1
|
Khangkhachit W, Suyotha W, O-Thong S, Prasertsan P. Cellulase production by Aspergillus fumigatus A4112 and the potential use of the enzyme in cooperation with surfactant to enhance floating oil recovery and methane production from palm oil mill effluent. Prep Biochem Biotechnol 2024:1-12. [PMID: 38909283 DOI: 10.1080/10826068.2024.2368627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This research performed cellulase production by Aspergillus fumigatus A4112 and evaluated its potential use in palm oil mill effluent (POME) hydrolysis to recover oil simultaneously with the generation of fermentable sugar useful for biofuel production under non-sterilized conditions. Empty fruit bunch (EFB) without pretreatment was used as carbon source. The combination of nitrogen sources facilitated CMCase production. The maximum activity (3.27 U/mL) was obtained by 1.0 g/L peptone and 1.5 g/L (NH4)2SO4 and 20 g/L EFB at 40 °C for 7 days. High level of FPase activity (39.51 U/mL) was also obtained. Interestingly, the enzyme retained its cellulase activities more than 60% at ambient temperature over 15 days. In enzymatic hydrolysis, Triton X-100 was an effective surfactant to increase total oil recovery in the floating form. High yield of reducing sugar (50.13 g/L) and 21% (v/v) of floating oil was recoverable at 65 °C for 48 h. Methane content of the raw POME increased from 41.49 to 64.94% by using de-oiled POME hydrolysate which was higher than using the POME hydrolysate (59.82%). The results demonstrate the feasibility of the constructed process for oil recovery coupled with a subsequent step for methane yield enhancement in biogas production process that benefits the palm oil industry.
Collapse
Affiliation(s)
- Wiyada Khangkhachit
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Wasana Suyotha
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, Thailand
| | - Poonsuk Prasertsan
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
2
|
Cachafeiro L, Heiss-Blanquet S, Hudebine D. An experimental and modeling approach to describe the deactivation of cellulases at the air-liquid interface. Biotechnol Bioeng 2024; 121:1927-1936. [PMID: 38501733 DOI: 10.1002/bit.28698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Understanding the reaction mechanisms involved in the enzymatic hydrolysis of cellulose is important because it is kinetically the most limiting step of the bioethanol production process. The present work focuses on the enzymatic deactivation at the air-liquid interface, which is one of the aspects contributing to this global deactivation. This phenomenon has already been experimentally proven, but this is the first time that a model has been proposed to describe it. Experiments were performed by incubating Celluclast cocktail solutions on an orbital stirring system at different enzyme concentrations and different surface-to-volume ratios. A 5-day follow-up was carried out by measuring the global FPase activity of cellulases for each condition tested. The activity loss was proven to depend on both the air-liquid surface area and the enzyme concentration. Both observations suggest that the loss of activity takes place at the air-liquid surface, the total amount of enzymes varying with volume or enzyme concentration. Furthermore, tests performed using five individual enzymes purified from a Trichoderma reesei cocktail showed that the only cellulase that is deactivated at the air-liquid interface is cellobiohydrolase II. From the experimental data collected by varying the initial enzyme concentration and the ratio surface to volume, it was possible to develop, for the first time, a model that describes the loss of activity at the air-liquid interface for this configuration.
Collapse
|
3
|
Kholousi Adab F, Mehdi Yaghoobi M, Gharechahi J. Enhanced crystalline cellulose degradation by a novel metagenome-derived cellulase enzyme. Sci Rep 2024; 14:8560. [PMID: 38609443 PMCID: PMC11014956 DOI: 10.1038/s41598-024-59256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Metagenomics has revolutionized access to genomic information of microorganisms inhabiting the gut of herbivorous animals, circumventing the need for their isolation and cultivation. Exploring these microorganisms for novel hydrolytic enzymes becomes unattainable without utilizing metagenome sequencing. In this study, we harnessed a suite of bioinformatic analyses to discover a novel cellulase-degrading enzyme from the camel rumen metagenome. Among the protein-coding sequences containing cellulase-encoding domains, we identified and subsequently cloned and purified a promising candidate cellulase enzyme, Celcm05-2, to a state of homogeneity. The enzyme belonged to GH5 subfamily 4 and exhibited robust enzymatic activity under acidic pH conditions. It maintained hydrolytic activity under various environmental conditions, including the presence of metal ions, non-ionic surfactant Triton X-100, organic solvents, and varying temperatures. With an optimal temperature of 40 °C, Celcm05-2 showcased remarkable efficiency when deployed on crystalline cellulose (> 3.6 IU/mL), specifically Avicel, thereby positioning it as an attractive candidate for a myriad of biotechnological applications spanning biofuel production, paper and pulp processing, and textile manufacturing. Efficient biodegradation of waste paper pulp residues and the evidence of biopolishing suggested that Celcm05-2 can be used in the bioprocessing of cellulosic craft fabrics in the textile industry. Our findings suggest that the camel rumen microbiome can be mined for novel cellulase enzymes that can find potential applications across diverse biotechnological processes.
