1
|
Choi H, Choi B, Kim DH. Anaerobic bacterial metabolism responsive microspheres for bacterial embolization cancer therapy. Biomaterials 2025; 314:122902. [PMID: 39454505 DOI: 10.1016/j.biomaterials.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Anaerobic bacteriolytic cancer therapy, whether delivered locally or systemically, frequently encounters challenges related to limited colonization within hypoxic pockets of central tumors and activation of innate immunity. Herein we have developed trans-arterial bacteria embolization therapy using bacterial embolic microspheres. C. novyi-NT spores loaded calcium alginate embolic microspheres demonstrated C. novyi-NT metabolites-mediated microsphere degradation, releasing vegetative C. novyi-NT bacterial in hypoxic condition. Transcatheter directed bacterial microsphere embolization therapy occludes tumor feeding vessels with infused bacterial embolic microspheres and enhances tumoral hypoxia. Notably, anaerobic bacterial metabolism responsive microsphere-bacterial embolization therapy achieved a complete tumor response with enhanced tumor-specific bacterial delivery and colonization, resulting in cancer cell killing across the entire tumor. In vivo tumor response and immunological profiling revealed that bacterial embolization uniquely enhances anti-cancer response, effectively engaging direct anaerobic bacterial oncolysis and adaptive and innate immune responses in a cooperative manner.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Klg A, Priyadharshini B, Vasugi S, Dilipan E. Exploring the therapeutic potential of biosynthetic enzymes in cancer treatment: Innovations and implications. Int J Biol Macromol 2024; 292:139171. [PMID: 39732247 DOI: 10.1016/j.ijbiomac.2024.139171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Cancer remains a major global health concern due to several factors. These include the difficulty in accessing effective drugs, the high toxicity of available treatments, and the emergence of resistance to therapy. As a result, alternative strategies, such as the use of microbial enzymes, have gained attention as potential solutions to these challenges. Microbial enzymes have shown promise in inhibiting the uncontrolled growth of tumor cells through various mechanisms. In this comprehensive review, our objective is to emphasize the importance of pivotal microbial enzymes in fighting cancer and their ability to hinder the growth of tumors or cancer cells. The review article serves as a scientific roadmap for researchers, clinicians, and industry stakeholders exploring the therapeutic potential of biosynthetic enzymes in cancer treatment. It emphasizes the quest for effective and sustainable cancer therapies, presenting the possibility of personalized treatments with fewer side effects than traditional therapies.
Collapse
Affiliation(s)
- Afeeza Klg
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Boopathy Priyadharshini
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Suresh Vasugi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Elangovan Dilipan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Amani AM, Tayebi L, Vafa E, Bazargan-Lari R, Abbasi M, Vaez A, Kamyab H, Gnanasekaran L, Chelliapan S, Azizli MJ. Innovative cancer therapy: Unleashing the potential of macromolecule-loaded mesoporous bioactive glasses for precision diagnosis and treatment. Int J Pharm 2024; 667:124847. [PMID: 39486491 DOI: 10.1016/j.ijpharm.2024.124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Cancer continues to pose a formidable threat, claiming millions of lives annually. A beacon of hope in this battle lies in the realm of bioactive glasses, which have undergone a remarkable evolution over the past five decades. Among these, mesoporous bioactive glasses (MBGs) emerge as a dynamic subset endowed with customizable attributes such as high surface area and porosity. While holding immense promise for cancer care, the full clinical potential of MBGs remains largely unexplored. This review delves into the cutting-edge advancements in MBG technology, illuminating their pivotal role in cancer management - spanning from early detection to targeted therapeutic interventions like photothermal and photodynamic treatments. Furthermore, the molecular mechanisms underpinning MBGs' anticancer properties are elucidated, alongside an exploration of existing limitations in their application. Through this comprehensive synthesis, the significance of MBGs in revolutionizing cancer therapy is underscored, underscoring the urgent need for continued research to unlock their full potential in reshaping the landscape of cancer care.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito 170527, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | | | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Mohammad Javad Azizli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
5
|
Windemuth S, Hahn J, You J, Wang Z, Ding S, Tarrab S, Coker C, Leong KW, Danino T. Iron-Tannin Coating Reduces Clearance and Increases Tumor Colonization of Systemically Delivered Bacteria. ACS Synth Biol 2024; 13:3948-3960. [PMID: 39509689 DOI: 10.1021/acssynbio.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Engineered bacteria offer a novel approach to targeted cancer therapy, but challenges remain in delivering enough bacteria safely for effective treatment. Previous efforts have used either a native or synthetic coating to achieve better control over the half-life of bacteria in the body but have limitations in delivery or versatility. In this work, we optimized and evaluated a synthetic coating for probiotic Escherichia coli Nissle 1917 to increase its half-life in blood and thereby increase the bioavailability of intravenous doses of bacteria to colonize and treat tumors. Using a simple one-pot chemical process, we coated bacteria with iron and tannic acid (FeTA) to form a temporary adhesive protective coating surrounding the bacterial cell surface. The iron to tannic acid ratio of the coating was optimized for intravenous use, and FeTA-coated bacteria of several different genetic backgrounds showed 15-fold higher survival in blood survival assays for up to 4 hours. We found that the FeTA coating reduced both complement-mediated bacterial killing and phagocyte-mediated bacterial killing in vitro. As a result, systemic delivery of attenuated bacteria had up to 60% colonization efficiency of FeTA-coated bacteria in an orthotopic breast cancer mouse model compared to 10% for the non-coated control, all the while maintaining a two-fold decrease in weight loss of attenuated bacteria compared to wild-type. Altogether, we show that an optimized FeTA coating significantly extends the half-life and colonization efficiency of engineered bacteria, overcoming a key limitation of their application in cancer therapy.
