1
|
Disdier C, Soyer A, Broca-Brisson L, Goutal S, Guyot AC, Ziani N, Breuil L, Winkeler A, Hugon G, Joudinaud T, Bénech H, Armengaud J, Skelton MR, Harati R, Hamoudi RA, Tournier N, Mabondzo A. Impaired brain glucose metabolism as a biomarker for evaluation of dodecyl creatine ester in creatine transporter deficiency: Insights from patient brain-derived organoids and in vivo [18F]FDG PET imaging in a mouse model. Neurobiol Dis 2024; 202:106720. [PMID: 39490685 DOI: 10.1016/j.nbd.2024.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Creatine transporter deficiency (CTD) is an inborn error of creatine (Cr) metabolism in which Cr is not properly distributed to the brain due to a mutation in the Cr transporter (CrT) SLC6A8 gene. CTD is associated with developmental delays and with neurological disability in children. Dodecyl creatine ester (DCE), as a Cr prodrug, is a promising drug to treat CTD after administration by the nasal route, taking advantage of the nose-to-brain pathway. In this study, the potential adaptive response to energy imbalance in glucose metabolism was investigated in CTD using both SLC6A8-deficient mice (CrT KO) and brain organoids derived from CTD patient cells. Longitudinal brain [18F]FDG PET imaging in CrT KO mice compared to wild-type mice demonstrated that CTD was associated with a significant loss and decline in brain glucose metabolism. In CrT KO mice, intranasal supplementation with DCE for a month significantly mitigated the decline in brain glucose metabolism compared to untreated (vehicle) animals. Mechanistic investigations in CrT KO mice and cerebral organoids derived from CTD patient cells suggest that intracellular trafficking of glucose transporter (Glut) may be altered by lack of activation of AMP-activated protein kinase (AMPK). Consistency between observations in the CrT KO mouse model and cerebral organoids derived from CTD patient cells supports the value of this new model for drug discovery and development. In addition, these results suggest that [18F]FDG PET imaging may offer a unique and minimally-invasive biomarker to monitor the impact of investigational treatment on CTD pathophysiology, with translational perspectives.
Collapse
Affiliation(s)
- Clémence Disdier
- CERES BRAIN Therapeutics, ICM, Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Amélie Soyer
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Léa Broca-Brisson
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, Cedex 91191, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Anne-Cécile Guyot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, Cedex 91191, France
| | - Nora Ziani
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alexandra Winkeler
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Gaëlle Hugon
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Thomas Joudinaud
- CERES BRAIN Therapeutics, ICM, Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Henri Bénech
- CERES BRAIN Therapeutics, ICM, Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Matthew R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, United States
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Rifat A Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Aloïse Mabondzo
- CERES BRAIN Therapeutics, ICM, Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France; Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, Cedex 91191, France.
| |
Collapse
|
2
|
Mauro M, Zulian E, Bestiaco N, Polano M, Larese Filon F. Slow-Paced Breathing Intervention in Healthcare Workers Affected by Long COVID: Effects on Systemic and Dysfunctional Breathing Symptoms, Manual Dexterity and HRV. Biomedicines 2024; 12:2254. [PMID: 39457567 PMCID: PMC11505241 DOI: 10.3390/biomedicines12102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Many COVID-19 survivors still experience long-term effects of an acute infection, most often characterised by neurological, cognitive and psychiatric sequelae. The treatment of this condition is challenging, and many hypotheses have been proposed. Non-invasive vagus nerve stimulation using slow-paced breathing (SPB) could stimulate both central nervous system areas and parasympathetic autonomic pathways, leading to neuromodulation and a reduction in inflammation. The aim of the present study was to evaluate physical, cognitive, emotional symptoms, executive functions and autonomic cardiac modulation after one month of at-home slow breathing intervention. METHODS 6655 healthcare workers (HCWs) were contacted via a company email in November 2022, of which N = 58 HCWs were enrolled as long COVID (cases) and N = 53 HCWs as controls. A baseline comparison of the two groups was performed. Subsequently each case was instructed on how to perform a resonant SPB using visual heart rate variability (HRV) biofeedback. They were then given a mobile video tutorial breathing protocol and asked to perform it three times a day (morning, early afternoon and before sleep). N = 33 cases completed the FU. At T0 and T1, each subject underwent COVID-related, psychosomatic and dysfunctional breathing questionnaires coupled with heart rate variability and manual dexterity assessments. RESULTS After one month of home intervention, an overall improvement in long-COVID symptoms was observed: confusion/cognitive impairment, chest pain, asthenia, headache and dizziness decreased significantly, while only a small increase in manual dexterity was found, and no relevant changes in cardiac parasympathetic modulation were observed.
Collapse
Affiliation(s)
- Marcella Mauro
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy (F.L.F.)
| | - Elisa Zulian
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy (F.L.F.)
| | - Nicoletta Bestiaco
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy (F.L.F.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Francesca Larese Filon
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy (F.L.F.)