Collapse
Affiliation(s)
- Faezeh Kholousi Adab
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Javad Gharechahi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
de Cássia Spacki K, Novi DMP, de Oliveira-Junior VA, Durigon DC, Fraga FC, dos Santos LFO, Helm CV, de Lima EA, Peralta RA, de Fátima Peralta Muniz Moreira R, Corrêa RCG, Bracht A, Peralta RM. Improving Enzymatic Saccharification of Peach Palm ( Bactris gasipaes) Wastes via Biological Pretreatment with Pleurotus ostreatus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2824. [PMID: 37570978 PMCID: PMC10420912 DOI: 10.3390/plants12152824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
The white-rot fungus Pleurotus ostreatus was used for biological pretreatment of peach palm (Bactris gasipaes) lignocellulosic wastes. Non-treated and treated B. gasipaes inner sheaths and peel were submitted to hydrolysis using a commercial cellulase preparation from T. reesei. The amounts of total reducing sugars and glucose obtained from the 30 d-pretreated inner sheaths were seven and five times higher, respectively, than those obtained from the inner sheaths without pretreatment. No such improvement was found, however, in the pretreated B. gasipaes peels. Scanning electronic microscopy of the lignocellulosic fibers was performed to verify the structural changes caused by the biological pretreatments. Upon the biological pretreatment, the lignocellulosic structures of the inner sheaths were substantially modified, making them less ordered. The main features of the modifications were the detachment of the fibers, cell wall collapse and, in several cases, the formation of pores in the cell wall surfaces. The peel lignocellulosic fibers showed more ordered fibrils and no modification was observed after pre-treatment. In conclusion, a seven-fold increase in the enzymatic saccharification of the Bactris gasipaes inner sheath was observed after pre-treatment, while no improvement in enzymatic saccharification was observed in the B. gasipaes peel.
Collapse
Affiliation(s)
- Kamila de Cássia Spacki
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Danielly Maria Paixão Novi
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Verci Alves de Oliveira-Junior
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Daniele Cocco Durigon
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (D.C.D.); (R.A.P.)
| | - Fernanda Cristina Fraga
- Departamento de Engenharia Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (F.C.F.); (R.d.F.P.M.M.)
| | - Luís Felipe Oliva dos Santos
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | | | | | - Rosely Aparecida Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (D.C.D.); (R.A.P.)
| | | | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil;
| | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| |
Collapse
|
5
|
Jia H, Feng X, Huang J, Guo Y, Zhang D, Li X, Zhao J. Recombinant Family 1 Carbohydrate-Binding Modules Derived From Fungal Cellulase Enhance Enzymatic Degradation of Lignocellulose as Novel Effective Accessory Protein. Front Microbiol 2022; 13:876466. [PMID: 35898911 PMCID: PMC9309510 DOI: 10.3389/fmicb.2022.876466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal cellulases usually contain a family 1 carbohydrate-binding module (CBM1), and its role was considered to recognize the substrate specifically. This study testified that the CBM1s derived from cellobiohydrolase I of Trichoderma reesei, Penicillium oxalicum, and Penicillium funiculosum could be used as an effective accessory protein in cellulase cocktails to enhance the saccharification of lignocellulose, and its enhancement effect was significantly superior to some reported accessory proteins, such as bovine serum albumin (BSA). The promoting effects of the CBM1s were related to not only the CBM1 sources and protein dosages, but also the substrate characteristics and solid consistency during enzymatic hydrolysis. The adsorption capacity of the CBM1s, the adsorption kinetic of TrCBM from T. reesei and cellobiohydrolase, endoglucanase, and β-glucosidase from P. oxalicum, and the effect of adding TrCBM on enzyme activities of free cellulases in the hydrolysis system were investigated, and the binding conformations and affinities of CBM1s to cellulose and lignin were predicted by molecular docking. It was speculated that the higher affinity of the CBM1s to lignin than cellulases could potentially enable the CBM1s to displace cellulase adsorbed on lignin or to preferentially adsorb onto lignin to avoid ineffective adsorption of cellulase onto lignin, which enhanced cellulase system efficiency during enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Hexue Jia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoting Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiamin Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Daolei Zhang
- School of Bioengineering, Shandong Polytechnic, Jinan, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Xuezhi Li,
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Jian Zhao,
| |
Collapse
|
6
|
Non-ionic surfactant integrated extraction of exopolysaccharides from engineered Synechocystis sp. PCC 6803 under fed-batch mode facilitates the sugar-rich syrup production for ethanol fermentation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Hu D, Zhao X. Characterization of a New Xylanase Found in the Rumen Metagenome and Its Effects on the Hydrolysis of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6493-6502. [PMID: 35583133 DOI: 10.1021/acs.jafc.2c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat is the main ingredient of poultry diet, but its xylan has an adverse impact on poultry production. A novel xylanase from beef cattle rumen metagenome (RuXyn) and its effect on the wheat hydrolysis were investigated in the present study. The RuXyn coded for 377 amino acids and exhibited low identity (<40%) to previously reported proteins. The RuXyn was heterologously expressed in Escherichia coli and showed maximum activity at pH 6.0 and 40 °C. The activity of RuXyn could be increased by 79.8 and 36.0% in the presence of Ca2+ and Tween 20, respectively. The soluble xylan and insoluble xylan in wheat could be effectively degraded by RuXyn and xylooligosaccharides produced accounting for more than 80% of the products. This study demonstrates that RuXyn has substantial potential to improve the application of wheat in poultry production by degrading wheat xylan and the accompanying xylooligosaccharides produced.