Collapse
Affiliation(s)
- Sophia Windemuth
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jicheng You
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Zihan Wang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Stephanie Tarrab
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University Medical Center, New York, New York 10027, United States
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10027, United States
- Data Science Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
7
|
Green GBH, Cox-Holmes AN, Potier ACE, Marlow GH, McFarland BC. Modulation of the Immune Environment in Glioblastoma by the Gut Microbiota. Biomedicines 2024; 12:2429. [PMID: 39594997 PMCID: PMC11591702 DOI: 10.3390/biomedicines12112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Studies increasingly support the role of the gut microbiota in glioma development and treatment, although the exact mechanisms remain unclear. Research indicates that the gut microbiota can influence glioma progression, response to therapies, and the effectiveness of treatments like immunotherapy, with certain microbial compositions being linked to better outcomes. Additionally, the gut microbiota impacts the tumor microenvironment, affecting both tumor growth and the response to treatment. This review will explore glioma, the gut microbiota, and how their interaction shapes glioma development and therapy responses. Additionally, this review examines the influence of gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and tryptophan, on glioma development and treatment. It also explores gut microbiome signaling via pattern recognition receptors, and the role of molecular mimicry between microbial and tumor antigens in glioblastoma, and if these interactions affect glioma development and treatment.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Gillian H. Marlow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Solak K, Yildiz Arslan S, Acar M, Turhan F, Unver Y, Mavi A. Combination of magnetic hyperthermia and gene therapy for breast cancer. Apoptosis 2024:10.1007/s10495-024-02026-4. [PMID: 39427089 DOI: 10.1007/s10495-024-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
This study presented a novel breast cancer therapy model that uses magnetic field-controlled heating to trigger gene expression in cancer cells. We created silica- and amine-modified superparamagnetic nanoparticles (MSNP-NH2) to carry genes and release heat under an alternating current (AC) magnetic field. The heat-inducible expression plasmid (pHSP-Azu) was designed to encode anti-cancer azurin and was delivered by magnetofection. MCF-7 cells demonstrated over 93% cell viability and 12% transfection efficiency when exposed to 75 µg/ml of MSNP-NH2, 3 µg of DNA, and PEI at a 0.75 PEI/DNA ratio (w: w), unlike non-tumorigenic cells (MCF-10 A). Magnetic hyperthermia (MHT) increased azurin expression by heat induction, leading to cell death in dual ways. The combination of MHT and heat-regulated azurin expression induced cell death, specifically in cancer cells, while having negligible effects on MCF-10 A cells. The proposed strategy clearly shows that simultaneous use of MHT and MHT-induced azurin gene expression may selectively target and kill cancer cells, offering a promising direction for cancer therapy.
Collapse
Affiliation(s)
- Kubra Solak
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Melek Acar
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Fatma Turhan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye.
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye.
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
9
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
10
|
Kunjalwar R, Keerti A, Chaudhari A, Sahoo K, Meshram S. Microbial Therapeutics in Oncology: A Comprehensive Review of Bacterial Role in Cancer Treatment. Cureus 2024; 16:e70920. [PMID: 39502977 PMCID: PMC11535891 DOI: 10.7759/cureus.70920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional cancer therapies, including chemotherapy, radiotherapy, and immunotherapy, have significantly advanced cancer treatment. However, these modalities often face limitations such as systemic toxicity, lack of specificity, and the emergence of resistance. Recent advancements in genetic engineering and synthetic biology have rekindled interest in using bacteria as a novel therapeutic approach in oncology. This comprehensive review explores the potential of microbial therapeutics, particularly bacterial therapies, in the treatment of cancer. Bacterial therapies offer several unique advantages, such as the ability to selectively target and colonize hypoxic and necrotic regions of tumors, areas typically resistant to conventional treatments. The review delves into the mechanisms through which bacteria exert antitumor effects, including direct tumor cell lysis, modulation of the immune response, and delivery of therapeutic agents like cytotoxins and enzymes. Various bacterial species, such as Salmonella, Clostridium, Lactobacillus, and Listeria, have shown promise in preclinical and clinical studies, demonstrating diverse mechanisms of action and therapeutic potential. Moreover, the review discusses the challenges associated with bacterial therapies, such as safety concerns, immune evasion, and the need for precise targeting, and how recent advances in genetic engineering are being used to overcome these hurdles. Current clinical trials and combination strategies with conventional therapies are also highlighted to provide a comprehensive overview of the ongoing developments in this field. In conclusion, while bacterial therapeutics present a novel and promising avenue in cancer treatment, further research and clinical validation is required to fully realize their potential. This review aims to inspire further exploration into microbial oncology, paving the way for innovative and more effective cancer therapies.
