1
|
Khattri RB, Batra A, White Z, Hammers D, Ryan TE, Barton ER, Bernatchez P, Walter GA. Comparative lipidomic and metabolomic profiling of mdx and severe mdx-apolipoprotein e-null mice. Skelet Muscle 2024; 14:36. [PMID: 39716324 DOI: 10.1186/s13395-024-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoEW). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoEW mice using solution and high-resolution-magic angle spinning (HR-MAS) 1H-NMR spectroscopy. Compared to mdx and regular chow-fed mdx-ApoE mice, we observed an order of magnitude increase in lipid deposition in gastrocnemius muscle of mdx-ApoEW mice including 11-fold elevations in -CH3 and -CH2 lipids, along with pronounced elevations in serum cholesterol, fatty acid, triglyceride and phospholipids. Hepatic lipids were also elevated but did not correlate with the extent of muscle lipid infiltration or differences in serum lipids. This study provides the first lipometabolomic signature of severe mdx lesions exacerbated by high circulating lipids and lends credence to claims that the liver, the main regulator of whole-body lipoprotein metabolism, may play only a minor role in this process.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Louisiana, Monroe, LA, USA
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, and Centre for Heart + Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - David Hammers
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center of Exercise Science, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center of Exercise Science, University of Florida, Gainesville, FL, USA
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, and Centre for Heart + Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Aging, University of Florida, PO BOX 100274, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Wang CC, Kang L, Zuo BL, Peng X, Li HW, Zhou N, Li K. Gleditsiae sinensis fructus Pills combined with Jujubae fructus attenuate chronic bronchitis via regulation of AGE-RAGE signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117191. [PMID: 37717840 DOI: 10.1016/j.jep.2023.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gleditsiae sinensis fructus Pills (GF) is a famous classical prescription, that is regularly combined with Jujubae fructus (JF) for the treatment of chronic bronchitis (CB) in the clinic. While the clinical efficacy of this combination prescription is clearly established, the active ingredients and molecular mechanisms remain unclear. AIM OF THE STUDY To elucidate the mechanisms of action of Gleditsiae sinensis fructus Pills combined with Jujubae fructus (GF&JF) against CB based on network pharmacology and experimental verification. MATERIALS AND METHODS The potential targets of GF&JF involved in therapeutic activity against CB were predicted based on network pharmacology and an "ingredients-targets" network constructed. The Metascape database was used for Module, GO functional and KEGG signaling pathway enrichment analyses of potential targets. Molecular docking was applied to simulate the binding activities of key candidate active ingredients to core targets. For experimental verification, a CB model was established through smoking and nasal cavity drip of lipopolysaccharide. Related inflammatory factors, including TNF-α, TGF-β, IL-6 and IL-8 in serum, and IL-4 IL-8, IFN-γ and IL-10 in bronchoalveolar lavage fluid (BALF), were detected using ELISA. Hematoxylin and eosin (H&E) and Masson staining were performed to observe pathological changes in lung and tracheal tissue. The expression of related proteins and mRNAs in the lung tissue were detected using immunohistochemistry (IHC), quantitative real-time PCR, and western blot. RESULTS In network pharmacology, 36 common targets of GF&JF for CB were screened and the key targets and main signaling pathways identified. The active ingredients quercetin and stigmasterol in GF&JF had more targets for CB, which displayed good binding activity to IL-6, VEGFA, and EGFR, as established from molecular docking results. In vivo, GF&JF effectively inhibit the inflammatory response in CB mice and improved pathological changes in lung and tracheal tissue. In terms of the key proteins of the AGE-RAGE signaling pathway, GF&JF induced significant down-regulation of IL-6, ICAM-1, VCAM-1, EGFR, CASPASE-3, AGEs and RAGE proteins in lung tissue as well as mRNA expression of IL-6, ICAM-1, VCAM-1, EGFR, AGEs and RAGE. CONCLUSIONS The GF&JF combination exerts a good therapeutic effect in CB model mice, which may be attributed to inhibition of the inflammatory response as well as regulation on the expression of AGE-RAGE signaling pathway. In addition, quercetin and stigmasterol appear to be the main active ingredients of GF&JF in the treatment of CB.