Collapse
Affiliation(s)
- Die Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
8
|
Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse. ENERGIES 2021. [DOI: 10.3390/en14164746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and therefore, it is a promising raw material in the development of biorefineries using hot compressed water pretreatment (hydrothermal processing). Surfactants application has been frequently reported as an alternative to enhance monomeric sugars production efficiency and as a possibility to reduce the enzyme loading required. Nevertheless, the surfactant’s action mechanisms in the enzymatic hydrolysis is still not elucidated. In this work, hot compressed water pretreatment was applied on agave bagasse for biomass fractionation at 194 °C in isothermal regime for 30 min, and the effect of non-ionic surfactants (Tween 20, Tween 80, Span 80, and Polyethylene glycol (PEG 400)) was studied as a potential enhancer of enzymatic saccharification of hydrothermally pretreated solids of agave bagasse (AGB). It was found that non-ionic surfactants show an improvement in the conversion yield of cellulose to glucose (100%) and production of glucose (79.76 g/L) at 15 FPU/g glucan, the highest enhancement obtained being 7% regarding the control (no surfactant addition), using PEG 400 as an additive. The use of surfactants allows improving the production of fermentable sugars for the development of second-generation biorefineries.
Collapse
|
9
|
Effect of additives on the enzymatic hydrolysis of pre-treated wheat straw. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
11
|
Assessment of the Lowland Bog Biomass for Ex Situ Remediation of Petroleum-Contaminated Soils. ENVIRONMENTS 2020. [DOI: 10.3390/environments7100086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bog petroleum-contaminated soils have been remediated ex situ in conditions close to natural ones. It was found that during the first 30 days in natural conditions, the decomposition of total petroleum hydrocarbons (TPH) was 30 ± 5%. On the 60th and 90th days, the process of TPH decomposition was 45 ± 5% and 60 ± 5%, respectively. The effect of various stimulant supplements was negligible. For the entire observed period, bog soil showed a very high self-cleaning potential with pollution concentration of 5 g of petroleum per 100 g of soil sample. Such diagnostic indicators of soil condition as urease and cellulase activities turned out to be most sensitive in the bog soil. The introduction of mineral fertilizers to stimulate the TPH decomposition increased the activity of urease in comparison with the background soil. On the other hand, the nonionic surfactant acted as an inhibitor of microorganisms involved in nitrogen metabolism, even in the presence of mineral fertilizers. The introduction of mineral fertilizers to petroleum-polluted bog soil stimulated the cellulases activity, while surfactants suppressed them in the early stages. The simultaneous introduction of surfactants and fertilizers kept the cellulase activity at the background level. It is concluded that in the case of petroleum pollution of infertile soils, the introduction of the upper layers of the phytomass of lowland bogs by providing looseness and long-term supply of nutrients from the dying parts of the moss will accelerate the self-cleaning processes.
Collapse
|
12
|
Wang W, Wang C, Zahoor, Chen X, Yu Q, Wang Z, Zhuang X, Yuan Z. Effect of a Nonionic Surfactant on Enzymatic Hydrolysis of Lignocellulose Based on Lignocellulosic Features and Enzyme Adsorption. ACS OMEGA 2020; 5:15812-15820. [PMID: 32656401 PMCID: PMC7345430 DOI: 10.1021/acsomega.0c00526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 02/29/2024]
Abstract
Reduction in the adsorption of cellulase onto lignin has been thought to be the common reason for the improvement of enzymatic hydrolysis of lignocellulose (EHLC) by a nonionic surfactant (NIS). Few research studies have focused on the relationship between lignocellulosic features and NIS for improving EHLC. This study investigated the impact of Tween20 on the enzymatic hydrolysis and enzyme adsorption of acid-treated and alkali-treated sugarcane bagasse (SCB), cypress, and Pterocarpus soyauxii (PS) with and without being ground. After addition of Tween20, the adsorption of cellulase onto unground and ground alkali-treated SCB increased, and the unground acid-treated SCB exhibited little change in adsorption cellulase, while other unground and ground, treated samples showed decreased cellulase adsorption. Tween20 could improve the enzymatic hydrolysis of acid-treated SCB, while it had little influence on the enzymatic hydrolysis of other treated materials. After being ground, both cellulase adsorption and enzymatic hydrolysis of treated lignocelluloses increased, and Tween20 could enhance the enzymatic hydrolysis of acid-treated materials while hardly affected the enzymatic hydrolysis of alkali-treated materials. This indicated that the promotion effect of Tween20 on enzymatic hydrolysis of treated lignocellulose could not be mainly ascribed to the hindrance of Tween20 to cellulase adsorption on lignin but was related to the lignocellulosic features such as hemicellulose removal and surface morphology changes.
Collapse
Affiliation(s)
- Wen Wang
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
| | - Chaojun Wang
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Zahoor
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
| | - Xiaoyan Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Qiang Yu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
| | - Zhongming Wang
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
| | - Xinshu Zhuang
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
| | - Zhenhong Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key
Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- Collaborative
Innovation Centre of Biomass Energy, Zhengzhou 450002, P. R.