Collapse
Affiliation(s)
- Radha Kunjalwar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshunna Keerti
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Achal Chaudhari
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kaushik Sahoo
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Supriya Meshram
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Saravanan V, Gopalakrishnan V, Mahendran MIMS, Vaithianathan R, Srinivasan S, Boopathy V, Krishnamurthy S. Biofilm mediated integrin activation and directing acceleration of colorectal cancer. APMIS 2024; 132:688-705. [PMID: 39246244 DOI: 10.1111/apm.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Bacterial biofilm plays a vital role in influencing several diseases, infections, metabolic pathways and communication channels. Biofilm influence over colorectal cancer (CRC) has been a booming area of research interest. The virulence factors of bacterial pathogen have a high tendency to induce metabolic pathway to accelerate CRC. The bacterial species biofilm may induce cancer through regulating the major signalling pathways responsible for cell proliferation, differentiation, survival and growth. Activation of cancer signals may get initiated from the chronic infections through bacterial biofilm species. Integrin mediates in the activation of major pathway promoting cancer. Integrin-mediated signals are expected to be greatly influenced by biofilm. Integrins are identified as an important dimer, whose dysfunction may alter the signalling cascade specially focusing on TGF-β, PI3K/Akt/mToR, MAPK and Wnt pathway. Along with biofilm shield, the tumour gains greater resistance from radiation, chemotherapy and also from other antibiotics. The biofilm barrier is known to cause challenges for CRC patients undergoing treatment.
Collapse
Affiliation(s)
- Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | - Rajan Vaithianathan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Sowmya Srinivasan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
13
|
Réthi-Nagy Z, Juhász S. Microbiome's Universe: Impact on health, disease and cancer treatment. J Biotechnol 2024; 392:161-179. [PMID: 39009231 DOI: 10.1016/j.jbiotec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Szilvia Juhász
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary.
| |
Collapse
|
14
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
15
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
16
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Tieu MV, Pham DT, Cho S. Bacteria-based cancer therapy: Looking forward. Biochim Biophys Acta Rev Cancer 2024; 1879:189112. [PMID: 38761983 DOI: 10.1016/j.bbcan.2024.189112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The field of bacteria-based cancer therapy, which focuses on the key role played by the prevalence of bacteria, specifically in tumors, in controlling potential targets for cancer therapy, has grown enormously over the past few decades. In this review, we discuss, for the first time, the global cancer situation and the timeline for using bacteria in cancer therapy. We also explore how interdisciplinary collaboration has contributed to the evolution of bacteria-based cancer therapies. Additionally, we address the challenges that need to be overcome for bacteria-based cancer therapy to be accepted in clinical trials and the latest advancements in the field. The groundbreaking technologies developed through bacteria-based cancer therapy have opened up new therapeutic strategies for a wide range of therapeutics in cancer.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Duc-Trung Pham
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
18
|
Jeong Y, Han X, Vyas K, Irudayaraj J. Microbial β-Glucuronidase Hydrogel Beads Activate Chemotherapeutic Prodrug. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28093-28103. [PMID: 38775441 PMCID: PMC11164065 DOI: 10.1021/acsami.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Bacteria-assisted chemotherapeutics have been highlighted as an alternative or supplementary approach to treating cancer. However, dynamic cancer-microbe studies at the in vitro level have remained a challenge to show the impact and effectiveness of microbial therapeutics due to the lack of relevant coculture models. Here, we demonstrate a hydrogel-based compartmentalized system for prodrug activation of a natural ingredient of licorice root, glycyrrhizin, by microbial β-glucuronidase (GUS). Hydrogel containment with Lactococcus lactis provides a favorable niche to encode GUS enzymes with excellent permeability and can serve as an independent ecosystem in the transformation of pro-apoptotic materials. Based on the confinement system of GUS expressing microbes, we quantitatively evaluated chemotherapeutic effects enhanced by microbial GUS enzyme in two dynamic coculture models in vitro (i.e., 2D monolayered cancer cells and 3D tumor spheroids). Our findings support the processes of prodrug conversion mediated by bacterial GUS enzyme which can enhance the therapeutic efficacy of a chemotherapy drug under dynamic coculture conditions. We expect our in vitro coculture platforms can be used for the evaluation of pharmacological properties and biological activity of xenobiotics as well as the potential impact of microbes on cancer therapeutics.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Khushali Vyas
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
- Carl
R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, Illinois 60801, United States
| |
Collapse
|
19
|
Song W, He Y, Feng Y, Wang Y, Li X, Wu Y, Zhang S, Zhong L, Yan F, Sun L. Image-Guided Photothermal and Immune Therapy of Tumors via Melanin-Producing Genetically Engineered Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305764. [PMID: 38368252 DOI: 10.1002/smll.202305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.