| |
Collapse
|
3
|
Lopes-Santos LE, de Lacerda Ferreira D, de Angelis G, Foss MP, Trevisan AC, de Lacerda KJCC, Tumas V, Bellissimo-Rodrigues F, Wichert-Ana L. How Mild Is the Mild Long COVID? A Comprehensive Neuropsychological Assessment of Patients with Cognitive Complaints. Arch Clin Neuropsychol 2024:acae071. [PMID: 39244203 DOI: 10.1093/arclin/acae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
The global impact of the Coronavirus Disease (COVID-19) pandemic has extended beyond physical health, leading to widespread mental health issues. Beyond respiratory symptoms, there is a growing concern about long-term cognitive effects, particularly in individuals who experienced mild cases of the infection. We aimed to investigate the neuropsychological aspects of long-term COVID-19 in non-hospitalized adults compared with a control group. This cross-sectional study included 42 participants, 22 individuals with a history of mild COVID, and 20 healthy controls. The participants were recruited from the community and underwent a comprehensive neuropsychological assessment. Participants from the mild COVID group reported cognitive symptoms persisting for an average of 203.86 days and presented a higher frequency of psychological treatment history (81.8%) compared with the control group (25.0%). History of anxiety disorders was more prevalent in the mild COVID group (63.6%) than in the control group (20.0%). Significant reductions in verbal working memory were observed in the mild COVID group. Levels of anxiety were found to have a significant impact on difficulties with visual recognition memory. This study reveals important neuropsychological alterations in individuals following mild COVID-19, emphasizing executive functions deficits. Our findings underscore the persistence of these deficits even in non-hospitalized cases, suggesting potential inflammatory mechanisms in the central nervous system. The study highlights the need for comprehensive assessments and targeted interventions to address the diverse cognitive impacts on individuals recovering from COVID-19.
Collapse
Affiliation(s)
- Lucas Emmanuel Lopes-Santos
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Diego de Lacerda Ferreira
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Geisa de Angelis
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Paula Foss
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina Trevisan
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Lauro Wichert-Ana
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Duricka D, Liu L. Reduction of long COVID symptoms after stellate ganglion block: A retrospective chart review study. Auton Neurosci 2024; 254:103195. [PMID: 38901177 DOI: 10.1016/j.autneu.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The SARS-CoV-2 pandemic has left millions of individuals with a host of post-viral symptoms that can be debilitating and persist indefinitely. To date there are no definitive tests or treatments for the collection of symptoms known as "Long COVID" or Post-acute sequelae of COVID-19 (PASC). Following our initial case report detailing improvement of Long COVID symptoms after sequential bilateral stellate ganglion blockade (SGB), we performed a retrospective chart analysis study on individuals treated with the same protocol over the course of six months (2021-2022) in our clinic. Patients self-reported symptoms on a 10-point scale as part of optional patient follow-up using an online survey. After one month or more following treatment, patients reported striking reductions in Fatigue, Worsening of Symptoms following Mental and Physical Activity, Memory Problems, Problems Concentrating, Sleep Problems, Anxiety, and Depression. Loss of Taste and Loss of Smell in some individuals did not respond to treatment, likely indicating structural damage following infection. This study suggests that neuromodulation may provide relief of Long COVID symptoms for at least a subset of individuals, and provides support for prospective studies of this potential treatment.
Collapse
Affiliation(s)
- Deborah Duricka
- WWAMI School of Medical Education, University of Alaska Anchorage, USA; Neuroversion, Inc., Anchorage, AK, USA.
| | - Luke Liu
- Neuroversion, Inc., Anchorage, AK, USA
| |
Collapse
|
5
|
Sharma AA, Nenert R, Goodman AM, Szaflarski JP. Brain temperature and free water increases after mild COVID-19 infection. Sci Rep 2024; 14:7450. [PMID: 38548815 PMCID: PMC10978935 DOI: 10.1038/s41598-024-57561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
6
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
7
|
Leonel JW, Ciurleo GCV, Formiga AM, Vasconcelos TDMF, de Andrade MH, Feitosa WLQ, Sobreira-Neto AA, Portugal CG, Morais LM, Marinho SC, Gomes EDABM, Feitosa EDAAF, Sobreira EST, Oriá RB, Sobreira-Neto MA, Braga-Neto P. Long COVID: neurological manifestations - an updated narrative review. Dement Neuropsychol 2024; 18:e20230076. [PMID: 38425701 PMCID: PMC10901563 DOI: 10.1590/1980-5764-dn-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Indexed: 03/02/2024] Open
Abstract
Infection with the SARS-CoV-2 virus can lead to neurological symptoms in the acute phase and in the Long COVID phase. These symptoms usually involve cognition, sleep, smell disorders, psychiatric manifestations, headache and others. This condition is more commonly described in young adults and women. This symptomatology can follow severe or mild cases of the disease. The importance of this issue resides in the high prevalence of neurological symptoms in the Long COVID phase, which entails significant morbidity in this population. In addition, such a condition is associated with high health care costs, with some estimates hovering around 3.7 trillion US dollars. In this review, we will sequentially describe the current knowledge about the most prevalent neurological symptoms in Long COVID, as well as their pathophysiology and possible biomarkers.
Collapse
|
8
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-023-01734-3. [PMID: 38172332 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
9
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Shenoy PU, Udupa H, KS J, Babu S, K N, Jain N, Das R, Upadhyai P. The impact of COVID-19 on pulmonary, neurological, and cardiac outcomes: evidence from a Mendelian randomization study. Front Public Health 2023; 11:1303183. [PMID: 38155884 PMCID: PMC10752946 DOI: 10.3389/fpubh.2023.1303183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Long COVID is a clinical entity characterized by persistent health problems or development of new diseases, without an alternative diagnosis, following SARS-CoV-2 infection that affects a significant proportion of individuals globally. It can manifest with a wide range of symptoms due to dysfunction of multiple organ systems including but not limited to cardiovascular, hematologic, neurological, gastrointestinal, and renal organs, revealed by observational studies. However, a causal association between the genetic predisposition to COVID-19 and many post-infective abnormalities in long COVID remain unclear. Methods Here we employed Mendelian randomization (MR), a robust genetic epidemiological approach, to investigate the potential causal associations between genetic predisposition to COVID-19 and long COVID symptoms, namely pulmonary (pneumonia and airway infections including bronchitis, emphysema, asthma, and rhinitis), neurological (headache, depression, and Parkinson's disease), cardiac (heart failure and chest pain) diseases, and chronic fatigue. Using two-sample MR, we leveraged genetic data from a large COVID-19 genome-wide association study and various disorder-specific datasets. Results This analysis revealed that a genetic predisposition to COVID-19 was significantly causally linked to an increased risk of developing pneumonia, airway infections, headache, and heart failure. It also showed a strong positive correlation with chronic fatigue, a frequently observed symptom in long COVID patients. However, our findings on Parkinson's disease, depression, and chest pain were inconclusive. Conclusion Overall, these findings provide valuable insights into the genetic underpinnings of long COVID and its diverse range of symptoms. Understanding these causal associations may aid in better management and treatment of long COVID patients, thereby alleviating the substantial burden it poses on global health and socioeconomic systems.
