1
|
Hashiguchi R, Ichikawa H, Kumeta M, Koyama D. Control of myotube orientation using ultrasonication. Sci Rep 2024; 14:25737. [PMID: 39468262 PMCID: PMC11519932 DOI: 10.1038/s41598-024-77277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
This study investigated a technique for controlling the orientation of C2C12-derived myotube cells using ultrasonication for future clinical applications of cultured skeletal muscle tissues. An ultrasonicating cell culture dish, comprising a plastic-bottomed culture dish and a circular glass plate (diameter, 35 mm; thickness, 1.1 mm) attached to an annular piezoelectric ultrasonic transducer (inner diameter, 10 mm; outer diameter, 20 mm; thickness, 1 mm), was constructed. A concentric resonant vibrational mode at 89 kHz was generated on the bottom of the dish, and the orientations of myotube cells were quantitatively evaluated using two-dimensional Fourier transform analysis of phase contrast microscopy images captured over a 14 × 10 mm2 area at the center of the dish. Unsonicated myotube cells grew in random directions, but ultrasonication aligned them circumferentially in the culture dish. The timing of treatment was important, with ultrasonication for 48 h before differentiation having a greater impact on myotube orientation than ultrasonication after differentiation. A larger ultrasonic vibration, with an amplitude of over 20 Vpp, resulted in significantly smaller angles of deviation in the circumferential direction than the control. Ultrasonication enhanced the expression of differentiation-related genes and the formation of aligned myotubes, suggesting that it promotes differentiation of C2C12 cells into myotubes.
Collapse
Affiliation(s)
- Ryohei Hashiguchi
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hidetaka Ichikawa
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
2
|
Peñas-Núñez SJ, Mecerreyes D, Criado-Gonzalez M. Recent Advances and Developments in Injectable Conductive Polymer Gels for Bioelectronics. ACS APPLIED BIO MATERIALS 2024. [PMID: 38364213 DOI: 10.1021/acsabm.3c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Soft matter bioelectronics represents an emerging and interdisciplinary research frontier aiming to harness the synergy between biology and electronics for advanced diagnostic and healthcare applications. In this context, a whole family of soft gels have been recently developed with self-healing ability and tunable biological mimetic features to act as a tissue-like space bridging the interface between the electronic device and dynamic biological fluids and body tissues. This review article provides a comprehensive overview of electroactive polymer gels, formed by noncovalent intermolecular interactions and dynamic covalent bonds, as injectable electroactive gels, covering their synthesis, characterization, and applications. First, hydrogels crafted from conducting polymers (poly(3,4-ethylene-dioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy))-based networks which are connected through physical interactions (e.g., hydrogen bonding, π-π stacking, hydrophobic interactions) or dynamic covalent bonds (e.g., imine bonds, Schiff-base, borate ester bonds) are addressed. Injectable hydrogels involving hybrid networks of polymers with conductive nanomaterials (i.e., graphene oxide, carbon nanotubes, metallic nanoparticles, etc.) are also discussed. Besides, it also delves into recent advancements in injectable ionic liquid-integrated gels (iongels) and deep eutectic solvent-integrated gels (eutectogels), which present promising avenues for future research. Finally, the current applications and future prospects of injectable electroactive polymer gels in cutting-edge bioelectronic applications ranging from tissue engineering to biosensing are outlined.
Collapse
Affiliation(s)
- Sergio J Peñas-Núñez
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
de Barros NR, Darabi MA, Ma X, Diltemiz SE, Ermis M, Hassani Najafabasi A, Nadine S, Banton EA, Mandal K, Abbasgholizadeh R, Falcone N, Mano JF, Nasiri R, Herculano RD, Zhu Y, Ostrovidov S, Lee J, Kim HJ, Hosseini V, Dokmeci MR, Ahadian S, Khademhosseini A. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles. Macromol Biosci 2023; 23:e2300276. [PMID: 37534566 PMCID: PMC10837326 DOI: 10.1002/mabi.202300276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.
Collapse
Affiliation(s)
| | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Xin Ma
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Sibel Emir Diltemiz
- Department of Chemistry, Eskisehir Technical University, Eskisehir, 26470, Turkey
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ethan A. Banton
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - João F. Mano
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Hennig K, Hardman D, Barata DM, Martins II, Bernabeu MO, Gomes ER, Roman W. Generating fast-twitch myotubes in vitro with an optogenetic-based, quantitative contractility assay. Life Sci Alliance 2023; 6:e202302227. [PMID: 37550008 PMCID: PMC10427763 DOI: 10.26508/lsa.202302227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The composition of fiber types within skeletal muscle impacts the tissue's physiological characteristics and susceptibility to disease and ageing. In vitro systems should therefore account for fiber-type composition when modelling muscle conditions. To induce fiber specification in vitro, we designed a quantitative contractility assay based on optogenetics and particle image velocimetry. We submitted cultured myotubes to long-term intermittent light-stimulation patterns and characterized their structural and functional adaptations. After several days of in vitro exercise, myotubes contract faster and are more resistant to fatigue. The enhanced contractile functionality was accompanied by advanced maturation such as increased width and up-regulation of neuron receptor genes. We observed an up-regulation in the expression of fast myosin heavy-chain isoforms, which induced a shift towards a fast-twitch phenotype. This long-term in vitro exercise strategy can be used to study fiber specification and refine muscle disease modelling.