Collapse
Affiliation(s)
- Chang-Chang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Le Kang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, China.
| | - Bei-Lei Zuo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Xin Peng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Hong-Wei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R, Zhengzhou, China.
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R, Zhengzhou, China.
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R, Zhengzhou, China.
| |
Collapse
|
3
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
4
|
Wang Y, Sun Y, Yang B, Wang Q, Kuang H. Integrate metabolomics strategy and target prediction to reveal the ameliorate effect of four typical 'cold' property herbs on hyperthyroidism rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115772. [PMID: 36202164 DOI: 10.1016/j.jep.2022.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The 'cold' property herbs are commonly applied in heat syndrome. Unfortunately, the underlying mechanisms of the 'cold' property herbs on heat syndrome has not been investigated. AIM OF THE STUDY The study aimed to probe the activities of the four typical 'cold' property herbs on hyperthyroidism. MATERIALS AND METHODS Firstly, the four typical 'heat' property herbs were set as contrasting experiment. Then. the physical sign, thyroid function and metabolism profile (multivariate statistical analysis) were assessing the difference between the four typical 'cod' property herbs and the four typical 'heat' property herbs. H&E staining were used to confirmed the influence of the typical 'cold' property herbs on hyperthyroidism. A metabolomics approach combine with network pharmacology were explored the effected mechanism of the typical 'cold' property herbs on hyperthyroidism. the gene expression of UCP-1 was detected by RT-PCR. The metabolites pathway and target-associated metabolites were verified Na+/K+-ATP enzyme and GSH, as well IL6, IL17, MAPK and PPAR-γ, which detected by commercial kits and Western blot. RESULTS It is proved that the four typical 'cold' property herbs effectively ameliorate the physical sign, thyroid function and metabolism profile in hyperthyroidism rats, but the four typical 'heat' property herbs showed no benefit. Moreover, the four typical 'cold' property herbs regulated energy metabolism, glutathione metabolism, taurine hypotaurine metabolism, thyroid hormone synthesis, arachidonic acid metabolism and linoleic acid metabolism and the inflammation mediated by inflammatory factor (IL6, IL17), Ca2+ and MAPK signaling pathway. And the levels of UCP-1, Na+/K+-ATP enzyme, GSH, and the targets protein of IL6, IL17, MAPK and PPAR-γ were ameliorated by the four typical 'cold' property herbs. CONCLUSION The four typical 'cold' property herbs could alleviate hyperthyroidism by ameliorate thyroid hormone synthesis, restraining inflammation and oxidative stress via regulating energy metabolism, glutathione metabolism, taurine hypotaurine metabolism, arachidonic acid metabolism and linoleic acid metabolism and Ca 2+/MAPK signaling pathway, which might be a useful strategy for treating hyperthyroidism.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
5
|
Wang YY, Sun YP, Yang BY, Wang QH, Kuang HX. Application of metabolomics and network analysis to reveal the ameliorating effect of four typical “hot” property herbs on hypothyroidism rats. Front Pharmacol 2022; 13:955905. [PMID: 36091783 PMCID: PMC9452843 DOI: 10.3389/fphar.2022.955905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Herbs with a “hot” properties are frequently used to treat cold symptoms in TCM. However, the underlying mechanisms of the herbs with “hot” properties on hypothyroidism have not been investigated. This study aimed to explore four typical “hot” and “cold” property herb on hypothyroidism. Firstly, the difference efficacy between the four typical “hot” property herbs and the four typical “cold” property herbs was assessed by physical signs, thyroid function, and the metabolic profile using multivariate statistical analysis. The influence of the four typical “hot” property herbs on hypothyroidism was validated pathologically. The impact mechanism of the four typical “hot” property herbs on hypothyroidism was investigated through a metabolomics method combined with network analysis. Na+/K+-ATP, ACC1 enzyme, UCP-1, and the PI3K-Akt pathway were used to confirm the metabolite pathways and target-associated metabolites. The results showed that the four typical “hot” property herbs could significantly improve physical signs, thyroid function, and the metabolic profile in hypothyroidism rats, the four typical “cold” property herbs did not show any benefit. Moreover, the four typical “hot” property herbs could improve lipid metabolism, energy metabolism, and thyroid hormone levels by the PI3K-Akt signaling pathway, Ca2+- AMPK signaling pathways, purine metabolism, and tryptophan metabolism. Additionally, the levels of UCP-1, Na+/K + -ATP enzyme, and ACC1 were ameliorated by the four typical “hot” property herbs in hypothyroidism rats. Therefore, a metabolomics strategy combined with network analysis was successfully performed and interpreted the mechanism of the four typical “hot” property herbs on hypothyroidism based on the theory of “cold and hot” properties of TCM well.