Collapse
Affiliation(s)
- Pooja U. Shenoy
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Hrushikesh Udupa
- Department of Community Medicine, Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Jyothika KS
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Sangeetha Babu
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Nikshita K
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Neha Jain
- Department of Statistics, Yenepoya (Deemed to be University), Mangalore, India
| | - Ranajit Das
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Tavares-Júnior JWL, Oliveira DN, da Silva JBS, Queiroz Feitosa WL, Sousa AVM, Marinho SC, Cunha LCV, Gaspar SDB, Gomes CMP, de Oliveira LLB, Moreira-Nunes CA, Sobreira EST, de Moraes MEA, Sobreira-Neto MA, Montenegro RC, Braga-Neto P. Post-COVID-19 Cognitive Decline and Apoe Polymorphism: Towards a Possible Link? Brain Sci 2023; 13:1611. [PMID: 38137059 PMCID: PMC10742128 DOI: 10.3390/brainsci13121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
APOE ε4 polymorphism has been recently described as a possible association with cognitive deficits in COVID-19 patients. This research aimed to establish the correlation between COVID-19 and cognitive impairment, and the APOE gene polymorphism among outpatients. We performed a cross-sectional study with confirmed COVID-19 patients and neurological symptoms that persisted for more than three months from onset. APOE genotypes were determined. The final number of patients included in this study was 219, of which 186 blood samples were collected for APOE genotyping, evaluated 4.5 months after COVID-19. Among the participants, 143 patients (65.3%) reported memory impairment symptoms as their primary concern. However, this complaint was objectively verified through screening tests (Addenbrooke Cognitive Examination-Revised and Mini-Mental State Examination) in only 36 patients (16.4%). The group experiencing cognitive decline exhibited a higher prevalence of the APOE ε4 allele than the normal group (30.8% vs. 16.4%, respectively, p = 0.038). Furthermore, the APOE ε4 allele and anxiety symptoms remained significant after multivariate analysis. This study assessed an outpatient population where cognitive changes were the primary complaint, even in mild cases. Moreover, the ε4 allele, sleep disorders, and anxiety symptoms were more frequent in the cognitive decline group.
Collapse
Affiliation(s)
- José Wagner Leonel Tavares-Júnior
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Danilo Nunes Oliveira
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Jean Breno Silveira da Silva
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Werbety Lucas Queiroz Feitosa
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Artur Victor Menezes Sousa
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
| | - Samuel Cavalcante Marinho
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Letícia Chaves Vieira Cunha
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Safira de Brito Gaspar
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Carmem Meyve Pereira Gomes
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| | - Laís Lacerda Brasil de Oliveira
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Caroline Aquino Moreira-Nunes
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Emmanuelle Silva Tavares Sobreira
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Manoel Alves Sobreira-Neto
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
| | - Raquel Carvalho Montenegro
- Medicine Research and Development Center (NPDM), Pharmacogenetics Laboratory, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.B.S.d.S.); (L.L.B.d.O.); (C.A.M.-N.); (M.E.A.d.M.); (R.C.M.)
| | - Pedro Braga-Neto
- Neurology Division, Clinical Medicine Department, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil; (J.W.L.T.-J.); (D.N.O.); (W.L.Q.F.); (A.V.M.S.); (L.C.V.C.); (E.S.T.S.); (M.A.S.-N.)
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará (UFC), Fortaleza 60020-181, CE, Brazil
- Health Sciences Center, State University of Ceará (UECE), Fortaleza 60714-903, CE, Brazil; (S.C.M.); (S.d.B.G.); (C.M.P.G.)
| |
Collapse
|
12
|
Rus CP, de Vries BEK, de Vries IEJ, Nutma I, Kooij JJS. Treatment of 95 post-Covid patients with SSRIs. Sci Rep 2023; 13:18599. [PMID: 37919310 PMCID: PMC10622561 DOI: 10.1038/s41598-023-45072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
After Covid-19 infection, 12.5% develops post-Covid-syndrome (PCS). Symptoms indicate numerous affected organ systems. After a year, chronic fatigue, dysautonomia and neurological and neuropsychiatric complaints predominate. In this study, 95 PCS patients were treated with selective serotonin reuptake inhibitors (SSRIs). This study used an exploratory questionnaire and found that two-thirds of patients had a reasonably good to strong response on SSRIs, over a quarter of patients had moderate response, while 10% reported no response. Overall, patients experienced substantial improved well-being. Brainfog and sensory overload decreased most, followed by chronic fatigue and dysautonomia. Outcomes were measured with three different measures that correlated strongly with each other. The response to SSRIs in PCS conditions was explained by seven possible neurobiological mechanisms based on recent literature on PCS integrated with already existing knowledge. Important for understanding these mechanisms is the underlying biochemical interaction between various neurotransmitter systems and parts of the immune system, and their dysregulation in PCS. The main link appears to be with the metabolic kynurenine pathway (KP) which interacts extensively with the immune system. The KP uses the same precursor as serotonin: tryptophan. The KP is overactive in PCS which maintains inflammation and which causes a lack of tryptophan. Finally, potential avenues for future research to advance this line of clinical research are discussed.