Collapse
Affiliation(s)
- Katharina Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - David Hardman
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - David Mb Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Ibb Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| |
Collapse
|
5
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
6
|
Wu S, Ruan L, Wu J, Wu M, Chu LT, Kwong HK, Lam ML, Chen TH. Scalable pattern formation of skeletal myotubes by synergizing microtopographic cues and chiral nematics of cells. Biofabrication 2023; 15. [PMID: 36791461 DOI: 10.1088/1758-5090/acbc4d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Topographical cues have been widely used to facilitate cell fusion in skeletal muscle formation. However, an unexpected yet consistent chiral orientation of myotubes deviating from the groove boundaries is commonly observed but has long been unattended. In this study, we report a method to guide the formation of skeletal myotubes into scalable and controlled patterns. By inducing C2C12 myoblasts onto grooved patterns with different widths (from 0.4 to 200μm), we observed an enhanced chiral orientation of cells developing on wide grooves (50 and 100μm width) since the first day of induction. Active chiral nematics of cells involving cell migration and chiral rotation of the cell nucleus subsequently led to a unified chiral orientation of the myotubes. Importantly, these chiral myotubes were formed with enhanced length, diameter, and contractility on wide grooves. Treatment of latrunculin A (Lat A) suppressed the chiral rotation and migration of cells as well as the myotube formation, suggesting the essence of chiral nematics of cells for myogenesis. Finally, by arranging wide grooved/striped patterns with corresponding compensation angles to synergize microtopographic cues and chiral nematics of cells, intricate and scalable patterns of myotubes were formed, providing a strategy for engineering skeletal muscle tissue formation.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lingyan Ruan
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jianpeng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
7
|
Gao X, Zhang Y, Wu Y, Nguyen TT, Wu J, Guo M, Du C. Inspired by Skeletal Muscles: Study of the Physical and Electrochemical Properties of Derived Lignocellulose-Based Carbon Fibers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8068. [PMID: 36431557 PMCID: PMC9694132 DOI: 10.3390/ma15228068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles exhibit excellent properties due to their well-developed microstructures. Taking inspiration from nature that thick filaments and thin filaments are linked by "cross-bridges", leading to good stability and ion transport performance of muscles. In this work, extracted poplar lignin and microcrystalline cellulose (MCC) were connected by biomimetic covalent bonds, akin to biological muscle tissue, in which isophorone diisocyanate was used as the chemical crosslinking agent. Then, poplar lignin-MCC was mixed with polyacrylonitrile to serve as the precursor for electrospinning. The results show that due to the effective covalent-bond connection, the precursor fibers possess excellent morphology, smooth surface, good thermal stability, and high flexibility and toughness (average elongation-at-break is 51.84%). Therefore, after thermal stabilization and carbonization, derived lignocellulose-based carbon fibers (CFs) with a reduced cost, complete fiber morphology with a uniform diameter (0.48 ± 0.22 μm), and high graphitization degree were obtained. Finally, the electrodes fabrication and electrochemical testing were carried out. The results of electrochemical impedance spectroscopy (EIS) indicate that the Rs and Rct values of CFs supercapacitors are 1.18 Ω and 0.14 Ω, respectively. Results of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) suggest that these CFs demonstrate great application potential in electrochemical materials.
Collapse
Affiliation(s)
- Xing Gao
- College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, China
| | - Ying Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yueting Wu
- College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, China
| | - Tat Thang Nguyen
- College of Wood Industry and Interior Design, Vietnam National University of Forestry, Hanoi 156220, Vietnam
| | - Jie Wu
- College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, China
| | - Minghui Guo
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunhua Du
- College of Sports and Human Sciences, Post-Doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, China
| |
Collapse
|
8
|
Kang Y, Zhang H, Chen L, Dong J, Yao B, Yuan X, Qin D, Yaremenko AV, Liu C, Feng C, Ji X, Tao W. The marriage of Xenes and hydrogels: Fundamentals, applications, and outlook. Innovation (N Y) 2022; 3:100327. [PMID: 36263399 PMCID: PMC9573930 DOI: 10.1016/j.xinn.2022.100327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels have blossomed as superstars in various fields, owing to their prospective applications in tissue engineering, soft electronics and sensors, flexible energy storage, and biomedicines. Two-dimensional (2D) nanomaterials, especially 2D mono-elemental nanosheets (Xenes) exhibit high aspect ratio morphology, good biocompatibility, metallic conductivity, and tunable electrochemical properties. These fascinating characteristics endow numerous tunable application-specific properties for the construction of Xene-based hydrogels. Hierarchical multifunctional hydrogels can be prepared according to the application requirements and can be effectively tuned by different stimulation to complete specific tasks in a spatiotemporal sequence. In this review, the synthesis mechanism, properties, and emerging applications of Xene hydrogels are summarized, followed by a discussion on expanding the performance and application range of both hydrogels and Xenes.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Hanjie Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V. Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Respiratory Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Hong S, Yoon J, Cha J, Ahn J, Mandakhbayar N, Park JH, Im J, Jin G, Kim M, Knowles JC, Lee H, Lee J, Kim H. Hyperelastic, shape-memorable, and ultra-cell-adhesive degradable polycaprolactone-polyurethane copolymer for tissue regeneration. Bioeng Transl Med 2022; 7:e10332. [PMID: 36176615 PMCID: PMC9472029 DOI: 10.1002/btm2.10332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%-80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-cell-adhesive, and degradable) nature and biocompatibility, is considered a potential tissue-regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity.