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- *Correspondence: Qiu-Hong Wang, ; Hai-Xue Kuang,
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China
- *Correspondence: Qiu-Hong Wang, ; Hai-Xue Kuang,
| |
Collapse
|
6
|
Zhang R, Sun X, Huang Z, Pan Y, Westbrook A, Li S, Bazzano L, Chen W, He J, Kelly T, Li C. Examination of serum metabolome altered by cigarette smoking identifies novel metabolites mediating smoking-BMI association. Obesity (Silver Spring) 2022; 30:943-952. [PMID: 35258150 PMCID: PMC8957487 DOI: 10.1002/oby.23386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The authors hypothesize that an untargeted metabolomics study will identify novel mechanisms underlying smoking-associated weight loss. METHODS This study performed cross-sectional analyses among 1,252 participants in the Bogalusa Heart Study and assessed 1,202 plasma metabolites for mediation effects on smoking-BMI associations. Significant metabolites were tested for associations with smoking genetic risk scores among a subset of participants (n = 654) with available genomic data, followed by direction dependence analysis to investigate causal relationships between the metabolites and smoking and BMI. All analyses controlled for age, sex, race, education, alcohol drinking, and physical activity. RESULTS Compared with never smokers, current and former smokers had a 3.31-kg/m2 and 1.77-kg/m2 lower BMI after adjusting for all covariables, respectively. A total of 22 xenobiotics and 94 endogenous metabolites were significantly associated with current smoking. Eight xenobiotics were also associated with former smoking. Forty metabolites mediated the smoking-BMI associations, and five showed causal relationships with both smoking and BMI. These metabolites, including 1-oleoyl-GPE (18:1), 1-linoleoyl-GPE (18:2), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), α-ketobutyrate, and 1-palmitoyl-GPE (16:0), mediated 26.0% of the association between current smoking and BMI. CONCLUSIONS This study cataloged plasma metabolites altered by cigarette smoking and identified five metabolites that partially mediated the association between current smoking and BMI.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Yang Pan
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Adrianna Westbrook
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, US
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| |
Collapse
|
7
|
Huang Q, Wu X, Gu Y, Wang T, Zhan Y, Chen J, Zeng Z, Lv Y, Zhao J, Xie J. Detection of the Disorders of Glycerophospholipids and Amino Acids Metabolism in Lung Tissue From Male COPD Patients. Front Mol Biosci 2022; 9:839259. [PMID: 35309511 PMCID: PMC8927538 DOI: 10.3389/fmolb.2022.839259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background: At present, few studies have reported the metabolic profiles of lung tissue in patients with COPD. Our study attempted to analyze the lung metabolome in male COPD patients and to screen the overlapping biomarkers of the lung and plasma metabolomes. Methods: We performed untargeted metabolomic analysis of normal lung tissue from two independent sets (the discovery set: 20 male COPD patients and 20 controls and the replication set: 47 male COPD patients and 27 controls) and of plasma samples from 80 male subjects containing 40 COPD patients and 40 controls. Results: We found glycerophospholipids (GPs) and Amino acids were the primary classes of differential metabolites between male COPD patients and controls. The disorders of GPs metabolism and the valine, leucine and isoleucine biosynthesis metabolism pathways were identified in lung discovery set and then also validated in the lung replication set. Combining lung tissue and plasma metabolome, Phytosphingosine and l-tryptophan were two overlapping metabolites biomarkers. Binary logistic regression suggested that phytosphingosine together with l-tryptophan was closely associated with male COPD and showed strong diagnostic power with an AUC of 0.911 (95% CI: 0.8460-0.9765). Conclusion: Our study revealed the metabolic perturbations of lung tissues from male COPD patients. The detected disorders of GPs and amino acids may provide an insight into the pathological mechanism of COPD. Phytosphingosine and l-tryptophan were two novel metabolic biomarkers for differentiating COPD patients and controls.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinkun Chen
