cells requires intracellular processes including transcription, translation, glycosylation, and secretion. Within these intracellular steps, post-translational processes are rate limiting for production in high-producer cell lines. This review focuses on unfolded protein response-based engineering of CHO cells and details our recent progress in using overexpression of activating transcription factor 4 to promote recombinant protein production.
Collapse
Affiliation(s)
- Takeshi Omasa
- Tokushima University, Institute of Technology and Science
| |
Collapse
|
35
|
Lew QJ, Chu KL, Chia YL, Soo B, Ho JP, Ng CH, Kwok HS, Chiang CM, Chang Y, Chao SH. GCN5 inhibits XBP-1S-mediated transcription by antagonizing PCAF action. Oncotarget 2016; 6:271-87. [PMID: 25426559 PMCID: PMC4381594 DOI: 10.18632/oncotarget.2773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/15/2014] [Indexed: 01/12/2023] Open
Abstract
Cellular unfolded protein response (UPR) is induced when endoplasmic reticulum (ER) is under stress. XBP-1S, the active isoform of X-box binding protein 1 (XBP-1), is a key regulator of UPR. Previously, we showed that a histone acetyltransferase (HAT), p300/CBP-associated factor (PCAF), binds to XBP-1S and functions as an activator of XBP-1S. Here, we identify general control nonderepressible 5 (GCN5), a HAT with 73% identity to PCAF, as a novel XBP-1S regulator. Both PCAF and GCN5 bind to the same domain of XBP-1S. Surprisingly, GCN5 potently blocks the XBP-1S-mediated transcription, including cellular UPR genes and latent membrane protein 1 of Epstein-Barr virus. Unlike PCAF, GCN5 acetylates XBP-1S and enhances nuclear retention and protein stability of XBP-1S. However, such GCN5-mediated acetylation of XBP-1S shows no effects on XBP-1S activity. In addition, the HAT activity of GCN5 is not required for repression of XBP-1S target genes. We further demonstrate that GCN5 inhibits XBP-1S-mediated transcription by disrupting the PCAF-XBP-1S interaction and preventing the recruitment of XBP-1S to its target genes. Taken together, our results represent the first work demonstrating that GCN5 and PCAF exhibit different functions and antagonistically regulate the XBP-1S-mediated transcription.
Collapse
Affiliation(s)
- Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yi Ling Chia
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Benjamin Soo
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jia Pei Ho
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chew Har Ng
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Si Kwok
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Harry Hines Boulevard, Dallas, TX, USA
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore. Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
36
|
Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci Rep 2015; 5:18016. [PMID: 26657798 PMCID: PMC4676018 DOI: 10.1038/srep18016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells.
Collapse
|
37
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
38
|
Rajendra Y, Hougland MD, Schmitt MG, Barnard GC. Transcriptional and post-transcriptional targeting for enhanced transient gene expression in CHO cells. Biotechnol Lett 2015; 37:2379-86. [PMID: 26298077 DOI: 10.1007/s10529-015-1938-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To develop a simple approach to increase titers of transient gene expression in CHO cells without relying on host cell line engineering as recent reports suggest that for PEI-mediated transfections, under optimized conditions, DNA delivery into cells and nuclei is not the limiting factor. RESULTS N, N-Dimethyl acetamide (DMA) was utilized to enhance transcription. To target post-transcriptional events, we evaluated the co-expression of various genes involved in the unfolded protein response, namely XBP1S, ATF4, CHOP and HSPA5. XBP1S overexpression led to a 15-85 % increase in titer for multiple therapeutic proteins. Mechanistic studies confirmed that addition of 0.125 % DMA increased transgene mRNA levels as expected. However, overexpression of XBP1S had no effect on transgene mRNA levels, indicating that it influenced post-transcriptional events. Since DMA and XBP1S targeted different pathways, the combination of the two approaches led to an additive improvement in protein titer (150-250 % titer increase). CONCLUSION Transcriptional and post-transcriptional pathways of transient gene expression can be targeted to increase titers without resorting to host cell line engineering in a simple, short, 7 day production process.