Collapse
|
10
|
Myocyte Culture with Decellularized Skeletal Muscle Sheet with Observable Interaction with the Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9070309. [PMID: 35877360 PMCID: PMC9311603 DOI: 10.3390/bioengineering9070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In skeletal muscles, muscle fibers are highly organized and bundled within the basement membrane. Several microfabricated substrate models have failed to mimic the macrostructure of native muscle, including various extracellular matrix (ECM) proteins. Therefore, we developed and evaluated a system using decellularized muscle tissue and mouse myoblasts C2C12 to analyze the interaction between native ECM and myocytes. Chicken skeletal muscle was sliced into sheets and decellularized to prepare decellularized skeletal muscle sheets (DSMS). C2C12 was then seeded and differentiated on DSMS. Immunostaining for ECM molecules was performed to examine the relationship between myoblast adhesion status, myotube orientation, and collagen IV orientation. Myotube survival in long-term culture was confirmed by calcein staining. C2C12 myoblasts adhered to scaffolds in DSMS and developed adhesion plaques and filopodia. Furthermore, C2C12 myotubes showed orientation along the ECM orientation within DSMS. Compared to plastic dishes, detachment was less likely to occur on DSMS, and long-term incubation was possible. This culture technique reproduces a cell culture environment reflecting the properties of living skeletal muscle, thereby allowing studies on the interaction between the ECM and myocytes.
Collapse
|
11
|
Dominguez-Alfaro A, Criado-Gonzalez M, Gabirondo E, Lasa-Fernández H, Olmedo-Martínez JL, Casado N, Alegret N, Müller AJ, Sardon H, Vallejo-Illarramendi A, Mecerreyes D. Electroactive 3D printable poly(3,4-ethylenedioxythiophene)- graft-poly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment. Polym Chem 2022. [DOI: 10.1039/d1py01185e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Graft copolymers between conducting PEDOT and biodegradable PCL were synthesized and investigated for 3D printing scaffolds for patterning of muscle cells.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Elena Gabirondo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Haizpea Lasa-Fernández
- Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
| | - Jorge L. Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Nerea Casado
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, 20014 San Sebastian, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, 20014 San Sebastian, Spain
- Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, UPV/EHU, Paseo Dr. Begiristain 105, 20014 San Sebastian, Spain
| | - David Mecerreyes
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Jaques A, Sánchez E, Orellana N, Enrione J, Acevedo CA. Modelling the growth of in-vitro meat on microstructured edible films. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Jana S, Franchi F, Lerman A. Fibrous heart valve leaflet substrate with native-mimicked morphology. APPLIED MATERIALS TODAY 2021; 24:101112. [PMID: 34485682 PMCID: PMC8415466 DOI: 10.1016/j.apmt.2021.101112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on in vivo tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during in vivo tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri,
Columbia, MO 65211, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Osório LA, Silva E, Mackay RE. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering (Basel) 2021; 8:113. [PMID: 34436116 PMCID: PMC8389238 DOI: 10.3390/bioengineering8080113] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Drug and chemical development along with safety tests rely on the use of numerous clinical models. This is a lengthy process where animal testing is used as a standard for pre-clinical trials. However, these models often fail to represent human physiopathology. This may lead to poor correlation with results from later human clinical trials. Organ-on-a-Chip (OOAC) systems are engineered microfluidic systems, which recapitulate the physiochemical environment of a specific organ by emulating the perfusion and shear stress cellular tissue undergoes in vivo and could replace current animal models. The success of culturing cells and cell-derived tissues within these systems is dependent on the scaffold chosen; hence, scaffolds are critical for the success of OOACs in research. A literature review was conducted looking at current OOAC systems to assess the advantages and disadvantages of different materials and manufacturing techniques used for scaffold production; and the alternatives that could be tailored from the macro tissue engineering research field.
Collapse
Affiliation(s)
- Luana A. Osório
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Elisabete Silva
- Department of Life Science, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Ruth E. Mackay
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| |
Collapse
|
15
|
Liu Y, Ren J, Zhang R, Hu S, Pang SW, Lam RHW. Spreading and Migration of Nasopharyngeal Normal and Cancer Cells on Microgratings. ACS APPLIED BIO MATERIALS 2021; 4:3224-3231. [DOI: 10.1021/acsabm.0c01610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Ruolin Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Shuhuan Hu
- BGI-Shenzhen, Shenzhen 518083, Guangdong China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Song KY, Correia JC, Ruas JL, Teixeira AI. Effects of topological constraints on the alignment and maturation of multinucleated myotubes. Biotechnol Bioeng 2021; 118:2234-2242. [PMID: 33629347 DOI: 10.1002/bit.27731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Microfluidic-based technologies enable the development of cell culture systems that provide tailored microenvironmental inputs to mammalian cells. Primary myoblasts can be induced to differentiate into multinucleated skeletal muscle cells, myotubes, which are a relevant model system for investigating skeletal muscle metabolism and physiology in vitro. However, it remains challenging to differentiate primary myoblasts into mature myotubes in microfluidics devices. Here we investigated the effects of integrating continuous (solid) and intermittent (dashed) walls in microfluidic channels as topological constraints in devices designed to promote the alignment and maturation of primary myoblast-derived myotubes. The topological constraints caused alignment of the differentiated myotubes, mimicking the native anisotropic organization of skeletal muscle cells. Interestingly, dashed walls facilitated the maturation of skeletal muscle cells, as measured by quantifying myotube cell area and the number of nuclei per myotube. Together, our results suggest that integrating dashed walls as topographic constraints in microfluidic devices supports the alignment and maturation of primary myoblast-derived myotubes.