- Department of Science, Western University, London, ON, Canada
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie,
| |
Collapse
|
8
|
Kim HY, Lee HS, Kim IH, Kim Y, Ji M, Oh S, Kim DY, Lee W, Kim SH, Paik MJ. Comprehensive Targeted Metabolomic Study in the Lung, Plasma, and Urine of PPE/LPS-Induced COPD Mice Model. Int J Mol Sci 2022; 23:ijms23052748. [PMID: 35269890 PMCID: PMC8911395 DOI: 10.3390/ijms23052748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Progression of chronic obstructive pulmonary disease (COPD) leads to irreversible lung damage and inflammatory responses; however, biomarker discovery for monitoring of COPD progression remains challenging. (2) Methods: This study evaluated the metabolic mechanisms and potential biomarkers of COPD through the integrated analysis and receiver operating characteristic (ROC) analysis of metabolic changes in lung, plasma, and urine, and changes in morphological characteristics and pulmonary function in a model of PPE/LPS-induced COPD exacerbation. (3) Results: Metabolic changes in the lungs were evaluated as metabolic reprogramming to counteract the changes caused by the onset of COPD. In plasma, several combinations of phenylalanine, 3-methylhistidine, and polyunsaturated fatty acids have been proposed as potential biomarkers; the α-aminobutyric acid/histidine ratio has also been reported, which is a novel candidate biomarker for COPD. In urine, a combination of succinic acid, isocitric acid, and pyruvic acid has been proposed as a potential biomarker. (4) Conclusions: This study proposed potential biomarkers in plasma and urine that reflect altered lung metabolism in COPD, concurrently with the evaluation of the COPD exacerbation model induced by PPE plus LPS administration. Therefore, understanding these integrative mechanisms provides new insights into the diagnosis, treatment, and severity assessment of COPD.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (H.-S.L.); (W.L.)
- Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Doo-Young Kim
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
- Hyundai Pharm, New Drug Discovery Lab, Yongin 17089, Korea
| | - Wonjae Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (H.-S.L.); (W.L.)
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- Correspondence: (S.-H.K.); (M.-J.P.); Tel.: +82-63-570-8757 (S.-H.K.); +82-61-750-3762 (M.-J.P.)
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
- Correspondence: (S.-H.K.); (M.-J.P.); Tel.: +82-63-570-8757 (S.-H.K.); +82-61-750-3762 (M.-J.P.)
| |
Collapse
|
9
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
10
|
Zhang C, Ma S, Wu J, Luo L, Qiao S, Li R, Xu W, Wang N, Zhao B, Wang X, Zhang Y, Wang X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol Res 2020; 159:104985. [PMID: 32504839 DOI: 10.1016/j.phrs.2020.104985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has drawn increasing attention, and the benefits of various treatment strategies, including nutrition, medication and physical exercise, maybe microbially-mediated. Metformin is a widely used hypoglycemic agent, while resistant starch (RS) is a novel dietary fiber that emerges as a nutritional strategy for metabolic disease. However, it remains unclear as to the potential degree and interactions among gut microbial communities, metabolic landscape, and the anti-diabetic effects of metformin and RS, especially for a novel type 3 resistant starch from Canna edulis (Ce-RS3). In the present study, T2DM rats were administered metformin or Ce-RS3, and the changes in gut microbiota and serum metabolic profiles were characterized using 16S-rRNA gene sequencing and metabolomics, respectively. After 11 weeks of treatment, Ce-RS3 exhibited similar anti-diabetic effects to those of metformin, including dramatically reducing blood glucose, ameliorating the response to insulin resistance and glucose tolerance test, and relieving the pathological damage in T2DM rats. Interestingly, the microbial and systemic metabolic dysbiosis in T2DM rats was effectively modulated by both Ce-RS3 and, to a lesser extent, metformin. The two treatments increased the gut bacterial diversity, and supported the restoration of SCFA-producing bacteria, thereby significantly increasing SCFAs levels. Both treatments simultaneously corrected 16 abnormal metabolites in the metabolism of