1
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
2
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Maternal stress induced endoplasmic reticulum stress and impaired pancreatic islets’ insulin secretion via glucocorticoid receptor upregulation in adult male rat offspring. Sci Rep 2022; 12:12552. [PMID: 35869151 PMCID: PMC9307850 DOI: 10.1038/s41598-022-16621-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to perinatal (prenatal and/or postnatal) stress is considered as a risk factor for metabolic disorders in later life. Accordingly, this study aimed to investigate the perinatal stress effects on the pancreatic endoplasmic reticulum (ER) stress induction, insulin secretion impairment and WFS1 (wolframin ER transmembrane Glycoprotein, which is involved in ER homeostasis and insulin secretion) expression changes, in rat offspring. According to the dams’ period of exposure to variable stress, their male offspring were divided into, control (CTRL); pre-pregnancy, pregnancy, lactation stress (PPPLS); pre-pregnancy stress (PPS); pregnancy stress (PS); lactation stress (LS); pre-pregnancy, pregnancy stress (PPPS); pregnancy, lactation stress (PLS); pre-pregnancy, lactation stress (PPLS) groups. Offspring pancreases were removed for ER extraction and the assessment of ER stress biomarkers, WFS1 gene DNA methylation, and isolated islets’ insulin secretion. Glucose tolerance was also tested. In the stressed groups, maternal stress significantly increased plasma corticosterone levels. In PPS, PS, and PPPS groups, maternal stress increased Bip (Hsp70; heat shock protein family A member 4), Chop (Ddit3; DNA- damage inducible transcript3), and WFS1 protein levels in pancreatic extracted ER. Moreover, the islets’ insulin secretion and content along with glucose tolerance were impaired in these groups. In PPS, PS, LS and PPPS groups, the pancreatic glucocorticoid receptor (GR) expression increased. Maternal stress did not affect pancreatic WFS1 DNA methylation. Thus, maternal stress, during prenatal period, impaired the islets’ insulin secretion and glucose homeostasis in adult male offspring, possibly through the induction of ER stress and GR expression in the pancreas, in this regard the role of WFS1 protein alteration in pancreatic ER should also be considered.
Collapse
|
5
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic systemic low-grade inflammation and modern lifestyle: the dark role of gut microbiota on related diseases with a focus on pandemic COVID-19. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes organs and host tissues' damage, representing a major risk for chronic diseases. Currently, a worldwide a high incidence of inflammatory chronic diseases is observed, often linked to the lifestyle-related changes occurred in the last decade's society. The mains lifestyle-related factors are a proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and finally indoor living and working with its related consequences such as indoor pollution, artificial light exposure and low vitamin D production. Recent scientific evidences found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. As a matter of facts, based on the last discoveries regarding the remarkable GM activity, in this manuscript we focused on the elements of actual lifestyle that influence the composition and function of intestinal microbial community, in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Figueiredo ACD, Titon SC, Titon Jr. B, Vasconcelos-Teixeira R, Barsotti AM, Gomes FR. Systemic hormonal and immune regulation induced by intraperitoneal LPS injection in bullfrogs (Lithobates catesbeianus). Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110872. [DOI: 10.1016/j.cbpa.2020.110872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
|
7
|
Dhaibar HA, Cruz-Topete D. Predisposition of Women to Cardiovascular Diseases: A Side-Effect of Increased Glucocorticoid Signaling During the COVID-19 Pandemic? Front Glob Womens Health 2021; 2:606833. [PMID: 34816180 PMCID: PMC8593983 DOI: 10.3389/fgwh.2021.606833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 01/22/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has created a significant health crisis worldwide. To mitigate this disease's spread, "social distancing" and "shelter in place" have been implemented. While these actions have been critical to controlling the pandemic, they have short- and long-term mental health consequences due to increased stress. There is a strong association between mental stress and cardiovascular disease (CVD). Young women (pre-menopausal) are at high risk of developing CV events in response to mental stress compared to age-matched men. The mechanisms underlying women's increased reactivity and response to stress are mostly unknown. The present review summarizes the known physiological consequences of mental stress in women's CV health and the latest molecular findings of the actions of the primary stress hormones, glucocorticoids, on the CV system. The current data suggest a clear link between psychological stress and heart disease, and women have an increased sensitivity to the harmful effects of stress hormone signaling imbalances. Therefore, it is expected that with the given unprecedented levels of stress associated with the COVID-19 pandemic, women's CV health will be significantly compromised. It is critical to widen our understanding of the direct contribution of mental stress to CVD risk in women and to identify biochemical markers with predictive value for CVD in female patients with/without cardiovascular conditions who have experienced significant mental stress during the current pandemic.