Collapse
Affiliation(s)
- Carla P Rus
- Independent Researcher, The Hague, The Netherlands.
| | | | - Ingmar E J de Vries
- Donders Institute, Radboud University, 6525 EN, Nijmegen, The Netherlands
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - J J Sandra Kooij
- Department of Psychiatry, Amsterdam UMC/VUMC, 1081 HJ, Amsterdam, The Netherlands
- PsyQ, 2593 HR, The Hague, The Netherlands
| |
Collapse
|
13
|
Aghajani Mir M. Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19. Mol Neurobiol 2023:10.1007/s12035-023-03715-y. [PMID: 37874482 DOI: 10.1007/s12035-023-03715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
It has been more than three years since COVID-19 impacted the lives of millions of people, many of whom suffer from long-term effects known as long-haulers. Notwithstanding multiorgan complaints in long-haulers, signs and symptoms associated with cognitive characteristics commonly known as "brain fog" occur in COVID patients over 50, women, obesity, and asthma at excessive. Brain fog is a set of symptoms that include cognitive impairment, inability to concentrate and multitask, and short-term and long-term memory loss. Of course, brain fog contributes to high levels of anxiety and stress, necessitating an empathetic response to this group of COVID patients. Although the etiology of brain fog in COVID-19 is currently unknown, regarding the mechanisms of pathogenesis, the following hypotheses exist: activation of astrocytes and microglia to release pro-inflammatory cytokines, aggregation of tau protein, and COVID-19 entry in the brain can trigger an autoimmune reaction. There are currently no specific tests to detect brain fog or any specific cognitive rehabilitation methods. However, a healthy lifestyle can help reduce symptoms to some extent, and symptom-based clinical management is also well suited to minimize brain fog side effects in COVID-19 patients. Therefore, this review discusses mechanisms of SARS-CoV-2 pathogenesis that may contribute to brain fog, as well as some approaches to providing therapies that may help COVID-19 patients avoid annoying brain fog symptoms.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
14
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Martin EM, Rupprecht S, Schrenk S, Kattlun F, Utech I, Radscheidt M, Brodoehl S, Schwab M, Reuken PA, Stallmach A, Habekost T, Finke K. A hypoarousal model of neurological post-COVID syndrome: the relation between mental fatigue, the level of central nervous activation and cognitive processing speed. J Neurol 2023; 270:4647-4660. [PMID: 37356025 PMCID: PMC10511382 DOI: 10.1007/s00415-023-11819-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Knowledge on the nature of post-COVID neurological sequelae often manifesting as cognitive dysfunction and fatigue is still unsatisfactory. OBJECTIVES We assumed that cognitive dysfunction and fatigue in post-COVID syndrome are critically linked via hypoarousal of the brain. Thus, we assessed whether tonic alertness as a neurocognitive index of arousal is reduced in these patients and how this relates to the level of central nervous activation and subjective mental fatigue as further indices of arousal. METHODS 40 post-COVID patients with subjective cognitive dysfunction and 40 matched healthy controls underwent a whole-report paradigm of briefly presented letter arrays. Based on report performance and computational modelling according to the theory of visual attention, the parameter visual processing speed (VPS) was quantified as a proxy of tonic alertness. Pupillary unrest was assessed as a measure of central nervous activation. The Fatigue Assessment Scale was applied to assess subjective mental fatigue using the corresponding subscale. RESULTS VPS was reduced in post-COVID patients compared to controls (p = 0.005). In these patients, pupillary unrest (p = 0.029) and mental fatigue (p = 0.001) predicted VPS, explaining 34% of the variance and yielding a large effect with f2 = 0.51. CONCLUSION In post-COVID patients with subjective cognitive dysfunction, hypoarousal of the brain is reflected in decreased processing speed which is explained by a reduced level of central nervous activation and a higher level of mental fatigue. In turn, reduced processing speed objectifies mental fatigue as a core subjective clinical complaint in post-COVID patients.
Collapse
Affiliation(s)
- Eva Maria Martin
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital Jena, Jena, Germany
| | - Simon Schrenk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Fabian Kattlun
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Isabelle Utech
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Monique Radscheidt
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital Jena, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Thomas Habekost
- Center of Visual Cognition, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
16
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
17
|
Hameed R, Bahadur AR, Singh SB, Sher J, Todua M, Moradi L(M, Bastakoti S, Arslan M, Ajmal H, Lee GY, Ayubcha C, Werner TJ, Alavi A, Revheim ME. Neurological and Psychiatric Manifestations of Long COVID-19 and Their [ 18F]FDG PET Findings: A Review. Diagnostics (Basel) 2023; 13:2353. [PMID: 37510097 PMCID: PMC10378471 DOI: 10.3390/diagnostics13142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
For more than two years, lingering sequalae of COVID-19 have been extensively investigated. Approximately 10% of individuals infected by COVID-19 have been found to experience long-term symptoms termed "long COVID-19". The neurological and psychiatric manifestations of long COVID-19 are of particular concern. While pathogenesis remains unclear, emerging imaging studies have begun to better elucidate certain pathological manifestation. Of specific interest is imaging with [18F]FDG PET which directly reflects cellular glycolysis often linked to metabolic and inflammatory processes. Seeking to understand the molecular basis of neurological features of long COVID-19, this review encompasses the most recent [18F]FDG PET literature in this area.
Collapse
Affiliation(s)
- Rizwanullah Hameed
- Kingsbrook Jewish Medical Center, 585 Schenectady Avenue, New York, NY 11203, USA;
- Interfaith Medical Center, 1545 Atlantic Avenue, New York, NY 11213, USA
| | | | - Shashi Bhushan Singh
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Juwairah Sher
- Medical University of the Americas, 27 Jackson Road, Suite 302, Devens, MA 0134, USA;
| | - Maia Todua
- Department of Endocrinology, Tbilisi State Medical University, Vazha-Pshavela Ave. 33, 0186 Tbilisi, Georgia;
| | - Leah (Mahsa) Moradi
- Touro University, Touro College of Pharmacy, 3 Times Square, New York, NY 10036, USA;
| | | | - Maeen Arslan
- Dartmouth College Hanover, Hanover, NH 03755, USA;
| | - Hanfa Ajmal
- College of Public Health, University of South Florida, 4202 E Fowler Ave., Tampa, FL 33620, USA;
| | - Gha Young Lee
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; (G.Y.L.); (C.A.)
| | - Cyrus Ayubcha
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; (G.Y.L.); (C.A.)