lipids and amino acids, many of which are microbiome-related. PICRUSt analysis and correlation of SCFAs levels with metabolomics data revealed a strong association between gut microbial and host metabolic changes. Strikingly, Ce-RS3 exhibited better efficacy in increasing gut microbiota diversity with a peculiar enrichment of Prevotella genera. The gut microbial properties of Ce-RS3 were tightly associated with the T2DM-related indexes, showing the potential to alleviate diabetic phenotype dysbioses, and possibly explaining the greater efficiency in improving metabolic control. The beneficial effects of Ce-RS3 and metformin might derive from changes in gut microbiota through altering host-microbiota interactions with impact on the host metabolome. Given the complementarity of Ce-RS3 and metformin in regulation of gut microbiota and metabolites, this study also prompted us to suggest possible "Drug-Dietary fiber" combinations for managing T2DM.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Linglong Luo
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ruxin Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine,Beijing, 100029, China
| | - Xiao Wang
- College of Pharmacy, Qilu University of Technology (Shandong Academy of Sciences), Shandong, 250014, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing, 100023
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
11
|
Hardikar S, Albrechtsen RD, Achaintre D, Lin T, Pauleck S, Playdon M, Holowatyj AN, Gigic B, Schrotz-King P, Boehm J, Habermann N, Brezina S, Gsur A, van Roekel EH, Weijenberg MP, Keski-Rahkonen P, Scalbert A, Ose J, Ulrich CM. Impact of Pre-blood Collection Factors on Plasma Metabolomic Profiles. Metabolites 2020; 10:E213. [PMID: 32455751 PMCID: PMC7281389 DOI: 10.3390/metabo10050213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.
Collapse
Affiliation(s)
- Sheetal Hardikar
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Cancer Prevention, Population Health Sciences, Fred Hutchinson Cancer Research Institute, Seattle, WA 19024, USA
| | - Richard D. Albrechtsen
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - David Achaintre
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Tengda Lin
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Svenja Pauleck
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Mary Playdon
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Andreana N. Holowatyj
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Biljana Gigic
- Department of Surgery, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
| | - Juergen Boehm
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
- Genome Biology, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Augustin Scalbert
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Jennifer Ose
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Cornelia M. Ulrich
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
12
|
Dator R, Villalta PW, Thomson N, Jensen J, Hatsukami DK, Stepanov I, Warth B, Balbo S. Metabolomics Profiles of Smokers from Two Ethnic Groups with Differing Lung Cancer Risk. Chem Res Toxicol 2020; 33:2087-2098. [PMID: 32293874 PMCID: PMC7434657 DOI: 10.1021/acs.chemrestox.0c00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
African
American (AA) smokers are at a higher risk of developing
lung cancer compared to whites. The variations in the metabolism of
nicotine and tobacco-derived carcinogens in these groups were reported
previously with the levels of nicotine metabolites and carcinogen-derived
metabolites measured using targeted approaches. While useful, these
targeted strategies are not able to detect global metabolic changes
for use in predicting the detrimental effects of tobacco use and ultimately
lung cancer susceptibility among smokers. To address this limitation,
we have performed global untargeted metabolomics profiling in urine
of AA and white smokers to characterize the pattern of metabolites,
identify differentially regulated pathways, and correlate these profiles
with the observed variations in lung cancer risk between these two
populations. Urine samples from AA (n = 30) and white
(n = 30) smokers were used for metabolomics analysis
acquired in both positive and negative electrospray ionization modes.
LC-MS data were uploaded onto the cloud-based XCMS online (http://xcmsonline.scripps.edu) platform for retention time correction, alignment, feature detection,
annotation, statistical analysis, data visualization, and automated
systems biology pathway analysis. The latter identified global differences
in the metabolic pathways in the two groups including the metabolism
of carbohydrates, amino acids, nucleotides, fatty acids, and nicotine.