Collapse
Affiliation(s)
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
8
|
Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 2020; 16:133-144. [PMID: 32034322 DOI: 10.1038/s41584-020-0371-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mark S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Borba VV, Zandman-Goddard G, Shoenfeld Y. Exacerbations of autoimmune diseases during pregnancy and postpartum. Best Pract Res Clin Endocrinol Metab 2019; 33:101321. [PMID: 31564626 DOI: 10.1016/j.beem.2019.101321] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases represent a complex heterogeneous group of disorders that occur as a results of immune homeostasis dysregulation and loss of self-tolerance. Interestingly, more than 80% of the cases are found among women at reproductive age. Normal pregnancy is associated with remarkable changes in the immune and endocrine signaling required to tolerate and support the development and survival of the placenta and the semi-allogenic fetus in the hostile maternal immune system environment. Gravidity and postpartum represent an extremely challenge period, and likewise the general population, women suffering from autoimmune disorders attempt pregnancy. Effective preconception counseling and subsequent gestation and postpartum follow-up are crucial for improving mother and child outcomes. This comprehensive review provides information about the different pathways modulating autoimmune diseases activity and severity, such as the influence hormones, microbiome, infections, vaccines, among others, as well as updated recommendations were needed, in order to offer those women better medical care and life quality.
Collapse
Affiliation(s)
- Vânia Vieira Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gisele Zandman-Goddard
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Department of Medicine C, Wolfson Medical Center, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
10
|
Kim MS, Yi EJ, Kim YI, Kim SH, Jung YS, Kim SR, Iwawaki T, Ko HJ, Chang SY. ERdj5 in Innate Immune Cells Is a Crucial Factor for the Mucosal Adjuvanticity of Cholera Toxin. Front Immunol 2019; 10:1249. [PMID: 31275300 PMCID: PMC6593289 DOI: 10.3389/fimmu.2019.01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cholera toxin (CT) is one of most strong mucosal adjuvants, but it cannot be clinically used owing to its toxicity. The cytosolic A1 subunit of CT (CTA1) is the molecule responsible for its immunostimulatory activity, which increases the concentration of cyclic AMP and causes the induction of pro-inflammatory cytokines in innate immune cells. However, the importance of endoplasmic reticulum (ER) molecules involved in CTA1 retro-translocation to induce immune responses remained to be investigated. ERdj5 is an ER protein which is expected to transfer CTA1 to the Hrd1 complex for the retro-translocation of CTA1. In this study, we investigated the physiological relevance of ERdj5 in immune stimulation by CT. ERdj5-knockout (ERdj5 KO) mice had decreased production of antigen-specific IgG in the serum and IgA in the mucosal secretion after intranasal immunization with Ag and CT. Especially, IgG2c isotypes were specifically reduced in the absence of ERdj5. ERdj5 KO dendritic cells (DCs) failed to full activation with decreased expression of costimulatory molecules, such as MHC class II, CD80, and CD 86. In ERdj5 KO DCs, secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, was reduced. The cytokine signatures of several helper T cells were reduced in ERdj5 KO mice following intranasal CT immunization. The absence of ERdj5 affects the immunostimulatory properties of CT but does not affect the response to the CTB pentamer, the response to alum, total antibody production, or cytokine release from DCs exposed to CpG. Interestingly, CT enhanced the expression of ER stress proteins in ERdj5 KO innate immune cells. These results suggested that ERdj5 contributed as a decisive factor to the immunostimulatory capacity of CT via CTA1 retro-translocation.
Collapse
Affiliation(s)
- Mee-Sun Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Eun-Je Yi
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Young-In Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - So Hee Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Yi-Sook Jung
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Sun-Young Chang
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| |
Collapse
|
11
|
Tükenmez H, Edström I, Kalsum S, Braian C, Ummanni R, Fick SB, Sundin C, Lerm M, Elofsson M, Larsson C. Corticosteroids protect infected cells against mycobacterial killing in vitro. Biochem Biophys Res Commun 2019; 511:117-121. [PMID: 30773257 DOI: 10.1016/j.bbrc.2019.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 μM. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Isabel Edström
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Sadaf Kalsum
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Clara Braian
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
| | - Stina Berglund Fick
- Chemical Biology Consortium Sweden (CBCS), Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Charlotta Sundin
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Christer Larsson
- Infectious Diseases Clinic, Umeå University Hospital, SE-901 85, Umeå, Sweden.