Collapse
Affiliation(s)
- Yashas Rajendra
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Maria D Hougland
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Matthew G Schmitt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Gavin C Barnard
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
39
|
Le H, Vishwanathan N, Jacob NM, Gadgil M, Hu WS. Cell line development for biomanufacturing processes: recent advances and an outlook. Biotechnol Lett 2015; 37:1553-64. [PMID: 25971160 DOI: 10.1007/s10529-015-1843-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.
Collapse
|
40
|
Zboray K, Sommeregger W, Bogner E, Gili A, Sterovsky T, Fauland K, Grabner B, Stiedl P, Moll HP, Bauer A, Kunert R, Casanova E. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Res 2015; 43:e102. [PMID: 25977298 PMCID: PMC4652741 DOI: 10.1093/nar/gkv475] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.
Collapse
Affiliation(s)
- Katalin Zboray
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Wolfgang Sommeregger
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | - Edith Bogner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Andreas Gili
- Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | | | | | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
41
|
Thomas DR, Walmsley AM. The effect of the unfolded protein response on the production of recombinant proteins in plants. PLANT CELL REPORTS 2015; 34:179-87. [PMID: 25187294 DOI: 10.1007/s00299-014-1680-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 05/16/2023]
Abstract
Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.
Collapse
Affiliation(s)
- David Rhys Thomas
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
42
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
43
|
Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 2014; 9:1140-51. [DOI: 10.1002/biot.201400050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 05/09/2014] [Indexed: 12/27/2022]
|
44
|
Hussain H, Maldonado-Agurto R, Dickson AJ. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol Lett 2014; 36:1581-93. [PMID: 24752815 DOI: 10.1007/s10529-014-1537-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
45
|
Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnology 2014; 67:237-54. [PMID: 24504562 DOI: 10.1007/s10616-013-9678-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022] Open
Abstract
Genes in the protein secretion pathway have been targeted to increase productivity of monoclonal antibodies in Chinese hamster ovary cells. The results have been highly variable depending on the cell type and the relative amount of recombinant and target proteins. This paper presents a comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells. mRNA profiles of all major ER chaperones and unfolded protein response (UPR) pathway genes are measured at a series of time points in a high-producing cell line under the dynamic environment of a batch culture. An initial increase in IgG heavy chain mRNA levels correlates with an increase in productivity. We observe a parallel increase in the expression levels of majority of chaperones. The chaperone levels continue to increase until the end of the batch culture. In contrast, calreticulin and ERO1-L alpha, two of the lowest expressed genes exhibit transient time profiles, with peak induction on day 3. In response to increased ER stress, both the GCN2/PKR-like ER kinase and inositol-requiring enzyme-1alpha (Ire1α) signalling branch of the UPR are upregulated. Interestingly, spliced X-Box binding protein 1 (XBP1s) transcription factor from Ire1α pathway is detected from the beginning of the batch culture. Comparison with the expression levels in a low producer, show much lower induction at the end of the exponential growth phase. Thus, the unfolded protein response strongly correlates with the magnitude and timing of stress in the course of the batch culture.
Collapse
|
46
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
47
|
Strotbek M, Florin L, Koenitzer J, Tolstrup A, Kaufmann H, Hausser A, Olayioye MA. Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metab Eng 2013; 20:157-66. [DOI: 10.1016/j.ymben.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022]
|
48
|
Haredy AM, Nishizawa A, Honda K, Ohya T, Ohtake H, Omasa T. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression. Cytotechnology 2013; 65:993-1002. [PMID: 24026344 DOI: 10.1007/s10616-013-9631-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022] Open
Abstract
To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host cell line. Clone CHO-ATF4-16 did not show any change in growth rate compared with the parental cells or mock-transfected CHO-DP12-SF cells. The expression levels of mRNAs encoding both the antibody heavy and light chains in the CHO-ATF4-16 clone were analyzed. This analysis showed that ATF4 overexpression improved the total production and specific production rate of antibody without affecting the mRNA transcription level. These results indicate that ATF4 overexpression is a promising method for improving recombinant IgG production in CHO cells.
Collapse
Affiliation(s)
- Ahmad M Haredy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Du Z, Treiber D, McCoy RE, Miller AK, Han M, He F, Domnitz S, Heath C, Reddy P. Non-invasive UPR monitoring system and its applications in CHO production cultures. Biotechnol Bioeng 2013; 110:2184-94. [DOI: 10.1002/bit.24877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/15/2013] [Indexed: 02/04/2023]
|