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (T.J.W.); (A.A.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- The Intervention Center, Rikshospitalet, Division for Technology and Innovation, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
18
|
Ajčević M, Iscra K, Furlanis G, Michelutti M, Miladinović A, Buoite Stella A, Ukmar M, Cova MA, Accardo A, Manganotti P. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci Rep 2023; 13:5808. [PMID: 37037833 PMCID: PMC10086005 DOI: 10.1038/s41598-023-32275-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Cognitive impairment is one of the most prevalent symptoms of post Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV-2) state, which is known as Long COVID. Advanced neuroimaging techniques may contribute to a better understanding of the pathophysiological brain changes and the underlying mechanisms in post-COVID-19 subjects. We aimed at investigating regional cerebral perfusion alterations in post-COVID-19 subjects who reported a subjective cognitive impairment after a mild SARS-CoV-2 infection, using a non-invasive Arterial Spin Labeling (ASL) MRI technique and analysis. Using MRI-ASL image processing, we investigated the brain perfusion alterations in 24 patients (53.0 ± 14.5 years, 15F/9M) with persistent cognitive complaints in the post COVID-19 period. Voxelwise and region-of-interest analyses were performed to identify statistically significant differences in cerebral blood flow (CBF) maps between post-COVID-19 patients, and age and sex matched healthy controls (54.8 ± 9.1 years, 13F/9M). The results showed a significant hypoperfusion in a widespread cerebral network in the post-COVID-19 group, predominantly affecting the frontal cortex, as well as the parietal and temporal cortex, as identified by a non-parametric permutation testing (p < 0.05, FWE-corrected with TFCE). The hypoperfusion areas identified in the right hemisphere regions were more extensive. These findings support the hypothesis of a large network dysfunction in post-COVID subjects with cognitive complaints. The non-invasive nature of the ASL-MRI method may play an important role in the monitoring and prognosis of post-COVID-19 subjects.
Collapse
Affiliation(s)
- Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Katerina Iscra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy
| | - Marco Michelutti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy
| | | | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy
| | - Maja Ukmar
- Radiology Unit, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy
| | - Maria Assunta Cova
- Radiology Unit, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Trieste University Hospital-ASUGI, University of Trieste, Trieste, Italy.
| |
Collapse
|
19
|
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21:133-146. [PMID: 36639608 PMCID: PMC9839201 DOI: 10.1038/s41579-022-00846-2] [Citation(s) in RCA: 1445] [Impact Index Per Article: 1445.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process.
Collapse
Affiliation(s)
| | | | - Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
20
|
Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med 2023; 12:jcm12031198. [PMID: 36769845 PMCID: PMC9917620 DOI: 10.3390/jcm12031198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long COVID, the postviral disorder caused by COVID-19, is expected to become one of the leading causes of disability in Europe. The cognitive consequences of long COVID have been described as "brain fog" and characterized by anxiety and depression, and by cognitive deficits. Long COVID is assumed to be a complex condition arising from multiple causes, including persistent brainstem dysfunction and disrupted vagal signaling. We recommend the potential application of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON instrument to compensate for the cognitive decline and to ameliorate affective symptoms caused by long COVID. This technique enhances vagal signaling by directly activating the nuclei in the brainstem, which are hypoactive in long COVID to enhance mood and to promote attention, memory, and cognitive control-factors affected by long COVID. Considering that atVNS is a non-pharmacological intervention, its ADD-ON to standard pharmaceutical agents will be useful for non-responders, making of this method a suitable tool. Given that atVNS can be employed as an ecological momentary intervention (EMI), we outline the translational advantages of atVNS in the context of accelerating the cognitive and affective recovery from long COVID.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
21
|
Crook H, Ramirez A, Hosseini AA, Vavougyios G, Lehmann C, Bruchfeld J, Schneider A, d'Avossa G, Lo Re V, Salmoiraghi A, Mukaetova-Ladinska E, Katshu M, Boneschi FM, Håkansson K, Geerlings M, Pracht E, Ruiz A, Jansen JF, Snyder H, Kivipelto M, Edison P. European Working Group on SARS-CoV-2: Current Understanding, Unknowns, and Recommendations on the Neurological Complications of COVID-19. Brain Connect 2023; 13:178-210. [PMID: 36719785 DOI: 10.1089/brain.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The emergence of COVID-19 was rapidly followed by infection and the deaths of millions of people across the globe. With much of the research and scientific advancement rightly focused on reducing the burden of severe and critical acute COVID-19 infection, the long-term effects endured by those who survived the acute infection has been previously overlooked. Now, an appreciation for the post-COVID-19 condition, including its neurological manifestations, is growing, although there remain many unknowns regarding the aetiology and risk factors of the condition, as well as how to effectively diagnose and treat it. Here, drawing upon the experiences and expertise of the clinicians and academics of the European working group on COVID-19, we have reviewed the current literature to provide a comprehensive overview of the neurological sequalae of the post-COVID-19 condition. In this review, we provide a summary of the neurological symptoms associated with the post-COVID-19 condition, before discussing the possible mechanisms which may underly and manifest these symptoms. Following this, we explore the risk factors for developing neurological symptoms as a result of COVID-19 and the post-COVID-19 condition, as well as how COVID-19 infection may itself be a risk factor for the development of neurological disease in the future. Lastly, we evaluate how the post-COVID condition could be accurately diagnosed and effectively treated, including examples of the current guidelines, clinical outcomes and tools that have been developed to aid in this process, as well as addressing the protection provided by COVID-19 vaccines against post-COVID-19 condition. Overall, this review provides a comprehensive overview of the neurological sequalae of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Harry Crook