China
| |
Collapse
|
13
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
14
|
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:96. [PMID: 31044009 PMCID: PMC6477705 DOI: 10.1186/s13068-019-1439-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/13/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND We recently confirmed that the deactivation of T. reesei cellulases at the air-liquid interface reduces microcrystalline cellulose conversion at low enzyme loadings in shaken flasks. It is one of the main causes for lowering of cellulose conversions at low enzyme loadings. However, supplementing cellulases with small quantities of surface-active additives in shaken flasks can increase cellulose conversions at low enzyme loadings. It was also shown that cellulose conversions at low enzyme loadings can be increased in unshaken flasks if the reactions are carried for a longer time. This study further explores these recent findings to better understand the impact of air-liquid interfacial phenomena on enzymatic hydrolysis of cellulose contained in Avicel, Sigmacell, α-cellulose, cotton linters, and filter paper. The impacts of solids and enzyme loadings, supplementation with nonionic surfactant Tween 20 and xylanases, and application of different types of mixing and reactor designs on cellulose hydrolysis were also evaluated. RESULTS Avicel cellulose conversions at high solid loading were more than doubled by minimizing loss of cellulases to the air-liquid interface. Maximum cellulose conversions were high for surface-active supplemented shaken flasks or unshaken flasks because of low cellulase deactivation at the air-liquid interface. The nonionic surfactant Tween 20 was unable to completely prevent cellulase deactivation in shaken flasks and only reduced cellulose conversions at unreasonably high concentrations. CONCLUSIONS High dynamic interfacial areas created through baffles in reactor vessels, low volumes in high-capacity vessels, or high shaking speeds severely limited cellulose conversions at low enzyme loadings. Precipitation of cellulases due to aggregation at the air-liquid interface caused their continuous deactivation in shaken flasks and severely limited solubilization of cellulose.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
15
|
Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. ENERGIES 2018. [DOI: 10.3390/en11112936] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic feedstocks are an important resource for biorefining of renewables to bio-based fuels, chemicals, and materials. Relevant feedstocks include energy crops, residues from agriculture and forestry, and agro-industrial and forest-industrial residues. The feedstocks differ with respect to their recalcitrance to bioconversion through pretreatment and enzymatic saccharification, which will produce sugars that can be further converted to advanced biofuels and other products through microbial fermentation processes. In analytical enzymatic saccharification, the susceptibility of lignocellulosic samples to pretreatment and enzymatic saccharification is assessed in analytical scale using high-throughput or semi-automated techniques. This type of analysis is particularly relevant for screening of large collections of natural or transgenic varieties of plants that are dedicated to production of biofuels or other bio-based chemicals. In combination with studies of plant physiology and cell wall chemistry, analytical enzymatic saccharification can provide information about the fundamental reasons behind lignocellulose recalcitrance as well as about the potential of collections of plants or different fractions of plants for industrial biorefining. This review is focused on techniques used by researchers for screening the susceptibility of plants to pretreatment and enzymatic saccharification, and advantages and disadvantages that are associated with different approaches.
Collapse
|
16
|
Lou H, Zeng M, Hu Q, Cai C, Lin X, Qiu X, Yang D, Pang Y. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. BIORESOURCE TECHNOLOGY 2018; 249:1-8. [PMID: 29035726 DOI: 10.1016/j.biortech.2017.07.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/24/2023]
Abstract
Effects of nonionic surfactants on enzymatic hydrolysis of Avicel at different agitation rates and solid loadings and the mechanism were studied. Nonionic surfactants couldn't improve the enzymatic hydrolysis efficiency at 0 and 100rpm but could enhance the enzymatic hydrolysis significantly at high agitation rate (200 and 250rpm). Cellulase was easily deactivated at high agitation rate and the addition of nonionic surfactants can protect against the shear-induced deactivation, especially when the cellulase concentration was low. When 25mg protein/L of cellulase solution was incubated at 200rpm for 72h, the enzyme activity increased from 36.0% to 89.5% by adding PEG4600. Moreover nonionic surfactants can compete with enzyme in air-liquid interface and reduce the amount of enzyme exposed in the air-liquid interface. The mechanism was proposed that nonionic surfactants could enhance the enzymatic hydrolysis of Avicel by reducing the cellulase deactivation caused by shear force and air-liquid interface.
Collapse
Affiliation(s)
- Hongming Lou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Meijun Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Qiaoyan Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Cheng Cai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xuliang Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
17
|
Guo Z, Zhang L, Zhang L, Yang G, Xu F. Enhanced enzymatic hydrolysis by adding long-chain fatty alcohols using film as a structure model. BIORESOURCE TECHNOLOGY 2018; 249:82-88. [PMID: 29040864 DOI: 10.1016/j.biortech.2017.09.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Many positive effects of additives on enzymatic hydrolysis of lignocellulosic materials have been investigated, but limited information has been reported on the use of long-chain fatty alcohols (LFAs) for enzymatic hydrolysis by biospired models. In this study, effects of LFAs on enzymatic hydrolysis were evaluated using biomimetic film asa structure model. LFAs clearly improved the digestibility of cellulose film from 65.1% to 77.9%, which was higher than that the digestibility of lignin-cellulose film from 53.9% to 66.2%. Further study indicated that the promotion ascribed to the effect of LFAs, which might provide more active points of chemical reaction and keep the stability of cellulase. Moreover, the digestibility of lignin-cellulose film increased by 12.3%, which might because the denaturation and nonproductive adsorption of cellulase were well prevented by supplementation of LFAs. An efficient strategy was developed to improve the enzymatic hydrolysis efficiency in the study of lignocellulosic bioconversion.