Collapse
Affiliation(s)
- Ki-Young Song
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,The School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jorge C Correia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
18
|
Brashear SE, Wohlgemuth RP, Gonzalez G, Smith LR. Passive stiffness of fibrotic skeletal muscle in mdx mice relates to collagen architecture. J Physiol 2021; 599:943-962. [PMID: 33247944 PMCID: PMC9926974 DOI: 10.1113/jp280656] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The amount of fibrotic material in dystrophic mouse muscles relates to contractile function, but not passive function. Collagen fibres in skeletal muscle are associated with increased passive muscle stiffness in fibrotic muscles. The alignment of collagen is independently associated with passive stiffness in dystrophic skeletal muscles. These outcomes demonstrate that collagen architecture rather than collagen content should be a target of anti-fibrotic therapies to treat muscle stiffness. ABSTRACT Fibrosis is prominent in many skeletal muscle pathologies including dystrophies, neurological disorders, cachexia, chronic kidney disease, sarcopenia and metabolic disorders. Fibrosis in muscle is associated with decreased contractile forces and increased passive stiffness that limits joint mobility leading to contractures. However, the assumption that more fibrotic material is directly related to decreased function has not held true. Here we utilize novel measurement of extracellular matrix (ECM) and collagen architecture to relate ECM form to muscle function. We used mdx mice, a model for Duchenne muscular dystrophy that becomes fibrotic, and wildtype mice. In this model, extensor digitorum longus (EDL) muscle was significantly stiffer, but with similar total collagen, while the soleus muscle did not change stiffness, but increased collagen. The stiffness of the EDL was associated with increased collagen crosslinking as determined by collagen solubility. Measurement of ECM alignment using polarized light microscopy showed a robust relationship between stiffness and alignment for wildtype muscle that broke down in mdx muscles. Direct visualization of large collagen fibres with second harmonic generation imaging revealed their relative abundance in stiff muscles. Collagen fibre alignment was linked to stiffness across all muscles investigated and the most significant factor in a multiple linear regression-based model of muscle stiffness from ECM parameters. This work establishes novel characteristics of skeletal muscle ECM architecture and provides evidence for a mechanical function of collagen fibres in muscle. This finding suggests that anti-fibrotic strategies to enhance muscle function and excessive stiffness should target large collagen fibres and their alignment rather than total collagen.
Collapse
Affiliation(s)
- Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Gabriella Gonzalez
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis,Department of Physical Medicine and Rehabilitation, University of California Davis
| |
Collapse
|
19
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
20
|
Carnes ME, Pins GD. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment. J Biomed Mater Res B Appl Biomater 2020; 108:2308-2319. [PMID: 31967415 PMCID: PMC7255526 DOI: 10.1002/jbm.b.34566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
To regenerate functional muscle tissue, engineered scaffolds should impart topographical features to induce myoblast alignment by a phenomenon known as contact guidance. Myoblast alignment is an essential step towards myotube formation, which is guided in vivo by extracellular matrix structure and micron-scale grooves between adjacent muscle fibers. Fibrin microthread scaffolds mimic the morphological architecture of native muscle tissue and have demonstrated promise as an implantable scaffold for treating skeletal muscle injuries. While these scaffolds promote modest myoblast alignment, it is not sufficient to generate highly functional muscle tissue. The goal of this study is to develop and characterize a new method of etching the surface of fibrin microthreads to incorporate aligned, sub-micron grooves that promote myoblast alignment. To generate these topographic features, we placed fibrin microthreads into 2-(N-morpholino)ethane-sulfonic acid (MES) acidic buffer and evaluated the effect of buffer pH on the generation of these features. Surface characterization with atomic force microscopy and scanning electron microscopy indicated the generation of aligned, sub-micron sized grooves on microthreads in MES buffer with pH 5.0. Microthreads etched with surface features had tensile mechanical properties comparable to controls, indicating that the surface treatment does not inhibit scaffold bulk properties. Our data demonstrate that etching threads in MES buffer with pH 5.0 enhanced alignment and filamentous actin stress fiber organization of myoblasts on the surface of scaffolds. The ability to tune topographic features on the surfaces of scaffolds independent of mechanical properties provides a valuable tool for designing microthread-based scaffolds to enhance regeneration of functional muscle tissue.
Collapse
Affiliation(s)
- Meagan E Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - George D Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
21
|
Orellana N, Sánchez E, Benavente D, Prieto P, Enrione J, Acevedo CA. A New Edible Film to Produce In Vitro Meat. Foods 2020; 9:foods9020185. [PMID: 32069986 PMCID: PMC7073543 DOI: 10.3390/foods9020185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70-90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. Myoblasts were cultured on flat and microstructured films at three cell densities. Cells on the microstructured films grew with a muscle fiber morphology, but in the case of using the flat film, they only produced unorganized cell proliferation. Myogenic markers were assessed using quantitative polymerase chain reaction. After 14 days, the expression of desmin, myogenin, and myosin heavy chain were significantly higher in microstructured films compared to the flat films. The formation of fiber morphology and the high expression of myogenic markers indicated that a microstructured edible film can be used for the production of in vitro meat.
Collapse
Affiliation(s)
- Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
| | - Diego Benavente
- Departamento de Ingeniería en Diseño, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (D.B.); (P.P.)
| | - Pablo Prieto
- Departamento de Ingeniería en Diseño, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (D.B.); (P.P.)