- Imperial College London, 4615, Brain Sciences, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Alfredo Ramirez
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany
- University of Bonn, 9374, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Psychiatry , San Antonio, Texas, United States
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Akram A Hosseini
- Nottingham University Hospitals NHS Trust, 9820, Department of Neurology, Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland;
| | - Georgios Vavougyios
- University of Cyprus, 54557, Department of Neurology, Nicosia, Nicosia, Cyprus;
| | - Clara Lehmann
- University of Cologne, 14309, Department of Internal Medicine, Koln, Nordrhein-Westfalen, Germany
- University of Cologne, 14309, Center for Molecular Medicine Cologne (CMMC), Koln, Nordrhein-Westfalen, Germany
- German Centre for Infection Research, 459706, Braunschweig, Niedersachsen, Germany;
| | - Judith Bruchfeld
- Karolinska University Hospital, 59562, Department of Infectious Diseases, Stockholm, Sweden;
| | - Anja Schneider
- University Hospital Bonn, 39062, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Giovanni d'Avossa
- Bangor University, 1506, School of Psychology, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland;
| | | | - Alberto Salmoiraghi
- Betsi Cadwaladr University Health Board, 1507, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland
- Glyndwr University, 8725, Wrexham, Clwyd, United Kingdom of Great Britain and Northern Ireland;
| | - Elizabeta Mukaetova-Ladinska
- University of Leicester, 4488, Neuroscience, Psychology and Behaviour, University Road, Leicester, United Kingdom of Great Britain and Northern Ireland, LE1 7RH;
| | - Mohammad Katshu
- University of Nottingham, 6123, School of Medicine, Nottingham, Nottinghamshire, United Kingdom of Great Britain and Northern Ireland;
| | - Filippo M Boneschi
- University of Milan, 9304, Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Lombardia, Italy;
| | - Krister Håkansson
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Mirjam Geerlings
- Utrecht University, 8125, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands;
| | - Elisabeth Pracht
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany;
| | - Agustín Ruiz
- Universitat Internacional de Catalunya, 16760, Institut Català de Neurociències Aplicades, Barcelona, Catalunya, Spain;
| | - Jacobus Fa Jansen
- Maastricht University Medical Centre+, 199236, Department of Radiology and Nuclear Medicine, Maastricht, Limburg, Netherlands;
| | - Heather Snyder
- Alzheimer's Association, 44027, Chicago, Illinois, United States;
| | - Miia Kivipelto
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Paul Edison
- Imperial College London, 4615, Brain Sciences, Neurology Imaging Unit, 1st Floor, B - Block, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom of Great Britain and Northern Ireland, SW7 2AZ;
| |
Collapse
|
22
|
Caroli A, Capelli S, Napolitano A, Cabrini G, Arrigoni A, Pezzetti G, Previtali M, Longhi LG, Zangari R, Lorini FL, Sessa M, Remuzzi A, Gerevini S. Brain diffusion alterations in patients with COVID-19 pathology and neurological manifestations. Neuroimage Clin 2023; 37:103338. [PMID: 36731251 PMCID: PMC9883079 DOI: 10.1016/j.nicl.2023.103338] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVE COVID-19 neurological manifestations have been progressively recognized. Among available MRI techniques, diffusion weighted imaging (DWI) shows promise to study microstructure, inflammation, and edema. Previous DWI studies reported alterations in brain diffusivity in COVID-19 patients, as assessed by morphologic evaluation of brain DWI scans only. The aim of this study was to assess and quantify brain diffusion alterations in COVID-19 patients with neurological manifestations. METHODS 215 COVID-19 patients with neurological manifestations (olfactory and/or other neurological disorders) and 36 normal controls were compared and studied with DWI and T1-weighted MRI scans. MRI scans were processed by a semi-automatic processing procedure specifically developed for the purpose of this study, and the Apparent Diffusion Coefficient (ADC) was quantified in different brain tissues and individual white matter (WM) and gray matter (GM) regions. Differences in ADC values were assessed between COVID-19 patients and normal controls, as well as in the COVID-19 patient population grouped by hospitalization and neurological symptoms. RESULTS Among COVID-19 patients (median [IQR] = 52 [42 - 60] years of age, 58 % females), 91 were hospitalized and 26 needed intensive care. 84 patients had hyposmia/ageusia only, while 131 ones showed other neurological disorders. COVID-19 patients showed significantly increased ADC values in the WM and in several GM regions (p < 0.001). ADC values were significantly correlated with MRI time from disease onset (p < 0.05). Hospitalized patients showed significantly higher ADC alteration than non-hospitalized patients in all brain tissues; similarly, COVID-19 patients with neurological disorders showed significantly higher ADC values than those with olfactory loss only. ADC alteration was highest in patients with cognitive or memory disorder and in those with encephalitis or meningitis. ADC values were neither associated with the duration of hospitalization nor with the need for intensive care. CONCLUSION Current findings suggest DWI potential as a non-invasive marker of neuroinflammation in COVID-19, and the transient nature of the same. Future longitudinal studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Anna Caroli
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, BG, Italy
| | - Serena Capelli
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, BG, Italy
| | - Angela Napolitano
- Department of Neuroradiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Giulia Cabrini
- Department of Management, Information and Production Engineering, University of Bergamo, 24044 Dalmine, BG, Italy
| | - Alberto Arrigoni
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, BG, Italy
| | - Giulio Pezzetti
- Department of Neuroradiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mattia Previtali
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, BG, Italy
| | - Luca Giovanni Longhi
- Neurosurgical Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Rosalia Zangari
- FROM Research Foundation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Ferdinando Luca Lorini
- Department of Emergency and Critical Care Area, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Sessa
- Department of Neurology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, 24044 Dalmine, BG, Italy
| | - Simonetta Gerevini
- Department of Neuroradiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy.