Collapse
Affiliation(s)
- Zongwei Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Liming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guihua Yang
- Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
18
|
Bhagia S, Dhir R, Kumar R, Wyman CE. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings. Sci Rep 2018; 8:1350. [PMID: 29358746 PMCID: PMC5778062 DOI: 10.1038/s41598-018-19848-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/04/2018] [Indexed: 01/17/2023] Open
Abstract
Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken. Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN, 37831, USA
| | - Rachna Dhir
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN, 37831, USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN, 37831, USA
| | - Charles E Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA.
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
19
|
Rocha-Martín J, Martinez-Bernal C, Pérez-Cobas Y, Reyes-Sosa FM, García BD. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 244:48-56. [PMID: 28777990 DOI: 10.1016/j.biortech.2017.06.132] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 05/24/2023]
Abstract
Linked to the development of cellulolytic enzyme cocktails from Myceliophthora thermophila, we studied the effect of different additives on the enzymatic hydrolysis yield. The hydrolysis of pretreated corn stover (PCS), sugar cane straw (PSCS) and microcrystalline cellulose (Avicel) was performed under industrial conditions using high solid loadings, limited mixing, and low enzyme dosages. The addition of polyethylene glycol (PEG4000) allowed to increase the glucose yields by 10%, 7.5%, and 32%, respectively in the three materials. PEG4000 did not have significant effect on the stability of the main individual enzymes but increased beta-glucosidase and endoglucanase activity by 20% and 60% respectively. Moreover, the presence of PEG4000 accelerated cellulase-catalyzed hydrolysis reducing up to 25% the liquefaction time. However, a preliminary economical assessment concludes that even with these improvements, a lower contribution of PEG4000 to the 2G bioethanol production costs would be needed to reach commercial feasibility.
Collapse
Affiliation(s)
- Javier Rocha-Martín
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/ Energía Solar n° 1, 41014 Seville, Spain
| | - Claudio Martinez-Bernal
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/ Energía Solar n° 1, 41014 Seville, Spain
| | - Yolanda Pérez-Cobas
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/ Energía Solar n° 1, 41014 Seville, Spain
| | - Francisco Manuel Reyes-Sosa
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/ Energía Solar n° 1, 41014 Seville, Spain
| | - Bruno Díez García
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/ Energía Solar n° 1, 41014 Seville, Spain.
| |
Collapse
|
20
|
Zhang L, dos Santos ACF, Ximenes E, Ladisch M. Proteins at heterogeneous (lignocellulose) interfaces. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Jiang F, Qian C, Esker AR, Roman M. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin. J Phys Chem B 2017; 121:9607-9620. [DOI: 10.1021/acs.jpcb.7b07716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Jiang
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ. Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Wang C, Ouyang X, Su S, Liang X, Zhang C, Wang W, Yuan Q, Li Q. Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF. Enzyme Microb Technol 2016; 93-94:59-69. [DOI: 10.1016/j.enzmictec.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/05/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
24
|
Méndez Arias J, de Oliveira Moraes A, Modesto LFA, de Castro AM, Pereira Jr N. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse. Appl Biochem Biotechnol 2016; 181:593-603. [DOI: 10.1007/s12010-016-2234-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
|
25
|
Putro JN, Soetaredjo FE, Lin SY, Ju YH, Ismadji S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 2016. [DOI: 10.1039/c6ra09851g] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lignocellulose biomass can be utilized in many sectors of industry such as energy, chemical, and transportation. However, pretreatment is needed to break down the intricate bonding before converting it into wanted product.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| | - Shi-Yow Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Yi-Hsu Ju
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| |
Collapse
|
26
|
Mesquita JF, Ferraz A, Aguiar A. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess Biosyst Eng 2015; 39:441-8. [DOI: 10.1007/s00449-015-1527-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
|
27
|
Abstract
Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale.
Collapse
|
28
|
Li K, Wang X, Wang J, Zhang J. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. BIORESOURCE TECHNOLOGY 2015; 192:424-31. [PMID: 26070065 DOI: 10.1016/j.biortech.2015.05.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/10/2015] [Accepted: 05/28/2015] [Indexed: 05/27/2023]
Abstract
Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo.
Collapse
Affiliation(s)
- Kena Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Xiao Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jingfeng Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| |
Collapse
|
29
|
Hsieh CWC, Cannella D, Jørgensen H, Felby C, Thygesen LG. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:52. [PMID: 25829946 PMCID: PMC4379714 DOI: 10.1186/s13068-015-0242-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/19/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non-productive cellulase adsorption to the substrate, and increase the desorption of enzymes from the substrate. Here, using lignin-free model substrates, we propose that PEG also alters the solvent properties, for example, water, leading the cellulases to increase hydrolysis yields. RESULTS The effect of PEG differs for the individual cellulases. During hydrolysis of Avicel and PASC with a processive monocomponent exo-cellulase cellobiohydrolase (CBH) I, the presence of PEG leads to an increase in the final glucose concentration, while PEG caused no change in glucose production with a non-processive endoglucanase (EG). Also, no effect of PEG was seen on the activity of β-glucosidases. While PEG has a small effect on the thermostability of both cellulases, only the activity of CBH I increases with PEG. Using commercial enzyme mixtures, the hydrolysis yields increased with the addition of PEG. In parallel, we observed that the relaxation time of the hydrolysis liquid phase, as measured by LF-NMR, directly correlated with the final glucose yield. PEG was able to boost the glucose production even in highly concentrated solutions of up to 150 g/L of glucose. CONCLUSIONS The hydrolysis boosting effect of PEG appears to be specific for CBH I. The mechanism could be due to an increase in the apparent activity of the enzyme on the substrate surface. The addition of PEG increases the relaxation time of the liquid-phase water, which from the data presented points towards a mechanism related to PEG-water interactions rather than PEG-protein or PEG-substrate interactions.