| |
Collapse
|
12
|
Prior Exposure to Immunosuppressors Sensitizes Retinal Microglia and Accelerates Optic Nerve Regeneration in Zebrafish. Mediators Inflamm 2019; 2019:6135795. [PMID: 30881223 PMCID: PMC6387731 DOI: 10.1155/2019/6135795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
As adult mammals lack the capacity to replace or repair damaged neurons, degeneration and trauma (and subsequent dysfunction) of the central nervous system (CNS) seriously constrains the patient's life quality. Recent work has shown that appropriate modulation of acute neuroinflammation upon CNS injury can trigger a regenerative response; yet, the underlying cellular and molecular mechanisms remain largely elusive. In contrast to mammals, zebrafish retain high regenerative capacities into adulthood and thus form a powerful model to study the contribution of neuroinflammation to successful regeneration. Here, we used pharmacological immunosuppression methods to study the role of microglia/macrophages during optic nerve regeneration in adult zebrafish. We first demonstrated that systemic immunosuppression with dexamethasone (dex) impedes regeneration after optic nerve injury. Secondly, and strikingly, local intravitreal application of dex or clodronate liposomes prior to injury was found to sensitize retinal microglia. Consequently, we observed an exaggerated inflammatory response to subsequent optic nerve damage, along with enhanced tectal reinnervation. In conclusion, we found a strong positive correlation between the acute inflammatory response in the retina and the regenerative capacity of the optic nerve in adult zebrafish subjected to nerve injury.
Collapse
|
13
|
Nessaibia I, Fouache A, Lobaccaro JMA, Tahraoui A, Trousson A, Souidi M. Stress as an immunomodulator: liver X receptors maybe the answer. Inflammopharmacology 2018; 27:15-25. [PMID: 30467620 DOI: 10.1007/s10787-018-0546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.
Collapse
Affiliation(s)
- Issam Nessaibia
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France.
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria.
| | - Allan Fouache
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Abdelkrim Tahraoui
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria
| | - Amalia Trousson
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté nucléaire, Direction de la radioprotection de l'homme, IRSN, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
14
|
Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 2018; 132:1529-1543. [DOI: 10.1042/cs20171505] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.
Collapse
|
15
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Gao Y, Zhu H, Yang F, Wang Q, Feng Y, Zhang C. Glucocorticoid-activated IRE1α/XBP-1s signaling: an autophagy-associated protective pathway against endotheliocyte damage. Am J Physiol Cell Physiol 2018; 315:C300-C309. [PMID: 29768047 DOI: 10.1152/ajpcell.00009.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoid-induced endothelial injury has been reported in several diseases. Although there are several theories, the exact mechanism underlying the role of glucocorticoids in this process remains unclear. Autophagy has been reported to occur as a response to different stimuli and can affect cell survival and function. In this study, we found that glucocorticoids induced apoptosis and endoplasmic reticulum (ER) stress in endotheliocytes. Furthermore, we discovered that glucocorticoids induced autophagy in these cells and the inositol requiring protein 1 (IRE1α)/X-box binding protein 1s (XBP-1s) axis, one of the downstream signaling pathways of ER stress, was associated with the glucocorticoid-induced autophagy. The autophagy partly protected endotheliocytes from glucocorticoid-induced apoptosis and inhibition of proliferation. In conclusion, glucocorticoid-induced endoplasmic reticulum stress activated the IRE1α/XBP-1s signaling and induced autophagy, which, in turn, played a protective role in endotheliocyte survival and proliferation, avoiding further cellular damage caused by glucocorticoids.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Hongyi Zhu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
17
|
Enhanced hexose-6-phosphate dehydrogenase expression in adipose tissue may contribute to diet-induced visceral adiposity. Int J Obes (Lond) 2018; 42:1999-2011. [PMID: 29568102 PMCID: PMC6105561 DOI: 10.1038/s41366-018-0041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Visceral fat accumulation increases the risk of developing type 2 diabetes and metabolic syndrome, and is associated with excessive glucocorticoids (GCs). Fat depot-specific GC action is tightly controlled by 11ß-hydroxysteroid dehydrogenase (11ß-HSD1) coupled with the enzyme hexose-6-phosphate dehydrogenase (H6PDH). Mice with inactivation or activation of H6PDH genes show altered adipose 11ß-HSD1 activity and lipid storage. We hypothesized that adipose tissue H6PDH activation is a leading cause for the visceral obesity and insulin resistance. Here, we explored the role and possible mechanism of enhancing adipose H6PDH in the development of visceral adiposity in vivo. METHODS We investigated the potential contribution of adipose H6PDH activation to the accumulation of visceral fat by characterization of visceral fat obese gene expression profiles, fat distribution, adipocyte metabolic molecules, and abdominal fat-specific GC signaling mechanisms underlying the diet-induced visceral obesity and insulin resistance in H6PDH transgenic mice fed a standard of high-fat diet (HFD). RESULTS Transgenic H6PDH mice display increased abdominal fat accumulation, which is paralleled by elevated lipid synthesis associated with induction of lipogenic transcriptor C/EBPα and PPARγ mRNA levels within adipose tissue. Transgenic H6PDH mice fed a high-fat diet (HFD) gained more abdominal visceral fat mass coupled with activation of GSK3β and induction of XBP1/IRE1α, but reduced pThr308 Akt/PKB content and browning gene CD137 and GLUT4 mRNA levels within the visceral adipose tissue than WT controls. HFD-fed H6PDH transgenic mice also had impaired insulin sensitivity and exhibited elevated levels of intra-adipose GCs with induction of adipose 11ß-HSD1. CONCLUSION These data provide the first in vivo mechanistic evidence for the adverse metabolic effects of adipose H6PDH activation on visceral fat distribution, fat metabolism, and adipocyte function through enhancing 11ß-HSD1-driven intra-adipose GC action.