Collapse
Affiliation(s)
- Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yaling He
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yanan Feng
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoying Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Shanxin Zhang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Lin Zhong
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330019, P. R. China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| |
Collapse
|
20
|
V. L. Sirisha Mulukuri N, Kumar S, Dhara M, Dheeraj Rajesh G, Kumar P. Statistical modeling, optimization and characterization of andrographolide loaded emulgel for its therapeutic application on skin cancer through enhancing its skin permeability. Saudi Pharm J 2024; 32:102068. [PMID: 38699597 PMCID: PMC11063646 DOI: 10.1016/j.jsps.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Andrographolide is a natural diterpene lactone with multiple biological effects. In the present study, a total of 11 andrographolide-loaded emulgels (ANG 1- ANG 11) were prepared by emulsification and solvent evaporation method using flaxseed oil and xanthan gum in different ratios, as suggested by the Design-Expert software. A 2-factor-5-level design was employed with different responses including spreadability, extrudability, viscosity, and drug release after 1 h (h) and 24 h. Based on the Design-Expert software response, the optimized emulgel ANG 12 was formulated and evaluated. The 24 h In-vitro drug release was found to be 95.7 % following Higuchi kinetics. Ex-vivo skin retention of 784.78 ug/cm2 was observed during the study. MTT assay performed on Human epidermoid carcinoma (A-431) cells demonstrated cell growth arrest at G0/G1 and G2/M phase after 24 h of ANG 12 treatment (IC50: 11.5 µg/ml). The cellular permeability of ANG-12 was assessed by Fluorescein isothiocyanate (FITC) assay. Compared to untreated cells (0.54 % uptake) the ANG-12 treated cells had shown 87.17 % FITC permeation. The biocompatibility study performed on non-cancerous human dermal fibroblast cells (HDF cells) shows 91.54 % viability after 24 h of the treatment showing the non-toxic nature of ANG-12. Confocal imaging had shown a significant time-dependent increase in in-vivo cellular uptake with enhanced, progressive penetration of the emulgel into the skin. An in-vivo skin irritation study conducted on Swiss albino mice confirmed the safety aspects of the ANG 12. Hence, it can be concluded that nanoemulgel of andrographolide (ANG 12) could be a novel approach to treating skin cancer.
Collapse
Affiliation(s)
- N. V. L. Sirisha Mulukuri
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Sujeet Kumar
- Nitte College of Pharmaceutical Sciences, Bangalore, India
| | - Moumita Dhara
- Nitte College of Pharmaceutical Sciences, Bangalore, India
| | - Gupta Dheeraj Rajesh
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
21
|
Xia X, Zhang JW, Zhao B, Zhang M, Chen ZR, Zhang BF, Ji YL, Wang X, Xiong WM, Li JW, Lv QL. Progress of engineered bacteria for tumour therapy. Int Immunopharmacol 2024; 132:111935. [PMID: 38599096 DOI: 10.1016/j.intimp.2024.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Finding novel therapeutic modalities, improving drug delivery efficiency and targeting, and reducing the immune escape of tumor cells are currently hot topics in the field of tumor therapy. Bacterial therapeutics have proven highly effective in preventing tumor spread and recurrence, used alone or in combination with traditional therapies. In recent years, a growing number of researchers have significantly improved the targeting and penetration of bacteria by using genetic engineering technology, which has received widespread attention in the field of tumor therapy. In this paper, we provide an overview and assessment of the advancements made in the field of tumor therapy using genetically engineered bacteria. We cover three major aspects: the development of engineered bacteria, their integration with other therapeutic techniques, and the current state of clinical trials. Lastly, we discuss the limitations and challenges that are currently being faced in the utilization of engineered bacteria for tumor therapy.
Collapse
Affiliation(s)
- Xue Xia
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China; College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, PR China
| | - Jing-Wen Zhang
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China; College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, PR China
| | - Bing Zhao
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China; College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, PR China
| | - Min Zhang
- Nanchang Inspection and Testing Center, Nanchang Key Laboratory for Quality and Safety Risk Assessment of Health Food and its Contact Materials, Nanchang 330012, PR China
| | - Zhang-Ren Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330000, PR China
| | - Bing-Feng Zhang
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, PR China
| | - Yu-Long Ji
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China
| | - Xia Wang
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China
| | - Wen-Min Xiong
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China
| | - Jia-Wei Li
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Jiangxi, PR China.
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330029, PR China; College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, PR China.
| |
Collapse
|
22
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
23
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|
24
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
26
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Bozic D, Živanović J, Živančević K, Baralić K, Đukić-Ćosić D. Trends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effects. Cancers (Basel) 2024; 16:524. [PMID: 38339275 PMCID: PMC10854591 DOI: 10.3390/cancers16030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Jovana Živanović
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Toxicological Risk Assessment, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
28
|
Wang S, Hu N, Deng B, Wang H, Qiao R, Li C. A Guanosine-Derived Antitumor Supramolecular Prodrug. Biomacromolecules 2024; 25:290-302. [PMID: 38065622 DOI: 10.1021/acs.biomac.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prodrug strategy for its potential to enhance the pharmacokinetic and/or pharmacodynamic properties of drugs, especially chemotherapeutic agents, has been widely recognized as an important means to improve therapeutic efficiency. Irinotecan's active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), a borate derivative, was incorporated into a G-quadruplex hydrogel (GB-SN38) by the ingenious and simple approach. Drug release does not depend on carboxylesterase, thus bypassing the side effects caused by ineffective activation, but specifically responds to the ROS-overexpressed tumor microenvironment by oxidative hydrolysis of borate ester that reduces serious systemic toxicity from nonspecific biodistribution of SN38. Comprehensive spectroscopy was used to define the structural and physicochemical characteristics of the drug-loaded hydrogel. The GB-SN38 hydrogel's high level of biosafety and notable tumor-suppressive properties were proven in in vitro and in vivo tests.