Collapse
Affiliation(s)
- Chia-wen C Hsieh
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - David Cannella
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Henning Jørgensen
- />Present address: Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark
| | - Claus Felby
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
30
|
Monschein M, Reisinger C, Nidetzky B. Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. BIORESOURCE TECHNOLOGY 2014; 169:713-722. [PMID: 25108473 DOI: 10.1016/j.biortech.2014.07.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 05/24/2023]
Abstract
Chemical additives were examined for ability to increase the enzymatic hydrolysis of thermo-acidically pretreated wheat straw by Trichoderma reesei cellulase at 50 °C. Semi-empirical descriptors derived from the hydrolysis time courses were applied to compare influence of these additives on lignocellulose bioconversion on a kinetic level, presenting a novel view on their mechanism of action. Focus was on rate retardation during hydrolysis, substrate conversion and enzyme adsorption. PEG 8000 enabled a reduction of enzyme loading by 50% while retaining the same conversion of 67% after 24h. For the first time, a beneficial effect of urea is reported, increasing the final substrate conversion after 48 h by 16%. The cationic surfactant cetyl-trimethylammonium bromide (CTAB) enhanced the hydrolysis rate at extended reaction time (rlim) by 34% and reduced reaction time by 28%. A combination of PEG 8000 and urea increased sugar release more than additives used individually.
Collapse
Affiliation(s)
- Mareike Monschein
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Christoph Reisinger
- CLARIANT Produkte (Deutschland) GmbH, Group Biotechnology, Staffelseestraße 6, 81477 Munich, Germany
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
31
|
Kemppainen K, Siika-Aho M, Östman A, Sipilä E, Puranen T, von Weymarn N, Kruus K. Hydrolysis and composition of recovered fibres fractionated from solid recovered fuel. BIORESOURCE TECHNOLOGY 2014; 169:88-95. [PMID: 25033328 DOI: 10.1016/j.biortech.2014.06.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Fibres fractionated from solid recovered fuel (SRF), a standardised market combustion fuel produced from sorted waste, were considered as a source of lignocellulosic fermentable sugars. The fibre yield from four samples of SRF was 25-45%, and the separated material consisted of 52-54% carbohydrates, mainly glucan, with a high content of ash (12-17%). The enzymatic digestibility of recovered fibres was studied at low and high solids loading and compared with model substrates containing only chemical and mechanical pulps. Above 80% hydrolysis yield was reached at 20% solids loading in 48 h, but variation was observed between different samples of recovered fibres. Surfactants were found to improve the hydrolysis yield of recovered fibres especially in tumbling-type of mixing at low solids loading, where hydrolysis was found to stagnate without surfactants. The results suggest that SRF is a potential source of easily digestible lignocellulosic carbohydrates for use in biorefineries.
Collapse
Affiliation(s)
- K Kemppainen
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland.
| | - M Siika-Aho
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| | - A Östman
- Skandinavisk Kemiinformation AB, Birkagatan 35, 11339 Stockholm, Sweden
| | - E Sipilä
- Pöyry Management Consulting Oy, Jaakonkatu 3, 01620 Vantaa, Finland
| | - T Puranen
- Roal Oy, Tykkimäentie 15, 05200 Rajamäki, Finland
| | - N von Weymarn
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| | - K Kruus
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| |
Collapse
|
32
|
Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D'haeseleer P, Simmons BA, Quirino BF. Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiol Lett 2013; 351:147-55. [PMID: 24236615 DOI: 10.1111/1574-6968.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022] Open
Abstract
An Amazon soil microbial community metagenomic fosmid library was functionally screened for β-glucosidase activity. Contig analysis of positive clones revealed the presence of two ORFs encoding novel β-glucosidases, AmBGL17 and AmBGL18, from the GH3 and GH1 families, respectively. Both AmBGL17 and AmBGL18 were functionally identified as β-glucosidases. The enzymatic activity of AmBGL17 was further characterized. AmBGL17 was tested with different substrates and showed highest activity on pNPβG substrate with an optimum temperature of 45 °C and an optimum pH of 6. AmBGL17 showed a Vmax of 116 mM s(-1) and Km of 0.30 ± 0.017 mM. This is the first report of β-glucosidases from an Amazon soil microbial community using a metagenomic approach.