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de Los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile;
| | - Cristian A. Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
22
|
Chen G, Kawazoe N. Regulation of Stem Cell Functions by Micro-Patterned Structures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:141-155. [PMID: 32601943 DOI: 10.1007/978-981-15-3262-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Micro-patterned surfaces have been broadly used to control the morphology of stem cells for investigation of the influence of physiochemical and biological cues on stem cell functions. Different structures of micro-patterned surfaces can be prepared by photolithography through designing the photomask features. Cell spreading area, geometry, aspect ratio, and alignment can be regulated by the micro-patterned structures. Their influences on adipogenic, osteogenic, and smooth muscle differentiation of the human bone marrow-derived mesenchymal stem cells are compared and investigated in details. Variation of cell morphology can trigger rearrangement of cytoskeleton, generating cytoskeletal mechanical stimulation and consequently inducing differentiation of mesenchymal stem cells into different lineages. This chapter summarizes the latest development of regulation of mesenchymal stem cell morphology by micro-patterns and the influence on the behaviors and differentiation of the mesenchymal stem cells.
Collapse
Affiliation(s)
- Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Apsite I, Uribe JM, Posada AF, Rosenfeldt S, Salehi S, Ionov L. 4D biofabrication of skeletal muscle microtissues. Biofabrication 2019; 12:015016. [PMID: 31600742 DOI: 10.1088/1758-5090/ab4cc4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Skeletal muscle is one of the most abundant tissues in the body. Although it has a relatively good regeneration capacity, it cannot heal in the case of disease or severe damage. Many current tissue engineering strategies fall short due to the complex structure of skeletal muscle. Biofabrication techniques have emerged as a popular set of methods for increasing the complexity of tissue-like constructs. In this paper, 4D biofabrication technique is introduced for fabrication of the skeletal muscle microtissues. To this end, a bilayer scaffold consisting of a layer of anisotropic methacrylated alginate fibers (AA-MA) and aligned polycaprolactone (PCL) fibers were fabricated using electrospinning and later induced to self-fold to encapsulate myoblasts. Bilayer mats undergo shape-transformation in an aqueous buffer, a process that depends on their overall thickness, the thickness of each layer and the geometry of the mat. Proper selection of these parameters allowed fabrication of scroll-like tubes encapsulating myoblasts. The myoblasts were shown to align along the axis of the anisotropic PCL fibers and further differentiated into aligned myotubes that contracted under electrical stimulation. Overall the significance of this approach is in the fabrication of hollow tubular constructs that can be further developed for the formation of a vascularized and functional muscle.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Tribological properties of microporous polydimethylsiloxane (PDMS) surfaces under physiological conditions. J Colloid Interface Sci 2019; 561:220-230. [PMID: 31816467 DOI: 10.1016/j.jcis.2019.11.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
Textured biomaterials have been extensively used in biomedical engineering to modulate mammalian and bacterial cell adhesion and proliferation, implant integration with human body and infection prevention. However, the tribological implications of texturing under wet physiological conditions have not been well quantified. This study aimed to characterize the tribological properties of micropore-textured polydimethylsiloxane (PDMS) under physiological conditions and investigate the effect of adsorbed lubricious molecules on friction. In this study, untextured and micropore-textured PDMS surfaces were slid against curved smooth glass surfaces under the contact pressures of 10-400 kPa, sliding speeds of 0.1-5 mm/s in aqueous solutions with the viscosity of 1-1000 mPa·s. Reconstituted human whole saliva (RHWS) at pH 7 and porcine gastric mucin (PGM) at both pH 2 and 7 were used as lubricious coatings on PDMS. While the micropore-texturing delayed the transition of lubrication regimes, it increased the coefficient of friction (COF). Although RHWS and PGM coatings decreased the COF significantly, the protein coatings could not help the COF of micropore-textured surfaces getting lower than that of untextured surfaces. The results suggest textured polymeric surfaces could generate larger friction under physiological conditions and lead to a higher chance of inflammation near the implants.
Collapse
|
25
|
Park J, Choi JH, Kim S, Jang I, Jeong S, Lee JY. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomater 2019; 97:141-153. [PMID: 31352108 DOI: 10.1016/j.actbio.2019.07.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Multifunctional biomaterials that can provide physical, electrical, and structural cues to cells and tissues are highly desirable to mimic the important characteristics of native tissues and efficiently modulate cellular behaviors. Especially, electrically conductive biomaterials can efficiently deliver electrical signals to living systems; however, the production of conductive biomaterials presenting multiple cell interactive cues is still a great challenge. In this study, we fabricafed an electrically conductive, mechanically soft, and topographically active hydrogel by micropatterning a graphene oxide (GO)-incorporated polyacrylamide hydrogel (GO/PAAm) with femtosecond laser ablation (FLA) and subsequent chemical reduction. FLA parameters were optimized to efficiently produce distinct line patterns on GO/PAAm hydrogels to induce myoblast alignment and maturation. The line patterns distances (PD) were varied to have different topographies (20-80 μm PD). In vitro studies with C2C12 myoblasts revealed that the micopatterned hydrogels are superior to the unpatterned substrates in inducing myogenesis and myotube alignment. Reduced GO/PAAm with 50 μm PD, i.e., PD50/r(GO/PAAm), showed the best results among the various features for differentiation and myotube alignment. Electrical stimulation of myoblasts on the micropatterned conductive hydrogels further promoted the differentiation of myoblasts. In vivo implantation studies indicated good tissue compatibility of PD50/r(GO/PAAm) samples. Altogether, we successfully demonstrated that the micropatterned r(GO/PAAm) may offer multiple properties capable of positively affecting myoblast responses. This hydrogel may serve as an effective multifunctional biomaterial, which possesses the topography for cell alignment/maturation, mechanical properties of the native skeletal muscle tissue, and desirable electrical conductivity for delivering electrical signals to cells, for various biomedical applications such as muscle tissue scaffolds. STATEMENT OF SIGNIFICANCE: Micropatterned conductive hydrogels were created by polymerization of a graphene oxide-incorporated polyacrylamide hydrogel, micropatterning with femtosecond laser ablation, and chemical reduction, which can mimic important characteristics of native skeletal muscle tissues. The micropatterned conductive hydro-gels promoted myogenesis/alignment, enabled electrical stimulation of myoblasts, and displayed good tissue compatibility, which can therefore serve as a multifunctional biomaterial that is topographically active, mechanically soft, and electrically conductive for delivering multiple cell stimulating signals for potential skeletal muscle tissue engineering applications.