Collapse
|
18
|
Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, Ai Q, Chen N. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol 2018; 175:590-605. [PMID: 29130486 PMCID: PMC5786460 DOI: 10.1111/bph.14091] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, the incidence of Parkinson's disease has shown a tendency to move to a younger population, linked to the constantly increasing stressors of modern society. However, this relationship remains obscure. Here, we have investigated the contribution of stress and the mechanisms underlying this change. EXPERIMENTAL APPROACH Ten-month-old α-synuclein A53T mice, a model of Parkinson's disease (PD), were treated with chronic restraint stress (CRS) to simulate a PD-sensitive person with constant stress stimulation. PD-like behavioural tests and pathological changes were evaluated. Differentiated PC12-A53T cells were treated with corticosterone in vitro. We used Western blot, microRNA expression analysis, immunofluorescence staining, dual luciferase reporter assay and HPLC electrochemical detection to assess cellular and molecular networks after stress treatment. In vivo, stereotaxic injection of shRNA lentivirus was used to confirm our in vitro results. KEY RESULTS The protein RTP801 is encoded by DNA-damage-inducible transcript 4, and it was specifically increased in dopaminergic neurons of the substantia nigra after CRS treatment. RTP801 was post-transcriptionally inhibited by the down-regulation of miR-7. Delayed turnover of RTP801, through the inhibition of proteasome degradation also contributed to its high content. Elevated RTP801 blocked autophagy, thus increasing accumulation of oligomeric α-synuclein and aggravating endoplasmic reticulum stress. RTP801 inhibition alleviated the symptoms of neurodegeneration during this process. CONCLUSIONS AND IMPLICATIONS RTP801 is a promising target for the treatment of PD, especially for PD-sensitive patients who live under increased social pressure. Down-regulation of RTP801 could inhibit the current tendency to an earlier onset of PD.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shi‐Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sha‐Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| | - Yi‐Na Jiang
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng‐Fei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qi‐Di Ai
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Nai‐Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- College of PharmacyHunan University of Chinese MedicineChangshaChina
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| |
Collapse
|
19
|
Yang C, Gao J, Du J, Yang X, Jiang J. Altered Neuroendocrine Immune Responses, a Two-Sword Weapon against Traumatic Inflammation. Int J Biol Sci 2017; 13:1409-1419. [PMID: 29209145 PMCID: PMC5715524 DOI: 10.7150/ijbs.21916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
During the occurrence and development of injury (trauma, hemorrhagic shock, ischemia and hypoxia), the neuroendocrine and immune system act as a prominent navigation leader and possess an inter-system crosstalk between the reciprocal information dissemination. The fundamental reason that neuroendocrinology and immunology could mix each other and permeate toward the field of traumatology is owing to their same biological languages or chemical information molecules (hormones, neurotransmitters, neuropeptides, cytokines and their corresponding receptors) shared by the neuroendocrine and immune systems. The immune system is not only modulated by the neuroendocrine system, but also can modulate the biological functions of the neuroendocrine system. The interactive linkage of these three systems precipitates the complicated space-time patterns for the courses of traumatic inflammation. Recently, compelling evidence indicates that the network linkage pattern that initiating agents of neuroendocrine responses, regulatory elements of immune cells and effecter targets for immune regulatory molecules arouse the resistance mechanism disorders, which supplies the beneficial enlightenment for the diagnosis and therapy of traumatic complications from the view of translational medicine. Here we review the alternative protective and detrimental roles as well as possible mechanisms of the neuroendocrine immune responses in traumatic inflammation.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
20
|