Significant differences in the nicotine degradation pathway (cotinine
glucuronidation) in the two groups were observed and confirmed using
a targeted LC-MS/MS approach. These results are consistent with previous
studies demonstrating AA smokers with lower glucuronidation capacity
compared to whites. Furthermore, the d-glucuronate degradation
pathway was found to be significantly different between the two populations,
with lower amounts of the putative metabolites detected in AA compared
to whites. We hypothesize that the differential regulation of the d-glucuronate degradation pathway is a consequence of the variations
in the glucuronidation capacity observed in the two groups. Other
pathways including the metabolism of amino acids, nucleic acids, and
fatty acids were also identified, however, the biological relevance
and implications of these differences across ethnic groups need further
investigation. Overall, the applied metabolomics approach revealed
global differences in the metabolic networks and endogenous metabolites
in AA and whites, which could be used and validated as a new potential
panel of biomarkers that could be used to predict lung cancer susceptibility
among smokers in population-based studies.
Collapse
Affiliation(s)
- Romel Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicole Thomson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraβe 38, 1090 Vienna, Austria.,Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Zhou J, Li Q, Liu C, Pang R, Yin Y. Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:553-565. [PMID: 32210549 PMCID: PMC7073598 DOI: 10.2147/copd.s229505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common disease characterized by persistent respiratory symptoms and airflow restriction. It is usually manifested as airway and/or alveolar abnormalities caused by significant exposure to harmful particulates or gases. OBJECTIVE We aim to explore plasma metabolomic changes in the acute exacerbation stage of COPD (AECOPD) and stable stage of COPD (Stable COPD) to identify potential biomarkers for diagnosis or prognosis in clinical practice. METHODS Untargeted metabolomics and lipidomics analyses were performed to investigate dysregulated molecules in blood plasma of AECOPD patients (n=48) and Stable COPD (n=48), and a cohort of healthy people were included as a control group (n=48). Statistical analysis and bioinformatics analysis were performed to reveal dysregulated metabolites and perturbed metabolic pathways. SVM-based multivariate ROC analysis was used for candidate biomarker screening. RESULTS A total of 142 metabolites and 688 lipids were dysregulated in COPD patients. Pathway enrichment analysis showed that several metabolic pathways were perturbed after COPD onset. Several biomarker panels were proposed for diagnosis of COPD vs healthy control and AECOPD vs Stable COPD with AUC greater than 0.9. CONCLUSION Numerous plasma metabolites and several metabolic pathways were detected relevant to COPD disease onset or progression. These metabolites may be considered as candidate biomarkers for diagnosis or prognosis of COPD. The perturbed pathways involved in COPD provide clues for further pathological mechanism studies of COPD.
Collapse
Affiliation(s)
- Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Qiuyu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Chengyang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Ruifang Pang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
- Correspondence: Yuxin Yin Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China Email
| |
Collapse
|
14
|
An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019; 9:metabo9060111. [PMID: 31185592 PMCID: PMC6631716 DOI: 10.3390/metabo9060111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common and heterogeneous respiratory disease, is characterized by persistent and incompletely reversible airflow limitation. Metabolomics is applied to analyze the difference of metabolic profile based on the low-molecular-weight metabolites (<1 kDa). Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of COPD. This review aims to summarize the alteration of metabolites in blood/serum/plasma, urine, exhaled breath condensate, lung tissue samples, etc. from COPD individuals, thereby uncovering the potential pathogenesis of COPD according to the perturbed metabolic pathways. Metabolomic researches have indicated that the dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways, and the imbalance of oxidations and antioxidations might lead to local and systematic inflammation by activating the Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and releasing inflammatory cytokines, like interleutin-6 (IL-6), tumor necrosis factor-α, and IL-8. In addition, they might cause protein malnutrition and oxidative stress and contribute to the development and exacerbation of COPD.