Collapse
|
26
|
Natarajan A, Sethumadhavan A, Krishnan UM. Toward Building the Neuromuscular Junction: In Vitro Models To Study Synaptogenesis and Neurodegeneration. ACS OMEGA 2019; 4:12969-12977. [PMID: 31460423 PMCID: PMC6682064 DOI: 10.1021/acsomega.9b00973] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The neuromuscular junction (NMJ) is a unique, specialized chemical synapse that plays a crucial role in transmitting and amplifying information from spinal motor neurons to skeletal muscles. NMJ complexity ensures closely intertwined interactions between numerous synaptic vesicles, signaling molecules, ion channels, motor neurons, glia, and muscle fibers, making it difficult to dissect the underlying mechanisms and factors affecting neurodegeneration and muscle loss. Muscle fiber or motor neuron cell death followed by rapid axonal degeneration due to injury or disease has a debilitating effect on movement and behavior, which adversely affects the quality of life. It thus becomes imperative to study the synapse and intercellular signaling processes that regulate plasticity at the NMJ and elucidate mechanisms and pathways at the cellular level. Studies using in vitro 2D cell cultures have allowed us to gain a fundamental understanding of how the NMJ functions. However, they do not provide information on the intricate signaling networks that exist between NMJs and the biological environment. The advent of 3D cell cultures and microfluidic lab-on-a-chip technologies has opened whole new avenues to explore the NMJ. In this perspective, we look at the challenges involved in building a functional NMJ and the progress made in generating models for studying the NMJ, highlighting the current and future applications of these models.
Collapse
Affiliation(s)
- Anupama Natarajan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Anjali Sethumadhavan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
27
|
Wragg NM, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of tissue‐engineered skeletal muscle manufacturing variables. Biotechnol Bioeng 2019; 116:2364-2376. [DOI: 10.1002/bit.27074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas M. Wragg
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Darren J. Player
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- Division of Surgery and Interventional ScienceUniversity College LondonLondon UK
| | - Neil R. W. Martin
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Mark P. Lewis
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- National Centre for Sport and Exercise MedicineLoughborough UK
| |
Collapse
|
28
|
Campuzano S, Pelling AE. Scaffolds for 3D Cell Culture and Cellular Agriculture Applications Derived From Non-animal Sources. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00038] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Determination of mechanical and rheological properties of a cell-loaded peptide gel during ECM production. Int J Pharm 2019; 563:437-444. [DOI: 10.1016/j.ijpharm.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
|
30
|
Arifuzzaman M, Ito A, Ikeda K, Kawabe Y, Kamihira M. Fabricating Muscle–Neuron Constructs with Improved Contractile Force Generation. Tissue Eng Part A 2019; 25:563-574. [DOI: 10.1089/ten.tea.2018.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Md Arifuzzaman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Marques-Almeida T, Cardoso VF, Ribeiro S, Gama FM, Ribeiro C, Lanceros-Mendez S. Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:1591-1602. [DOI: 10.1021/acsabm.9b00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Vanessa F. Cardoso
- CMEMS-UMinho, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal
| | | | | | | | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque
Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
32
|
Kim NK, Cha EJ, Jung M, Kim J, Jeong GJ, Kim YS, Choi WJ, Kim BS, Kim DG, Lee JC. 3D hierarchical scaffolds enabled by a post-patternable, reconfigurable, and biocompatible 2D vitrimer film for tissue engineering applications. J Mater Chem B 2019. [DOI: 10.1039/c9tb00221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A mechanically tissue-like, biocompatible vitrimer yields 3D hierarchical tissue engineering scaffolds via hot embossing patterning and additional reconfiguration processes.