Kubin ME, Hellberg L, Palatsi R. Glucocorticoids: The mode of action in bullous pemphigoid. Exp Dermatol 2017; 26:1253-1260. [PMID: 28771827 DOI: 10.1111/exd.13408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Bullous pemphigoid (BP) is the most common of pemphigoid diseases caused by autoantibodies against the structures of dermoepidermal junction followed by complement activation, innate immune cell infiltration, neutrophil proteinase secretion and subepidermal blister formation. The first-line treatment of BP is topical and systemic glucocorticoids (GC). Regulation of the immune system and inflammatory cells is the main target of GC actions. GCs act through genomic and non-genomic mechanisms. The human glucocorticoid receptor (GR) mediates most of the biologic effects of GC: cytosolic GR binds GCs and is capable to bind to glucocorticoid response elements in DNA and either transactivate or transrepress genes depending on the tissue and cell type. In addition, GR exerts rapid, non-genomic effects possibly mediated by membrane-localized receptors or by translocation to mitochondria. GCs can also interact directly with several enzymes and cytokines. As a target treatment for BP, the production of autoantibodies should be discontinued. GCs, in spite of their wide immunosuppressive actions, are weak to stop immunoglobulin G (IgG) autoantibody formation. However, both systemic and topical GCs are able to reduce the clinical symptoms of BP. GCs are used to inhibit the secondary inflammation and symptoms, such as blistering and pruritus, and it is shown that GC treatment will gradually decrease also the autoantibody formation. Our review article analyses the mode of action of GC treatment in BP, as far it is possible due to paucity of modern immunological studies.
Collapse
Affiliation(s)
- Minna E Kubin
- PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Lars Hellberg
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Riitta Palatsi
- PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Morgan DJ, Davis DM. Distinct Effects of Dexamethasone on Human Natural Killer Cell Responses Dependent on Cytokines. Front Immunol 2017; 8:432. [PMID: 28450865 PMCID: PMC5389971 DOI: 10.3389/fimmu.2017.00432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) have long been known to be immune suppressive and synthetic variants are widely used in the treatment of inflammatory disorders. Here, we report that, while suppressing the initial production of interferon-γ (IFN-γ), the synthetic GC dexamethasone (Dex) enhances the proliferation and survival of natural killer (NK) cells stimulated with interleukin-2 (IL-2) + interleukin-12 (IL-12). Inhibition of mTOR complex 1 by rapamycin revealed the immunosuppressive activity of Dex was independent from the effect of enhancing NK cell proliferation. In the presence of IL-2 + IL-12, Dex also increased the percentage of NK cells that were CD16+ and DNAM1bright, increased the level of expression of CD94 or NKG2A, and improved mitochondrial function of NK cells. Moreover, NK cells treated with cytokines IL-2 and IL-12 + Dex, followed by a 7-day rest, displayed an increased IFN-γ response upon restimulation. Thus, there is a dichotomic effect of GCs on NK cell function dependent on the local cytokine milieu; the NK cell effector response is initially suppressed, but, dependent on the cytokines present, Dex can also augment the proliferation, survival, and reactivity of human NK cells in a secondary recall response.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Yan C, Yang H, Wang Y, Dong Y, Yu F, Wu Y, Wang W, Adaku U, Lutfy K, Friedman TC, Tian S, Liu Y. Increased glycogen synthase kinase-3β and hexose-6-phosphate dehydrogenase expression in adipose tissue may contribute to glucocorticoid-induced mouse visceral adiposity. Int J Obes (Lond) 2016; 40:1233-41. [PMID: 27102048 PMCID: PMC4970937 DOI: 10.1038/ijo.2016.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Increased adiposity in visceral depots is a crucial feature associated with glucocorticoid (GC) excess. The action of GCs in target tissue is regulated by GC receptor (GR) and 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6pdh). Glycogen synthase kinase-3β (GSK3β) is known to be a crucial mediator of ligand-dependent gene transcription. We hypothesized that the major effects of corticosteroids on adipose fat accumulation are in part medicated by changes in GSK3β and H6pdh. METHODS We characterized the alterations of GSK3β and GC metabolic enzymes, and determined the impact of GR antagonist mifepristone on obesity-related genes and the expression of H6pdh and 11ß-HSD1 in adipose tissue of mice exposed to excess GC as well as in in vitro studies using 3T3-L1 adipocytes treated with GCs. RESULTS Corticosterone (CORT) exposure increased abdominal fat mass and induced expression of lipid synthase ACC and ACL with activation of GSK3β phosphorylation in abdominal adipose tissue of C57BL/6J mice. Increased pSer9 GSK3β was correlated with induction of H6pdh and 11ß-HSD1. Additionally, mifepristone treatment reversed the production of H6pdh and attenuated CORT-mediated production of 11ß-HSD1 and lipogenic gene expression with reduction of pSer9 GSK3β, thereby leading to improvement of phenotype of adiposity within adipose tissue in mice treated with excess GCs. Suppression of pSer9 GSK3β by mifepristone was accompanied by activation of pThr308 Akt and blockade of CORT-induced adipogenic transcriptor C/EBPα and PPARγ. In addition, mifepristone also attenuated CORT-mediated activation of IRE1α/XBP1. Additionally, reduction of H6pdh by shRNA showed comparable effects to mifepristone on attenuating CORT-induced expression of GC metabolic enzymes and improved lipid accumulation in vitro in 3T3-L1 adipocytes. CONCLUSION These findings suggest that elevated adipose GSK3β and H6pdh expression contribute to 11ß-HSD1 mediating hypercortisolism associated with visceral adiposity.