Collapse
Affiliation(s)
- Jessica C Bergmann
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lu J, Li X, Yang R, Zhao J, Qu Y. Tween 40 pretreatment of unwashed water-insoluble solids of reed straw and corn stover pretreated with liquid hot water to obtain high concentrations of bioethanol. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:159. [PMID: 24206614 PMCID: PMC4177002 DOI: 10.1186/1754-6834-6-159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. In our previous study, high ethanol concentration and ethanol yield were obtained from water-insoluble solids (WIS) of reed straw and corn stover pretreated with LHW by using fed-batch semi-simultaneous saccharification and fermentation (S-SSF). However, high cellulase loading and the large amount of wash water possibly limit the practical application of LHW pretreatment. To decrease cellulase loading and the amount of wash water, we performed Tween 40 pretreatment before WIS was subjected to bioethanol fermentation. RESULTS Results showed that the optimum conditions of Tween 40 pretreatment were as follows: Tween 40 concentration of 1.5%, WIS-to-Tween 40 ratio of 1:10 (w/v), and pretreatment time of 1 hour at ambient temperature. After Tween 40 pretreatment, cellulase loading could be greatly reduced. After Tween 40 pretreatment, the residual liquid could be recycled for utilization but slightly affected ethanol concentration and yield. The unwashed WIS could obtain a high ethanol concentration of 56.28 g/L (reed straw) and 52.26 g/L (corn stover) by Tween 40 pretreatment using fed-batch S-SSF. Ethanol yield reached a maximum of 69.1% (reed straw) and 71.1% (corn stover). CONCLUSIONS Tween 40 pretreatment was a very effective and less costly method with unwashed WIS. This pretreatment could greatly reduce cellulase loading and save wash water. Higher ethanol concentration was obtained almost without reducing ethanol yield.
Collapse
Affiliation(s)
- Jie Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
- Dalian Polytechnic University, Dalian 116034, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| | - Ruifeng Yang
- Dalian Polytechnic University, Dalian 116034, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| |
Collapse
|
34
|
Cheng C. Cellulase Activity in Different Buffering Media During Waste Paper Hydrolysis by HPLC. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199800103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Okino S, Ikeo M, Ueno Y, Taneda D. Effects of Tween 80 on cellulase stability under agitated conditions. BIORESOURCE TECHNOLOGY 2013; 142:535-9. [PMID: 23765004 DOI: 10.1016/j.biortech.2013.05.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 05/18/2023]
Abstract
The mechanism of the increase in the hydrolysis rate and yield by the addition of Tween 80 to the hydrolysis reaction of filter paper was investigated under static and agitated conditions. The increase in the hydrolysis rate by addition of Tween 80 was observed under the agitated condition only. The effects of Tween 80 on the changes in the protein concentration of individual cellulase components were investigated in the absence of substrates. Agitation of the enzyme solution resulted in the drastic decrease of SDS-PAGE bands intensity of CBH2 (cellobiohydrolase 2). The addition of Tween 80 prevented this. Thus, the Tween 80 functions to stabilize instable cellulase components under the agitated condition. Moreover, addition of Tween 80 completely suppressed the decrease of CBH2 intensity by agitation at 30°C. Results suggest that Tween 80 stabilizes instable cellulase components not only during hydrolysis, but during enzyme production also.
Collapse
Affiliation(s)
- Shohei Okino
- JGC Corporation, 2205, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 311-1313, Japan
| | | | | | | |
Collapse
|
36
|
Zhou H, Lou H, Yang D, Zhu JY, Qiu X. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401085k] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Haifeng Zhou
- Forest Products Laboratory,
Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53726, United States
| | - Hongming Lou
- Forest Products Laboratory,
Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53726, United States
| | | | - J. Y. Zhu
- Forest Products Laboratory,
Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53726, United States
| | | |
Collapse
|
37
|
Wang H, Mochidzuki K, Kobayashi S, Hiraide H, Wang X, Cui Z. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 2013; 170:541-51. [PMID: 23553108 DOI: 10.1007/s12010-013-0208-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/18/2013] [Indexed: 11/26/2022]
Abstract
Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.