Collapse
Affiliation(s)
- Na Kyung Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Eun Jung Cha
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jinseok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center
- Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
33
|
Xu B, Magli A, Anugrah Y, Koester SJ, Perlingeiro RCR, Shen W. Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 2018; 183:54-66. [PMID: 30149230 PMCID: PMC6239205 DOI: 10.1016/j.biomaterials.2018.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal genetic disorder currently having no cure. Here we report that culture substrates patterned with nanogrooves and functionalized with Matrigel (or laminin) present an engineered cell microenvironment to allow myotubes derived from non-diseased, less-affected DMD, and severely-affected DMD human induced pluripotent stem cells (hiPSCs) to exhibit prominent differences in alignment and orientation, providing a sensitive phenotypic biomarker to potentially facilitate DMD drug development and early diagnosis. We discovered that myotubes differentiated from myogenic progenitors derived from non-diseased hiPSCs align nearly perpendicular to nanogrooves, a phenomenon not reported previously. We further found that myotubes derived from hiPSCs of a dystrophin-null DMD patient orient randomly, and those from hiPSCs of a patient carrying partially functional dystrophin align approximately 14° off the alignment direction of non-diseased myotubes. Substrates engineered with micron-scale grooves and/or cell adhesion molecules only interacting with integrins all guide parallel myotube alignment to grooves and lose the ability to distinguish different cell types. Disruption of the interaction between the Dystrophin-Associated-Protein-Complex (DAPC) and laminin by heparin or anti-α-dystroglycan antibody IIH6 disenables myotubes to align perpendicular to nanogrooves, suggesting that this phenotype is controlled by the DAPC-mediated cytoskeleton-extracellular matrix linkage.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoska Anugrah
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Kong W, Wang C, Jia C, Kuang Y, Pastel G, Chen C, Chen G, He S, Huang H, Zhang J, Wang S, Hu L. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801934. [PMID: 30101467 DOI: 10.1002/adma.201801934] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/02/2018] [Indexed: 05/26/2023]
Abstract
Biological tissues generally exhibit excellent anisotropic mechanical properties owing to their well-developed microstructures. Inspired by the aligned structure in muscles, a highly anisotropic, strong, and conductive wood hydrogel is developed by fully utilizing the high-tensile strength of natural wood, and the flexibility and high-water content of hydrogels. The wood hydrogel exhibits a high-tensile strength of 36 MPa along the longitudinal direction due to the strong bonding and cross-linking between the aligned cellulose nanofibers (CNFs) in wood and the polyacrylamide (PAM) polymer. The wood hydrogel is 5 times and 500 times stronger than the bacterial cellulose hydrogels (7.2 MPa) and the unmodified PAM hydrogel (0.072 MPa), respectively, representing one of the strongest hydrogels ever reported. Due to the negatively charged aligned CNF, the wood hydrogel is also an excellent nanofluidic conduit with an ionic conductivity of up to 5 × 10-4 S cm-1 at low concentrations for highly selective ion transport, akin to biological muscle tissue. The work offers a promising strategy to fabricate a wide variety of strong, anisotropic, flexible, and ionically conductive wood-based hydrogels for potential biomaterials and nanofluidic applications.
Collapse
Affiliation(s)
- Weiqing Kong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chengwei Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chao Jia
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yudi Kuang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Glenn Pastel
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gegu Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Hao Huang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jianhua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sha Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
35
|
Chen T, Hou K, Ren Q, Chen G, Wei P, Zhu M. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromol Rapid Commun 2018; 39:e1800337. [DOI: 10.1002/marc.201800337] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Qianyi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Peiling Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| |
Collapse
|
36
|
Yang Y, Wang X, Huang TC, Hu X, Kawazoe N, Tsai WB, Yang Y, Chen G. Regulation of mesenchymal stem cell functions by micro-nano hybrid patterned surfaces. J Mater Chem B 2018; 6:5424-5434. [PMID: 32254601 DOI: 10.1039/c8tb01621f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micro- and nano-structured substrates have been widely used in the biomedical engineering field. Their precise control of cell morphology makes them promising for investigating various cell behaviors. However, regulation of cell functions using micro-nano hybrid patterns is rarely achieved. Since the cell microenvironment in vivo has complex micro- and nano-structures, it is desirable to use micro-nano hybrid patterns to mimic the microenvironment to control cell morphology and disclose its influence on stem cell differentiation. In this study, poly(vinyl alcohol) (PVA) micro-stripes with different spacings (50 μm, 100 μm and 200 μm) were constructed on polystyrene (PS) nano-grooves to prepare micro-nano hybrid patterns where the direction of the PVA micro-stripes and PS nano-grooves was parallel or orthogonal. Human bone marrow-derived mesenchymal stem cells (hMSCs) cultured on the micro-nano hybrid patterns showed a different cell alignment and elongation dependent on the PVA micro-stripe spacing and orientation of the PS nano-grooves. Comparison of the influence of cell alignment and aspect ratio on differentiation of hMSCs indicated that myogenic differentiation was predominantly regulated by cell alignment and osteogenic differentiation by cell elongation, while adipogenic differentiation was regulated neither by cell alignment nor by cell elongation.
Collapse
Affiliation(s)
- Yingjun Yang
- Tissue Regeneration Materials Group, Research Center of Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Arab W, Rauf S, Al-Harbi O, Hauser CAE. Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells. Int J Bioprint 2018; 4:129. [PMID: 33102913 PMCID: PMC7582005 DOI: 10.18063/ijb.v4i2.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue engineering of functional skeletal muscle using 3D bioprinting technology is promising for creating tissue constructs that repair and promote regeneration of damaged tissue. Hydrogel scaffolds used as biomaterials for skeletal muscle tissue engineering can provide chemical, physical and mechanical cues to the cells in three dimensions thus promoting regeneration. Herein, we have developed two synthetically designed novel tetramer peptide biomaterials. These peptides are self-assembling into a nanofibrous 3D network, entrapping 99.9% water and mimicking the native collagen of an extracellular matrix. Different biocompatibility assays including MTT, 3D cell viability assay, cytotoxicity assay and live-dead assay confirm the biocompatibility of these peptide hydrogels for mouse myoblast cells (C2C12). Immunofluorescence analysis of cell-laden hydrogels revealed that the proliferation of C2C12 cells was well-aligned in the peptide hydrogels compared to the alginategelatin control. These results indicate that these peptide hydrogels are suitable for skeletal muscle tissue engineering. Finally, we tested the printability of the peptide bioinks using a commercially available 3D bioprinter. The ability to print these hydrogels will enable future development of 3D bioprinted scaffolds containing skeletal muscle myoblasts for tissue engineering applications.