Collapse
Affiliation(s)
- C Yan
- Department of Pediatrics, First Hospital, Jilin University, Chang Chun, People's Republic of China.,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - H Yang
- School of Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Y Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Y Dong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - F Yu
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - Y Wu
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - W Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - U Adaku
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - K Lutfy
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - T C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - S Tian
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Y Liu
- Department of Pediatrics, First Hospital, Jilin University, Chang Chun, People's Republic of China.,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
23
|
Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. J Transl Med 2016; 14:47. [PMID: 26865361 PMCID: PMC4750219 DOI: 10.1186/s12967-016-0804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
The repair of organs and tissues has stepped into a prospective era of regenerative medicine. However, basic research and clinical practice in the lung regeneration remains crawling. Owing to the complicated three dimensional structures and above 40 types of pulmonary cells, the regeneration of lung tissues becomes a great challenge. Compelling evidence has showed that distinct populations of intrapulmonary and extrapulmonary stem/progenitor cells can regenerate epithelia as well as endothelia in various parts of the respiratory tract. Recently, the discovery of human lung stem cells and their relevant studies has opened the door of hope again, which might put us on the path to repair our injured body parts, lungs on demand. Herein, we emphasized the role of endogenous and exogenous stem/progenitor cells in lungs as well as artificial tissue repair for the injured lungs, which constitute a marvelous toolbox for the treatment of acute lung injury. Finally, we further discussed the potential problems in the pulmonary remodeling and regeneration.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| |
Collapse
|
24
|
Yang C, Gao W, Yang X, Wang H, Du J, Zhong H, Zhou L, Zhou J, Zhang Y, Jiang J. CRH knockout inhibits the murine innate immune responses in association with endoplasmic reticulum stress after thermal injury. Surgery 2015; 158:255-65. [DOI: 10.1016/j.surg.2015.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 01/07/2023]
|
25
|
Epinephrine enhances the response of macrophages under LPS stimulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:254686. [PMID: 25243125 PMCID: PMC4160625 DOI: 10.1155/2014/254686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/08/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022]
Abstract
Trauma associated with infection may directly trigger a neuroendocrine reaction in vivo while the hormone epinephrine is known to mediate immune responses to inflammation after injury. However, the role of epinephrine during the earliest stage of trauma still remains unclear. We therefore explored the role of epinephrine on activated macrophages under LPS stimulation in vitro as well as the mechanisms underlying its effect. Dose- and time-dependent effects of epinephrine on macrophage immune function were assessed after LPS activation. We also employed CD14 siRNA interference to investigate whether CD14 played a role in the mechanism underlying the effect of epinephrine on LPS-induced macrophage responses. Our results showed that epinephrine pretreatment (10 ng/mL) significantly promoted immune responses from LPS stimulated macrophages, including phagocytic rate, phagocytic index, TNFα/IL-1β/IL-10 secretion, and CD14 expression (P < 0.05). Moreover, TNFα/IL-1β/IL-10 levels attained their peak value 1 hour after incubation with 10 ng/mL epinephrine (P < 0.05), and CD14 siRNA transfection dramatically decreased phagocytosis and cytokine secretion by LPS-activated macrophages (P < 0.05). We therefore conclude that 10 ng/mL epinephrine enhances immune responses from macrophages under LPS stimulation and that the underlying mechanism may relate to CD14 upregulation on the surface of macrophages.