Collapse
Affiliation(s)
- Shuyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Nanrong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Bo Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hongyue Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
29
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
30
|
Wankhede NL, Kale MB, Bawankule AK, Taksande BG, Umekar MJ, Upaganlawar AB. Bacteriotherapy in colorectal cancer. COLORECTAL CANCER 2024:307-328. [DOI: 10.1016/b978-0-443-13870-6.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Chintalapati SSVV, Iwata S, Miyahara M, Miyako E. Tumor-isolated Cutibacterium acnes as an effective tumor suppressive living drug. Biomed Pharmacother 2024; 170:116041. [PMID: 38113626 DOI: 10.1016/j.biopha.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
The two major challenges in cancer treatment are reducing the side effects and minimizing the cost of cancer treatment. A better therapy to treat cancer remains to be developed despite the presence of many therapeutic options. Here, we present bacterial therapy for treating cancer using tumor-isolated Cutibacterium acnes, which is safe to use, has minimal side effects compared to chemotherapeutic drugs, and most importantly, targets the tumor microenvironment due to the bacterium's anaerobic nature. It activates the immune system, and the immune cells effectively penetrate through the tumor tissue and form an immunologic hub inside, explicitly targeting the tumor and destroying the cells. This bacterial therapy is a new cost-effective innovative treatment.
Collapse
Affiliation(s)
| | - Seigo Iwata
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mikako Miyahara
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
32
|
Abd Elhameed AA, Ali AR, Ghabbour HA, Bayomi SM, El-Gohary NS. Design, synthesis, and antitumor screening of new thiazole, thiazolopyrimidine, and thiazolotriazine derivatives as potent inhibitors of VEGFR-2. Drug Dev Res 2023; 84:1664-1698. [PMID: 37661648 DOI: 10.1002/ddr.22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
New thiazole, thiazolopyrimidine, and thiazolotriazine derivatives 3-12 and 14a-f were synthesized. The newly synthesized analogs were tested for in vitro antitumor activity against HepG2, HCT-116, MCF-7, HeP-2, and Hela cancer cells. Results indicated that compound 5 displayed the highest potency toward the tested cancer cells. Compound 11b possessed enhanced effectiveness over MCF-7, HepG2, HCT-116, and Hela cancer cells. In addition, compounds 4 and 6 showed promising activity toward HCT-116, MCF-7, and Hela cancer cells and eminent activity against HepG2 and HeP-2 cells. Moreover, compounds 3-6 and 11b were tested for their capability to inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) activity. The obtained results showed that compound 5 displayed significant inhibitory activity against VEGFR-2 (half-maximal inhibitory concentration [IC50 ] = 0.044 μM) comparable to sunitinib (IC50 = 0.100 μM). Also, the synthesized compounds 3-6 and 11b were subjected to in vitro cytotoxicity tests over WI38 and WISH normal cells. It was found that the five tested compounds displayed significantly lower cytotoxicity than doxorubicin toward normal cell lines. Cell cycle analysis proved that compound 5 induces cell cycle arrest in the S phase for HCT-116 and Hela cancer cell lines and in the G2/M phase for the MCF-7 cancer cell line. Moreover, compound 5 induced cancer cell death through apoptosis accompanied by a high ratio of BAX/BCL-2 in the screened cancer cells. Furthermore, docking results revealed that compound 5 showed the essential interaction bonds with VEGFR-2, which agreed with in vitro enzyme assay results. In silico studies showed that most of the analyzed compounds complied with the requirements of good oral bioavailability with minimal toxicity threats in humans.
Collapse
Affiliation(s)
- Alaa A Abd Elhameed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Said M Bayomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Kumar U, Manivannan HP, Francis AP, Veeraraghavan VP, R G, Sankaran K. Prediction of Novel Natural Small Molecules From Schinus molle as an Inhibitor of PI3K Protein Target in Cancer Cells Using In Silico Screening. Cureus 2023; 15:e50863. [PMID: 38259388 PMCID: PMC10801101 DOI: 10.7759/cureus.50863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Cancer continues to pose a significant challenge in medical research. Phytochemicals derived from plants have emerged as a promising avenue for pioneering drug discovery due to their potential for reduced toxicity. The phosphatidylinositol 3-kinase (PI3K) pathway has gained recognition as a pivotal signaling pathway with implications across multiple facets of cancer initiation and progression. This study focuses on the virtual screening of phytochemicals from Schinus molle, evaluating their potential as inhibitors of PI3K, a crucial target in cancer therapy. Methods and materials The present study involved a comprehensive in silico screening of phytochemicals derived from S. molle. The screening process encompassed various parameters, such as drug-likeness, pharmacokinetics, molecular docking, toxicity analysis, bioavailability assessment, and molecular target exploration. The primary objective of this systematic approach was to identify potential lead compounds. The study aimed to provide a detailed understanding of the molecular properties of the phytochemicals and their potential as drug candidates. Results Upon analyzing 18 compounds, two compounds were noteworthy. Beta-spathulene and kaempferol demonstrated significant affinity for PI3K and favorable attributes concerning drug-likeness, pharmacokinetics, and bioavailability. Conclusion While our computational investigation lays a promising foundation, it is essential to emphasize that further experimental studies, including in vitro and in vivo experiments, are imperative to validate the action of these lead compounds.