| |
Collapse
|
23
|
Shan D, Li S, Xu R, Nie G, Xie Y, Han J, Gao X, Zheng Y, Xu Z, Dai Z. Post-COVID-19 human memory impairment: A PRISMA-based systematic review of evidence from brain imaging studies. Front Aging Neurosci 2022; 14:1077384. [PMID: 36570532 PMCID: PMC9780393 DOI: 10.3389/fnagi.2022.1077384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Many people with coronavirus disease 2019 (COVID-19) report varying degrees of memory impairment. Neuroimaging techniques such as MRI and PET have been utilized to shed light on how COVID-19 affects brain function in humans, including memory dysfunction. In this PRISMA-based systematic review, we compared and summarized the current literature looking at the relationship between COVID-19-induced neuropathological changes by neuroimaging scans and memory symptoms experienced by patients who recovered from COVID-19. Overall, this review suggests a correlational trend between structural abnormalities (e.g., cortical atrophy and white matter hyperintensities) or functional abnormalities (e.g., hypometabolism) in a wide range of brain regions (particularly in the frontal, parietal and temporal regions) and memory impairments in COVID-19 survivors, although a causal relationship between them remains elusive in the absence of sufficient caution. Further longitudinal investigations, particularly controlled studies combined with correlational analyses, are needed to provide additional evidence.
Collapse
Affiliation(s)
- Dan Shan
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States
| | - Shaoyang Li
- Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ruichen Xu
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Glen Nie
- Department of Biological Science, Northeastern University, Boston, MA, United States
| | - Yangyiran Xie
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Junchu Han
- New York State Psychiatric Institute, Global Psychiatric Epidemiology Group, New York, NY, United States
| | - Xiaoyi Gao
- School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Yuandian Zheng
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States
| | - Zhen Xu
- Minhang Crosspoint Academy at Shanghai Wenqi Middle School, Shanghai, China
| | - Zhihao Dai
- School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
24
|
Psychiatric and neurological complications of long COVID. J Psychiatr Res 2022; 156:349-360. [PMID: 36326545 PMCID: PMC9582925 DOI: 10.1016/j.jpsychires.2022.10.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
COVID-19 was primarily considered a pulmonary disease with extrapulmonary manifestations. As the pandemic spread, there has been growing evidence that the disease affects various organs/systems, including the central and peripheral nervous systems. Accumulation of clinical data demonstrates that in a large population of survivors impairments in the function of one or more organs may persist for a long time, a phenomenon commonly known as post COVID or long COVID. Fatigue and cognitive dysfunction, such as concentration problems, short-term memory deficits, general memory loss, a specific decline in attention, language and praxis abilities, encoding and verbal fluency, impairment of executive functions, and psychomotor coordination, are amongst the most common and debilitating features of neuropsychatric symptoms of post COVID syndrome. Several patients also suffer from compromised sleep, depression, anxiety and post-traumatic stress disorder. Patients with long COVID may demonstrate brain hypometabolism, hypoperfusion of the cerebral cortex and changes in the brain structure and functional connectivity. Children and adolescents represent a minority of COVID-19 cases, so not surprisingly data on the long-term sequelae after SARS-CoV-2 infections in these age groups are scarce. Although the pathogenesis, clinical characteristics, epidemiology, and risk factors of the acute phase of COVID-19 have been largely explained, these areas are yet to be explored in long COVID. This review aims to provide an update on what is currently known about long COVID effects on mental health.
Collapse
|
25
|
Chatys-Bogacka Z, Mazurkiewicz I, Slowik J, Bociaga-Jasik M, Dzieza-Grudnik A, Slowik A, Wnuk M, Drabik L. Brain Fog and Quality of Life at Work in Non-Hospitalized Patients after COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912816. [PMID: 36232113 PMCID: PMC9564568 DOI: 10.3390/ijerph191912816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/01/2023]
Abstract
Background: There is still a need for studies on the quality of life (QoL) at work among COVID-19 survivors. Therefore, we aimed to evaluate the association between the brain fog symptoms and the QoL at work in non-hospitalized patients with previous SARS-CoV-2 infection. Methods: Three hundred non-hospitalized patients (79.33% women; median age, 36 years; interquartile range, 30-48 years) were included in the final analysis. An anonymous neuropsychological questionnaire containing eight different questions on the presence of brain fog symptoms in four time intervals, i.e., pre-COVID-19 and 0-4, 4-12, and >12 weeks after infection, was retrospectively introduced to patients and staff of the University Hospital in Krakow. Additionally, a four-point Likert scale was used to evaluate QoL at work in four time periods. Included were participants aged ≥ 18 years in whom the diagnosis of COVID-19 was confirmed by the RT-PCR from nasopharyngeal swab and the first symptoms occurred no earlier than 3 months before the completion of the questionnaire. Results: Before SARS-CoV-2 infection, 28.00% (n = 84) of patients reported poor QoL at work. Within 4, 4-12, and >12 weeks after infection, a decrease in QoL was observed in 75.67% (n = 227), 65.00% (n = 195), and 53.66% (n = 161) of patients, respectively (p < 0.001). With increasing deterioration of the QoL at work, the number of brain fog symptoms increased, and patients with severe QoL impairment exhibited a median of five symptoms for <4, 4-12, and >12 weeks post-COVID-19. In the multivariable logistic regression model, predictors of the deterioration of the QoL at work depended on the time from COVID-19 onset; in the acute phase of the disease (<4 weeks), it was predicted by impairment in remembering information from the past (OR 1.88, 95%CI: 1.18-3.00, p = 0.008) and multitasking (OR 1.96, 95%CI: 1.48-2.58, p < 0.001). Furthermore, an impairment in the QoL at work 4-12 weeks and >12 weeks after COVID-19 was independently associated with age (OR 0.46, 95%CI: 0.25-0.85, p = 0.014 and OR 1.03, 95%CI: 1.01-1.05, p = 0.025, respectively), problems with multitasking (OR 2.05, 95%CI: 1.40-3.01, p < 0.001 and OR 1.75, 95%CI: 1.15-2.66, p = 0.009, respectively), answering questions in an understandable/unambiguous manner (OR 1.99, 95%CI: 1.27-3.14, p = 0.003 and OR 2.00, 95%CI: 1.47-2.36, p = 0.001, respectively), and, only for the >12 week interval, problems with remembering information from the past (OR 2.21, 95%CI: 1.24-3.92, p = 0.007). Conclusions: Certain brain fog symptoms, such as impaired memory or multitasking, are predictors of a poorer QoL at work not only during the acute phase of COVID-19 but also within more than 12 weeks after the onset of infection.