Collapse
|
26
|
D'Attilio L, Díaz A, Santucci N, Bongiovanni B, Gardeñez W, Marchesini M, Bogué C, Dídoli G, Bottasso O, Bay ML. Levels of inflammatory cytokines, adrenal steroids, and mRNA for GRα, GRβ and 11βHSD1 in TB pleurisy. Tuberculosis (Edinb) 2013; 93:635-41. [PMID: 23988280 DOI: 10.1016/j.tube.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/12/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022]
Abstract
Our previous work on the immune-endocrine features of patients with pulmonary tuberculosis (TB) showed markedly decreased plasma levels of dehydroepiandrosterone (DHEA) together with augmented concentrations of Cortisol and pro- and anti-inflammatory cytokines. Studies in peripheral blood mononuclear cells (PBMC) indicated a lower mRNA α/β ratio of glucocorticoid receptors -GR- together with a higher 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) mRNA expression in cases with severe pulmonary TB. Since Pleural TB (PLTB) is a rather benign manifestation of TB, we now analyzed the systemic and local immune-endocrine profile as well as the GRα, GRβ, 11βHSD1 and 11βHSD2 transcripts in PBMC and pleural effusion mononuclear cells (PEMC) of patients with PLTB. PLTB patients had increased levels of IL-1β, IL-6 and IFNγ together with reduced Cortisol and DHEA concentrations in pleural fluids. Also, a significantly increased expression of 11βHSD1 and GRα was found in PEMC compared to PBMC. Findings point out to an appropriate immune response and a substantial inflammatory reaction, wherein the low Cortisol concentrations may be equally effective, because of the increased expression of GRα and 11βHSD1 transcripts which may optimize the immunomodulatory properties of Cortisol.
Collapse
Affiliation(s)
- Luciano D'Attilio
- Institute of Immunology, School of Medical Sciences, National University of Rosario, Santa Fe 3100, CUAS IV 2° Flor, Rosario 2000, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2:202-23. [PMID: 24709697 PMCID: PMC3972684 DOI: 10.3390/cells2020202] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022] Open
Abstract
First described for their metabolic and immunosuppressive effects, glucocorticoids are widely prescribed in clinical settings of inflammation. However, glucocorticoids are also potent inducers of apoptosis in many cell types and tissues. This review will focus on the established mechanisms of glucocorticoid-induced apoptosis and outline what is known about the apoptotic response in cells and tissues of the body after exposure to glucocorticoids. Glucocorticoid-induced apoptosis affects the skeletal system, muscular system, circulatory system, nervous system, endocrine system, reproductive system, and the immune system. Interestingly, several cell types have an anti-apoptotic response to glucocorticoids that is cytoprotective. Lastly, we will discuss the pro- and anti-apoptotic effects of glucocorticoids in cancers and their clinical implications.
Collapse
Affiliation(s)
- Amanda L Gruver-Yates
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
28
|
Zhong HJ, Wang HY, Yang C, Zhou JY, Jiang JX. Low concentrations of corticosterone exert stimulatory effects on macrophage function in a manner dependent on glucocorticoid receptors. Int J Endocrinol 2013; 2013:405127. [PMID: 24194757 PMCID: PMC3806411 DOI: 10.1155/2013/405127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/24/2013] [Accepted: 08/25/2013] [Indexed: 11/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) have both stimulatory and suppressive effects on immune cells depending on the concentration. However, the mechanisms underlying the stimulatory effects of GCs remain elusive. Rat peritoneal macrophages were treated with different concentrations of corticosterone (0, 30 nM, 150 nM, and 3 μ M). To inhibit the glucocorticoid receptor (GR) activity, macrophages were preincubated with the GR antagonist RU486 (mifepristone, 10 μ M) for 30 min before treatment with corticosterone (150 nM). In the absence of immune stimuli, the chemotactic and phagocytic activities of macrophages were markedly enhanced by low concentrations of corticosterone (30 and 150 nM) when compared with vehicle-treated controls. However, these effects were not observed at a high concentration of corticosterone (3 μ M). Furthermore, blocking GR activity inhibited 150 nM corticosterone-enhanced chemotaxis and phagocytosis of macrophages. Meanwhile, after treatment with corticosterone (150 nM) for 1 h and 3 h, GR protein expression increased to 1.4- and 2.2-fold, respectively, compared to untreated macrophages. These effects were inhibited by RU486. However, mineralocorticoid receptor (MR) protein expression was not influenced by 150 nM corticosterone. These results demonstrate that low concentrations of corticosterone exert stimulatory effects on macrophage function in the absence of immune stimuli, and GR is at least partially responsible for these effects.
Collapse
Affiliation(s)
- He-Jiang Zhong
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- *He-Jiang Zhong: and
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian-Yun Zhou
- Medical Department, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- *Jian-Xin Jiang:
| |
Collapse
|
29
|
End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology. Immunol Res 2012; 52:64-80. [PMID: 22396175 DOI: 10.1007/s12026-012-8275-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases.