Collapse
Affiliation(s)
- Umesh Kumar
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Gayathri R
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kavitha Sankaran
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
34
|
Zheng X, Fang Y, Zou X, Wang X, Li Z. Therapeutic potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in cancer treatment. Microb Pathog 2023; 185:106422. [PMID: 37871855 DOI: 10.1016/j.micpath.2023.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Yiqiao Fang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiuhe Zou
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiaofei Wang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Sharma S, Sharma H, Gogoi H. Bacterial immunotherapy: is it a weapon in our arsenal in the fight against cancer? Front Immunol 2023; 14:1277677. [PMID: 38090593 PMCID: PMC10711065 DOI: 10.3389/fimmu.2023.1277677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in understanding the genetic basis of cancer have driven alternative treatment approaches. Recent findings have demonstrated the potential of bacteria and it's components to serve as robust theranostic agents for cancer eradication. Compared to traditional cancer therapies like surgery, chemotherapy, radiotherapy, bacteria mediated tumor therapy has exhibited superior cancer suppressing property which is attributed a lot to it's tumor proliferating and accumulating characteristics. Genetically modified bacteria has reduced inherent toxicity and enhanced specificity towards tumor microenvironment. This anti- tumor activity of bacteria is attributed to its toxins and other active components from the cell membrane, cell wall and spores. Furthermore, bacterial genes can be regulated to express and deliver cytokines, antibodies and cancer therapeutics. Although there is less clinical data available, the pre- clinical research clearly indicates the feasibility and potential of bacteria- mediated cancer therapy.
Collapse
Affiliation(s)
- Shubhra Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himani Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
36
|
Ebadi Sharafabad B, Abdoli A, Panahi M, Abdolmohammadi Khiav L, Jamur P, Abedi Jafari F, Dilmaghani A. Anti-tumor Effects of Cisplatin Synergist in Combined Treatment with Clostridium novyi-NT Spores Against Hypoxic Microenvironments in a Mouse Model of Cervical Cancer Caused by TC-1 Cell Line. Adv Pharm Bull 2023; 13:817-826. [PMID: 38022809 PMCID: PMC10676560 DOI: 10.34172/apb.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Despite the development of anti-human papillomavirus (HPV) vaccines, cervical cancer is still a common disease in women, especially in developing countries. The presence of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium novyi-NT spores to treat normoxic and hypoxic areas of the tumor. Methods TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly divided into four groups and treated with different methods after selecting a control group. Group 1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. novyi-NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins. Results The results clearly showed that combined treatment based on C. novyi-NT and cisplatin significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin alone. At the same time, the amount of necrosis of tumor cells in the combined treatment increased significantly compared to the single treatment and the control. At the same time, the mitotic count decreased significantly. Conclusion Our research showed that developing a combined treatment method based on C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment limitations caused by the existence of hypoxic areas of the tumor.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Mohammad Panahi
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Jamur
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Din SRU, Saeed S, Khan SU, Arbi FM, Xuefang G, Zhong M. Bacteria-driven cancer therapy: Exploring advancements and challenges. Crit Rev Oncol Hematol 2023; 191:104141. [PMID: 37742883 DOI: 10.1016/j.critrevonc.2023.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer, a serious fatal disease caused by the uncontrolled growth of cells, is the biggest challenge flagging around medicine and health fields. Conventionally, various treatments-based strategies such as radiotherapy, chemotherapy, and alternative cancer therapies possess drugs that cannot reach the cancerous tissues and make them toxic to noncancerous cells. Cancer immunotherapy has made outstanding achievements in reducing the chances of cancer. Our considerable attention towards cancer-directed immune responses and the mechanisms behind which immune cells kill cancer cells have progressively been helpful in the advancement of new therapies. Among them, bacteria-based cancer immunotherapy has achieved much more attention due to smart and robust mechanisms in activating the host anti-tumor response. Moreover, bacterial-based therapy can be utilized as a single monotherapy or in combination with multiple anticancer immunotherapies to accelerate productive clinical results. Herein, we comprehensively reviewed recent advancements, challenges, and future perspectives in developing bacterial-based cancer immunotherapies.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK 22020, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Guo Xuefang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
38
|
Ghorbani Alvanegh A, Mirzaei Nodooshan M, Dorostkar R, Ranjbar R, Jalali Kondori B, Shahriary A, Parastouei K, Vazifedust S, Afrasiab E, Esmaeili Gouvarchinghaleh H. Antiproliferative effects of mesenchymal stem cells carrying Newcastle disease virus and Lactobacillus Casei extract on CT26 Cell line: synergistic effects in cancer therapy. Infect Agent Cancer 2023; 18:46. [PMID: 37525229 PMCID: PMC10391864 DOI: 10.1186/s13027-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal Cancer (CRC) is a frequent malignancy with a high mortality rate. Specific inherited and environmental influences can affect CRC. Oncolytic viruses and bacteria in treating CRC are one of the innovative therapeutic options. This study aims to determine whether mesenchymal stem cells (MSCs) infected with the Newcastle Disease Virus (NDV) in combination with Lactobacillus casei extract (L. casei) have a synergistic effects on CRC cell line growth. MATERIALS AND METHODS MSCs taken from the bone marrow of BALB/c mice and were infected with the 20 MOI of NDV. Then, using the CT26 cell line in various groups as a single and combined treatment, the anticancer potential of MSCs containing the NDV and L. casei extract was examined. The evaluations considered the CT26 survival and the rate at which LDH, ROS, and levels of caspases eight and nine were produced following various treatments. RESULTS NDV, MSCs-NDV, and L. casei in alone or combined treatment significantly increased apoptosis percent, LDH, and ROS production compared with the control group (P˂0.05). Also, NDV, in free or capsulated in MSCs, had anticancer effects, but in capsulated form, it had a delay compared with free NDV. The findings proved that L. casei primarily stimulates the extrinsic pathway, while NDV therapy promotes apoptosis through the activation of both intrinsic and extrinsic apoptosis pathways. CONCLUSIONS The results suggest that MSCs carrying oncolytic NDV in combination with L. casei extract as a potentially effective strategy for cancer immunotherapy by promoting the generation of LDH, ROS, and apoptosis in the microenvironment of the CT26 cell line.