Collapse
Affiliation(s)
- Wafaa Arab
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sakandar Rauf
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ohoud Al-Harbi
- Electron Microscopy, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
38
|
Zhao Z, Fang R, Rong Q, Liu M. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703045. [PMID: 29059482 DOI: 10.1002/adma.201703045] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Indexed: 06/07/2023]
Abstract
In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed.
Collapse
Affiliation(s)
- Ziguang Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ruochen Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Qinfeng Rong
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
39
|
Schuster E, Wallin P, Klose F, Gold J, Ström A. Correlating network structure with functional properties of capillary alginate gels for muscle fiber formation. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Yang GH, Jeon H, Kim G. Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts. Biofabrication 2017; 9:025035. [DOI: 10.1088/1758-5090/aa77ba] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Sevcik EN, Szymanski JM, Jallerat Q, Feinberg AW. Patterning on Topography for Generation of Cell Culture Substrates with Independent Nanoscale Control of Chemical and Topographical Extracellular Matrix Cues. CURRENT PROTOCOLS IN CELL BIOLOGY 2017; 75:10.23.1-10.23.25. [PMID: 28627752 PMCID: PMC5548430 DOI: 10.1002/cpcb.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cell microenvironment plays an important role in many biological processes, including development and disease progression. Key to this is the extracellular matrix (ECM), a complex biopolymer network serving as the primary insoluble signaling network for physical, chemical, and mechanical cues. In vitro, the ability to engineer the ECM at the micro- and nanoscales is a critical tool to systematically interrogate the influence of ECM properties on cellular responses. Specifically, both topographical and chemical surface patterning has been shown to direct cell alignment and tissue architecture on biomaterial surfaces, however, it has proven challenging to independently control these surface properties. This protocol describes a method termed Patterning on Topography (PoT) to engineer 2D nanopatterns of ECM proteins onto topographically complex substrates, which enables independent control of physical and chemical surface properties. Applications include interrogation of fundamental cell-surface interactions and engineering interfaces that can direct cell and/or tissue function. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Emily N. Sevcik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - John M. Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Chen S, Kawazoe N, Chen G. Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Porous Scaffolds. Tissue Eng Part C Methods 2017; 23:367-376. [DOI: 10.1089/ten.tec.2017.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Shangwu Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Kawazoe
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
43
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
44
|
Jana S, Lan Levengood SK, Zhang M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10588-10612. [PMID: 27865007 PMCID: PMC5253134 DOI: 10.1002/adma.201600240] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
Duffy RM, Sun Y, Feinberg AW. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle. Ann Biomed Eng 2016; 44:2076-89. [PMID: 26983843 PMCID: PMC4880540 DOI: 10.1007/s10439-016-1592-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening.
Collapse
Affiliation(s)
- Rebecca M Duffy
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Yan Sun
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Adam W Feinberg
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA, 15219, USA.
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
46
|
Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells. Biomolecules 2016; 6:12. [PMID: 26784249 PMCID: PMC4808806 DOI: 10.3390/biom6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.
Collapse
|
47
|
Takahashi H, Okano T. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates. Adv Healthc Mater 2015; 4:2388-407. [PMID: 26033874 DOI: 10.1002/adhm.201500194] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Indexed: 11/12/2022]
Abstract
In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| |
Collapse
|
48
|
Wang L, Li Y, Chen B, Liu S, Li M, Zheng L, Wang P, Lu TJ, Xu F. Patterning Cellular Alignment through Stretching Hydrogels with Programmable Strain Gradients. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15088-15097. [PMID: 26079936 DOI: 10.1021/acsami.5b04450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The graded mechanical properties (e.g., stiffness and stress/strain) of excellular matrix play an important role in guiding cellular alignment, as vital in tissue reconstruction with proper functions. Though various methods have been developed to engineer a graded mechanical environment to study its effect on cellular behaviors, most of them failed to distinguish stiffness effect from stress/strain effect during mechanical loading. Here, we construct a mechanical environment with programmable strain gradients by using a hydrogel of a linear elastic property. When seeding cells on such hydrogels, we demonstrate that the pattern of cellular alignment can be rather precisely tailored by substrate strains. The experiment is in consistency with a theoritical prediction when assuming that focal adhesions (FAs) would drive a cell to reorient to the directions where they are most stable. A fundamental theory has also been developed and is excellent in agreement with the complete temporal alignment of cells. This work not only provides important insights into the cellular response to the local mechanical microenvironment but can also be utilized to engineer patterned cellular alignment that can be critical in tissue remodeling and regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Bin Chen
- ∥Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | - Pengfei Wang
- §Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, People's Republic of China
| | | | | |
Collapse
|
49
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
50
|
Hulsman M, Hulshof F, Unadkat H, Papenburg BJ, Stamatialis DF, Truckenmüller R, van Blitterswijk C, de Boer J, Reinders MJ. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomater 2015; 15:29-38. [PMID: 25554402 DOI: 10.1016/j.actbio.2014.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 11/27/2022]
Abstract
Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces.
Collapse
|