Collapse
Affiliation(s)
- Hui Wang
- College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
38
|
Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ. Preferential Adsorption and Activity of Monocomponent Cellulases on Lignocellulose Thin Films with Varying Lignin Content. Biomacromolecules 2013; 14:1231-9. [DOI: 10.1021/bm400230s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raquel Martín-Sampedro
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Jenni L. Rahikainen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Leena-Sisko Johansson
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Janne Laine
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Orlando J. Rojas
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
- Departments of Forest
and Biomaterials
and Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
39
|
Soleimani M, Khani A, Dalali N, Behbehani GR. Improvement in the Cleaning Performance Towards Protein Soils in Laundry Detergents by Protease Immobilization on the Silica Nanoparticles. J SURFACTANTS DETERG 2012. [DOI: 10.1007/s11743-012-1397-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Divya Nair M, Padmaja G, Sajeev M, Sheriff J. Bioconversion of Cellulo-Starch Waste from Cassava Starch Industries for Ethanol Production: Pretreatment Techniques and Improved Enzyme Systems. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M.P. Divya Nair
- Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram - 695 017, Kerala, India
| | - G. Padmaja
- Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram - 695 017, Kerala, India
| | - M.S. Sajeev
- Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram - 695 017, Kerala, India
| | - J.T. Sheriff
- Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram - 695 017, Kerala, India
| |
Collapse
|
41
|
Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH. Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl Microbiol Biotechnol 2012; 97:5381-8. [PMID: 23053073 DOI: 10.1007/s00253-012-4412-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- In Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Soleimani M, Khani A, Najafzadeh K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids Surf B Biointerfaces 2012; 89:203-10. [PMID: 21982216 DOI: 10.1016/j.colsurfb.2011.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022]
|
44
|
Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K. Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 2011; 334:812-23. [PMID: 22078738 DOI: 10.1016/j.crvi.2011.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Badawi AM, Fahmy AA, Mohamed KA, Noor El-Din MR, Riad MG. The Effect of Different Ethoxylations for Sorbitan Monolaurate on Enhancing Simultaneous Saccharification and Fermentation (SSF) of Wheat Straw to Ethanol. Appl Biochem Biotechnol 2011; 166:22-35. [DOI: 10.1007/s12010-011-9400-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
|
46
|
Yang M, Zhang A, Liu B, Li W, Xing J. Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Liu J, Shi J, Li J, Yuan X. Characterization of the interaction between surfactants and enzymes by fluorescence probe. Enzyme Microb Technol 2011; 49:360-5. [PMID: 22112561 DOI: 10.1016/j.enzmictec.2011.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
In order to investigate the mechanism of the different stimulatory effects of the biosurfactant rhamnolipid and the chemical surfactant Tween 80 on enzymatic hydrolysis of lignocellulose, the interaction between surfactants and enzymes was analyzed by the fluorescence probe method using pyrene as probe. Based on the evolution law of pyrene fluorescence spectroscopy in the "surfactants-enzymes" systems, the interaction relationship between surfactants and enzymes was analyzed and discussed in this paper. The results show that enzyme molecules bind with rhamnolipid molecules, participate in the formation of rhamnolipid micelles, and increase the inner hydrophobic polarity of micelles, but do not change the properties of rhamnolipid micelles above the CMC (Critical Micelle Concentration). Nevertheless, for Tween 80, enzyme molecules also participate in the forming of micelles, however, they exhibit a stronger interaction with enzymes above the CMC. Both rhamnolipid and Tween 80 bind more strongly with xylanase than cellulase. Considering also previous experimental results, it can be concluded that the interaction between surfactants and enzymes improve enzyme stability and activity, and, therefore, the efficiency of enzymatic hydrolysis of lignocellulose is enhanced. The findings further provide theoretical knowledge about the mechanism of the stimulative effects of surfactants on enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Jia Liu
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China.
| | | | | | | |
Collapse
|
48
|
Brethauer S, Studer MH, Yang B, Wyman CE. The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. BIORESOURCE TECHNOLOGY 2011; 102:6295-8. [PMID: 21376571 DOI: 10.1016/j.biortech.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 05/10/2023]
Abstract
Bovine serum albumin (BSA) was applied as a model non-catalytic protein to enzymatic hydrolysis of Avicel and dilute acid pretreated corn stover at different reaction conditions to improve the understanding of its ability to enhance cellulose hydrolysis. Addition of BSA improved the 72 h hydrolysis yields in shake flasks by up to 26% for both substrates by reducing de-activation of the exoglucanases and by facilitating reductions in particle size and crystallinity during a magnetically stirred pre-incubation step. The enzyme stabilizing effect of BSA addition was most striking for batch hydrolysis in a stirred tank reactor, with glucose yields increasing by 76% after 72 h for Avicel and by 40% after 145 h for corn stover. Application of BSA to continuous hydrolysis for a mean residence time of 24h gave 33% and 40% higher glucose yields for corn stover and Avicel compared to the controls.
Collapse
Affiliation(s)
- Simone Brethauer
- Center for Environmental Research and Technology and Chemical and Environmental Engineering Department, University of California, 1084 Columbia Ave., Riverside, CA 92507, USA
| | | | | | | |
Collapse
|
49
|
Nakagame S, Chandra RP, Kadla JF, Saddler JN. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. BIORESOURCE TECHNOLOGY 2011; 102:4507-17. [PMID: 21256740 DOI: 10.1016/j.biortech.2010.12.082] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 05/02/2023]
Abstract
Douglas-fir was SO(2)-steam pretreated at different severities (190, 200, and 210°C) to assess the possible negative effect of the residual and isolated lignins on the enzymatic hydrolysis of the steam pretreated substrates. When various isolated lignins were added to the Avicel hydrolysis reactions, the decrease in glucose yields ranged from 15.2% to 29.0% after 72 h. It was apparent that the better hydrolysis yields obtained at higher pretreatment severities were more a result of the greater accessibly of the cellulose rather than any specific change in the non-productive binding of the lignin to the enzymes. FTIR and (13)C NMR characterization indicated that the lignin in the steam pretreated substrates became more condensed with increasing severity, suggesting that the cellulases were adsorbed to the lignin by hydrophobic interactions. Electrostatic interactions were also involved as the positively charged cellulase components were preferentially adsorbed to the lignins.
Collapse
Affiliation(s)
- Seiji Nakagame
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
50
|
Várnai A, Viikari L, Marjamaa K, Siika-aho M. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. BIORESOURCE TECHNOLOGY 2011; 102:1220-7. [PMID: 20736135 DOI: 10.1016/j.biortech.2010.07.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 05/03/2023]
Abstract
The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance.
Collapse
Affiliation(s)
- Anikó Várnai
- University of Helsinki, Food and Environmental Sciences, P.O. Box 27, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|