Collapse
Affiliation(s)
| | | | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheil Vazifedust
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
39
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
40
|
Zavaleta E, Ferrara F, Zovi A, Díaz-Madriz JP, Fallas-Mora A, Serrano-Arias B, Valentino F, Arguedas-Chacón S, Langella R, Trama U, Nava E. Antibiotic Consumption in Primary Care in Costa Rica and Italy: A Retrospective Cross-Country Analysis. Cureus 2023; 15:e41414. [PMID: 37546059 PMCID: PMC10403152 DOI: 10.7759/cureus.41414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The increasing emergence and spread of drug-resistant pathogens resulting from inappropriate antibiotic usage have become more evident in recent years, particularly with the rising incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections. Since joining the Organization for Economic Cooperation and Development (OECD), Costa Rica can now compare its healthcare system with other countries, and similarities have been noted with Italy regarding health indicators. Both nations have universal healthcare systems, covering their entire populations, and hold similar positions in the Human Development Index (HDI). Consequently, the goal is to compare antibiotic prescribing and consumption patterns to collaboratively develop strategies against bacterial resistance. METHODS In order to compare antibiotic consumption between regions, a standardized contrast was utilized, specifically using the defined daily dose (DDD). An Orthogonal Contrast test was performed to test the means, followed by the application of the Student's t-test on these contrasts. This analysis aimed to assess the potential influence of regions on DDD values. Antibiotic consumption data were collected between January 2021 and December 2022 from the Local Health Authority of Naples 3 South (LHANS) in Italy and IMS Health, Q Quintiles, and VIA by way of (IQVIA) reports in Costa Rica. RESULTS LHANS shows a considerable disparity in gross expenditure compared to Italy's overall expenditure, while the private sector of Costa Rica exhibits even lower gross expenditure than Italy. Antibiotic consumption in Italy exceeds that of Costa Rica, with Costa Rica's consumption amounting to 47.70% of Italy's total consumption. Additionally, LHANS exhibited a 22.43% higher gross expenditure compared to the Campania region, emphasizing the variability in antibiotic usage within the same country The results indicated no statistically significant differences in antibiotic consumption between the regions, as none of the null hypotheses were rejected. CONCLUSIONS The study provides valuable insights into expenditure patterns and antibiotic consumption, highlighting the need for improved prescribing practices and awareness campaigns to address the issue of antibiotic resistance. The findings emphasize the importance of implementing international guidelines to combat the growing threat of antibiotic resistance and ensure the effective management of infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ugo Trama
- Pharmacy, Ministry of Health, Rome, ITA
| | | |
Collapse
|
41
|
Gong T, Wu J. Synthetic engineered bacteria for cancer therapy. Expert Opin Drug Deliv 2023; 20:993-1013. [PMID: 37497622 DOI: 10.1080/17425247.2023.2241367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Cancer mortality worldwide highlights the urgency for advanced therapeutic methods to fill the gaps in conventional cancer therapies. Bacteriotherapy is showing great potential in tumor regression due to the motility and colonization tendencies of bacteria. However, the complicated in vivo environment and tumor pathogenesis hamper the therapeutic outcomes. Synthetic engineering methods endow bacteria with flexible abilities both at the extracellular and intracellular levels to meet treatment requirements. In this review, we introduce synthetic engineering methods for bacterial modifications. We highlight the recent progress in engineered bacteria and explore how these synthetic methods endow bacteria with superior abilities in cancer therapy. The current clinical translations are further discussed. Overall, this review may shed light on the advancement of engineered bacteria for cancer therapy. AREAS COVERED Recent progress in synthetic methods for bacterial engineering and specific examples of their applications in cancer therapy are discussed in this review. EXPERT OPINION Bacteriotherapy bridges the gaps of conventional cancer therapies through the natural motility and colonization tendency of bacteria, as well as their synthetic engineering. Nevertheless, to fulfill the bacteriotherapy potential and move into clinical trials, more research focusing on its safety concerns should be conducted.
Collapse
Affiliation(s)
- Tong Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Shahbaz A, Mahmood T, Javed MU, Abbasi BH. Current advances in microbial-based cancer therapies. Med Oncol 2023; 40:207. [PMID: 37330997 DOI: 10.1007/s12032-023-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.