Collapse
Affiliation(s)
- Zaneta Chatys-Bogacka
- Department of Neurology, Jagiellonian University Medical College, 30-688 Krakow, Poland
- Department of Neurology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Iwona Mazurkiewicz
- Department of Neurology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Joanna Slowik
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland
| | - Monika Bociaga-Jasik
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Dzieza-Grudnik
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, 30-688 Krakow, Poland
- Department of Neurology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Marcin Wnuk
- Department of Neurology, Jagiellonian University Medical College, 30-688 Krakow, Poland
- Department of Neurology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Leszek Drabik
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
- John Paul II Hospital, 31-202 Krakow, Poland
| |
Collapse
|
26
|
Alghamdi F, Owen R, Ashton REM, Obotiba AD, Meertens RM, Hyde E, Faghy MA, Knapp KM, Rogers P, Strain WD. Post-acute COVID syndrome (long COVID): What should radiographers know and the potential impact for imaging services. Radiography (Lond) 2022; 28 Suppl 1:S93-S99. [PMID: 36109264 PMCID: PMC9468096 DOI: 10.1016/j.radi.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The COVID-19 pandemic caused an unprecedented health crisis resulting in over 6 million deaths worldwide, a figure, which continues to grow. In addition to the excess mortality, there are individuals who recovered from the acute stages, but suffered long-term changes in their health post COVID-19, commonly referred to as long COVID. It is estimated there are currently 1.8 million long COVID sufferers by May 2022 in the UK alone. The aim of this narrative literature review is to explore the signs, symptoms and diagnosis of long COVID and the potential impact on imaging services. KEY FINDINGS Long COVID is estimated to occur in 9.5% of those with two doses of vaccination and 14.6% if those with a single dose or no vaccination. Long COVID is defined by ongoing symptoms lasting for 12 or more weeks post acute infection. Symptoms are associated with reductions in the quality of daily life and may involve multisystem manifestations or present as a single symptom. CONCLUSION The full impact of long COVID on imaging services is yet to be realised, but there is likely to be significant increased demand for imaging, particularly in CT for the assessment of lung disease. Educators will need to include aspects related to long COVID pathophysiology and imaging presentations in curricula, underpinned by the rapidly evolving evidence base. IMPLICATIONS FOR PRACTICE Symptoms relating to long COVID are likely to become a common reason for imaging, with a particular burden on Computed Tomography services. Planning, education and updating protocols in line with a rapidly emerging evidence base is going to be essential.
Collapse
Affiliation(s)
- F Alghamdi
- College of Medicine and Health, University of Exeter, Exeter, UK.
| | - R Owen
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - R E M Ashton
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - A D Obotiba
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - R M Meertens
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - E Hyde
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - M A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - K M Knapp
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - P Rogers
- Medical Imaging, Royal Devon and Exeter NHS Foundation Trust, UK
| | - W D Strain
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
de Erausquin GA, Snyder H, Brugha TS, Seshadri S, Carrillo M, Sagar R, Huang Y, Newton C, Tartaglia C, Teunissen C, Håkanson K, Akinyemi R, Prasad K, D'Avossa G, Gonzalez‐Aleman G, Hosseini A, Vavougios GD, Sachdev P, Bankart J, Mors NPO, Lipton R, Katz M, Fox PT, Katshu MZ, Iyengar MS, Weinstein G, Sohrabi HR, Jenkins R, Stein DJ, Hugon J, Mavreas V, Blangero J, Cruchaga C, Krishna M, Wadoo O, Becerra R, Zwir I, Longstreth WT, Kroenenberg G, Edison P, Mukaetova‐Ladinska E, Staufenberg E, Figueredo‐Aguiar M, Yécora A, Vaca F, Zamponi HP, Re VL, Majid A, Sundarakumar J, Gonzalez HM, Geerlings MI, Skoog I, Salmoiraghi A, Boneschi FM, Patel VN, Santos JM, Arroyo GR, Moreno AC, Felix P, Gallo C, Arai H, Yamada M, Iwatsubo T, Sharma M, Chakraborty N, Ferreccio C, Akena D, Brayne C, Maestre G, Blangero SW, Brusco LI, Siddarth P, Hughes TM, Zuñiga AR, Kambeitz J, Laza AR, Allen N, Panos S, Merrill D, Ibáñez A, Tsuang D, Valishvili N, Shrestha S, Wang S, Padma V, Anstey KJ, Ravindrdanath V, Blennow K, Mullins P, Łojek E, Pria A, Mosley TH, Gowland P, Girard TD, Bowtell R, Vahidy FS. Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12348. [PMID: 36185993 PMCID: PMC9494609 DOI: 10.1002/trc2.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection. Key Points The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
Collapse
|