Collapse
|
30
|
Yang C, Yan J, Wang HY, Zhou LL, Zhou JY, Wang ZG, Jiang JX. Effects of bilateral adrenalectomy on the innate immune responses following trauma in rats. Injury 2011; 42:905-12. [PMID: 22081818 DOI: 10.1016/j.injury.2010.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The regulation of neuroendocrine hormones on the innate immune responses in trauma has not been fully understood. Previous studies have shown that the neuroendocrine hormones are important factors in their effects on immune parameters, depending on their concentration and timing instead of the simple suppressive effects. MATERIALS AND METHODS A total of 144 Sprague–Dawley rats were divided randomly into sham, pulmonary blast injury (BI) and adrenalectomy plus pulmonary BI groups. Bilateral adrenalectomy was performed on rats, which were then subjected to blast injury. Following this, peripheral leucocyte responsiveness to lipopolysaccharide (LPS) stimulation, phagocytosis activities of macrophages and bacteria translocation (BT) were examined. Tumour necrosis factor-a (TNF-a) levels and the expression levels of scavenger receptor (SR) A, CD14, Toll-like receptor (TLR) 4 and MD2 were assayed with enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. RESULTS In adrenalectomised rats after pulmonary BI, the number of peripheral leucocytes was increased and the phagocytosis of peritoneal and splenic macrophages was decreased as compared to the BI group. Simultaneously, the gut-derived BT and TNF-a secretion in lung tissues were elevated, whilst the LPS-stimulated TNF-a synthesis by peripheral leucocyte responsiveness was reduced. Furthermore, the mRNA levels of SR-A, CD14, TLR4 and MD2 in lung tissues of adrenalectomised rats decreased. Adrenalectomised rats showed enhancement of inflammatory responses and severe tissue injuries in trauma. CONCLUSIONS Release of adrenal hormones might enhance, rather than inhibit, the innate immune functions, particularly in the early stages of trauma.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Association of steroid use with complicated sigmoid diverticulitis: potential role of activated CD68+/CD163+ macrophages. Langenbecks Arch Surg 2011; 396:759-68. [DOI: 10.1007/s00423-011-0797-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
|
32
|
Yang C, Gao J, Wang HY, Liu Q, Xu MH, Wang ZG, Jiang JX. Effects of hypothalamus destruction on the level of plasma corticosterone after blast injury and its relation to interleukin-6 in rats. Cytokine 2011; 54:29-35. [DOI: 10.1016/j.cyto.2010.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 01/22/2023]
|
33
|
Zen M, Canova M, Campana C, Bettio S, Nalotto L, Rampudda M, Ramonda R, Iaccarino L, Doria A. The kaleidoscope of glucorticoid effects on immune system. Autoimmun Rev 2011; 10:305-10. [PMID: 21224015 DOI: 10.1016/j.autrev.2010.11.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents which exert multiple effects on immune cell functions. Although their use dates back 60 years, their functions and mode of action have not been completely elucidated yet. GCs act through different genomic and non genomic mechanisms which are mediated by the binding to cytosolic glucocorticoid receptor as well as to cell membrane receptors, or by interacting directly with enzymes and other cell proteins. T cell subtypes have a different sensitivity and response to GCs; in fact, GCs have an immunosuppressive effect on pro-inflammatory T cells, while they stimulate regulatory T cell activity. The effect of GCs on B cells is less clear. Interestingly, treatment with GCs may determine apoptosis of autoreactive B cells by reducing the B cell activator factor (BAFF). Tolerogenic dendritic cells which express low levels of Major Histocompatibility Complex class II, co-stimulatory molecules and cytokines, such as IL-1β, IL-6, and IL-12, can be induced by GCs. GCs at low levels stimulate and at high levels inhibit macrophage activity; moreover, they reduce the number of basophils, stimulate the transcription of inhibitors of leukocyte proteinases and the apoptosis of neutrophils and eosinophils. Finally, GCs inhibit the synthesis and function of some cytokines, particularly T helper type 1 cytokines, and to a lesser extent the secretion of chemokines and co-stimulatory molecules from immune and endothelial cells.
Collapse
Affiliation(s)
- Margherita Zen
- Department of Clinical and Experimental Medicine, University of Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ishisaka M, Kudo T, Shimazawa M, Kakefuda K, Oyagi A, Hyakkoku K, Tsuruma K, Hara H. Restraint-Induced Expression of Endoplasmic Reticulum Stress-Related Genes in the Mouse Brain. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/pp.2011.21002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|