Collapse
|
15
|
Mechanisms of bergenin treatment on chronic bronchitis analyzed by liquid chromatography-tandem mass spectrometry based on metabolomics. Biomed Pharmacother 2019; 109:2270-2277. [DOI: 10.1016/j.biopha.2018.11.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022] Open
|
16
|
Ma S, Wang C, Zhao B, Ren X, Tian S, Wang J, Zhang C, Shao Y, Qiu M, Wang X. Tandem mass tags labeled quantitative proteomics to study the effect of tobacco smoke exposure on the rat lung. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:496-506. [PMID: 29307719 DOI: 10.1016/j.bbapap.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND The causal link between tobacco smoke exposure (TSE) and numerous severe respiratory system diseases (RSD), including chronic bronchitis, chronic obstructive pulmonary disease, and lung cancer, is well established. However, the pathogenesis of TSE-induced RSD remains incompletely understood. This research aims to detect the pathogenetic mechanisms and potential therapeutic targets of TSE-induced RSD. METHODS This study employed TSE model which rats were exposed to a concentration of 60% tobacco smoke in a toxicant exposure system for four weeks. Tandem mass tags (TMT) labeled quantitative proteomics combined with off-line high pH reversed-phase fractionation, and nano-liquid chromatography-mass spectrometry method (off-line high pH RPF-nano-LC-MS/MS) were adopted to detect differentially expressed proteins (DEPs) in the lung tissues of the TSE model rats and to compare them with those in control. The accuracy of the results was verified by western blot. RESULTS Compared with the control group, 33 proteins in the TSE model group's lung tissues showed significant differential expression. Analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that, several biological pathways, such as the steroid biosynthesis pathway, were involved and played significant roles in the pathogenesis of the experimental group's TSE. CONCLUSIONS These findings make a crucial contribution to the search for a comprehensive understanding of TSE-induced RSD's pathogenesis, and furthermore provide guidance for the diagnosis and treatment of TSE-induced RSD.
Collapse
Affiliation(s)
- Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Chunguo Wang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolei Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Simin Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuanyang Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Minyi Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
17
|
Yang BY, Tan JY, Liu Y, Liu B, Jin S, Guo HW, Kuang HX. A UPLC-TOF/MS-based metabolomics study of rattan stems ofSchisandra chinensiseffects on Alzheimer's disease rats model. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Jin-Yan Tan
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Bo Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Shuang Jin
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Hong-Wei Guo
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; Harbin People's Republic of China
| |
Collapse
|
18
|
Shields PG, Berman M, Brasky TM, Freudenheim JL, Mathe E, McElroy JP, Song MA, Wewers MD. A Review of Pulmonary Toxicity of Electronic Cigarettes in the Context of Smoking: A Focus on Inflammation. Cancer Epidemiol Biomarkers Prev 2017; 26:1175-1191. [PMID: 28642230 PMCID: PMC5614602 DOI: 10.1158/1055-9965.epi-17-0358] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR.
Collapse
Affiliation(s)
- Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio.
| | - Micah Berman
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Public Health, Ohio
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Ewy Mathe
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Min-Ae Song
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Wang Y, Man H, Gao J, Liu X, Ren X, Chen J, Zhang J, Gao K, Li Z, Zhao B. Plasma metabonomics study on toxicity biomarker in rats treated withEuphorbia fischerianabased on LC-MS. Biomed Chromatogr 2016; 30:1386-96. [DOI: 10.1002/bmc.3696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yingfeng Wang
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Hongxue Man
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Jian Gao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Xinfeng Liu
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Xiaolei Ren
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Jianxin Chen
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Jiayu Zhang
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Kuo Gao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Zhongfeng Li
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Baosheng Zhao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| |
Collapse
|
20
|
Ren X, Ma S, Wang J, Tian S, Fu X, Liu X, Li Z, Zhao B, Wang X. Comparative effects of dexamethasone and bergenin on chronic bronchitis and their anti-inflammatory mechanisms based on NMR metabolomics. MOLECULAR BIOSYSTEMS 2016; 12:1938-47. [DOI: 10.1039/c6mb00041j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NMR metabolomics was applied to study the anti-inflammation mechanism of dexamethasone and bergenin on chronic bronchitis.
Collapse
Affiliation(s)
- Xiaolei Ren
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Shuangshuang Ma
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Juan Wang
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Simin Tian
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Xiaorui Fu
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| | - Xinfeng Liu
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Zhongfeng Li
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Baosheng Zhao
- Center of Scientific Experiment
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Xueyong Wang
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100102
- China
| |
Collapse
|