Collapse
Affiliation(s)
- Areej Shahbaz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Göttingen, Germany
| | - Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Uzair Javed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
43
|
Wang Y, Zhang Z, Ren L, Luo Y, Wang Q, Zou J. Dual mode imaging guided multi-functional bio-targeted oxygen production probes for tumor therapy. J Nanobiotechnology 2023; 21:142. [PMID: 37120558 PMCID: PMC10148460 DOI: 10.1186/s12951-023-01901-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Focused ultrasound ablation surgery (FUAS) is a novel therapy with a wide range of potential applications. However, synergists are crucial to the therapy process due to the ultrasonic energy's attenuation properties. As a result of the complex hypoxic environment in the tumor area and many factors, the existing synergists have limitations such as weak targeting, single imaging mode, and easy tumor recurrence after treatment. Because of the above deficiencies, this study intends to construct bio-targeted oxygen production probes consisting of Bifidobacterium that naturally target the hypoxia region of the tumor and multi-functional oxygen-producing nanoparticles equipped with IR780, perfluorohexane (PFH), CBP (carboplatin), and oxygen. The probes are expected to achieve targeted and synergistic FUAS therapy and dual-mode imaging to mediate tumor diagnosis and treatment. The oxygen and drugs carried in it are accurately released after FUAS stimulation, which is expected to alleviate tumor hypoxia, avoid tumor drug resistance, improve the effect of chemotherapy, and realize FUAS combined with chemotherapy antitumor therapy. This strategy is expected to make up for the deficiencies of existing synergists, improve the effectiveness and safety of treatment, and provide the foundation for future tumor therapy progress.
Collapse
Affiliation(s)
- Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhong Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Li Ren
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
44
|
Soleimanifar H, Mahmoodzadeh Hosseini H, Samavarchi Tehrani S, Mirhosseini SA. The Anti-Adhesion Effect of Nisin as a Robust Lantibiotic on the Colorectal Cancer Cells. Adv Biomed Res 2023; 12:113. [PMID: 37288013 PMCID: PMC10241620 DOI: 10.4103/abr.abr_267_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/09/2023] Open
Abstract
Background Bacteriocins are a type of antimicrobial peptide that are produced by probiotics. They have been studied as possible therapeutic drugs and have been used to suppress bacterial development in foods. Nisin is a potent bacteriocin having the anti-microbial and anti-cancer characteristics produced by Lactococcus lactis. The aim of the present paper is to evaluate the influence of Nisin on cell adhesion and its two related genes, mmp-2 and mmp-9, in the colorectal cancer cell line. Materials and Methods For this purpose, HT-29 cells were treated with various concentrations of Nisin and the cell cytotoxicity, cell adhesion, and gene expression were evaluated using the MTT assay, cell adhesion assay, and real-time PCR. Results Our findings showed that 32 to 1024 μg/ml of Nisin resulted in a significant reduction in cell viability (P < 0.05). Furthermore, 128 and 256 μg/ml of Nisin significantly reduced the cell adhesion, and mmp-2 and mmp-9 gene expressions (P < 0.05). Conclusion Our findings suggested that Nisin could prevent metastasis and cancer progression.
Collapse
Affiliation(s)
- Hesam Soleimanifar
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
46
|
Nagel B, Frankel L, Ardeljan A, Cardeiro M, Rashid S, Takabe K, Rashid OM. The Association of Human Cytomegalovirus Infection and Colorectal Cancer: A Clinical Analysis. World J Oncol 2023; 14:119-124. [PMID: 37188037 PMCID: PMC10181428 DOI: 10.14740/wjon1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) commonly infects humans and establishes lifelong infection. It causes disease and increased mortality rates in patients with immunosuppression. HCMV gene products are found to be present in multiple human malignancies and target cellular functions involved in tumor development; additionally, a tumor-cytoreductive role of CMV has also been observed. The purpose of this study was to evaluate the correlation between CMV infection and the incidence of colorectal cancer (CRC). Methods The data were provided by a national database that is compliant with Health Insurance Portability and Accountability Act (HIPAA). Using International Classification of Disease (ICD)-10 and ICD-9 diagnostic codes, the data were filtered to evaluate patients infected with HCMV versus patients never infected with HCMV. Patient data from 2010 to 2019 were assessed. Access to the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results Between January 2010 and December 2019, the query was analyzed and resulted in 14,235 patients after matching in the infected and control groups. The groups were matched by age range, sex, Charlson Comorbidity Index (CCI) score, and treatment. The incidence of CRC was 1.159% (165 patients) in the HCMV group and 2.845% (405 patients) in the control group. The difference after matching was statistically significant by a P-value < 2.2 × 10-16 with an odds ratio of 0.37 (95% confidence interval (CI) 0.32 - 0.42). Conclusions The study shows a statistically significant correlation between CMV infection and a reduced incidence of CRC. Further evaluation is recommended to assess the potential of CMV in reducing CRC incidence.
Collapse
Affiliation(s)
- Brittany Nagel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Lexi Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Matthew Cardeiro
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Selena Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Department of Surgical Oncology, Memorial Health, Pembroke Pines, FL, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, FL, USA
- Corresponding Author: Omar M. Rashid, Complex General Surgical Oncology, General & Robotic Surgery, TopLine MD Alliance, Fort Lauderdale, FL 33308, USA.
| |
Collapse
|
47
|
Debasmita D, Ghosh SS, Chattopadhyay A. Living Gut Bacteria Functionalized with Gold Nanoclusters and Drug for Facile Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:628-639. [PMID: 36651899 DOI: 10.1021/acsabm.2c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacbots are potent self-propelling vehicles for targeted therapy that can be guided by chemical and biochemical stimuli of the host. In addition, they can be guided externally by the use of magnetic field or other physical forces. The challenge is to incorporate drugs and diagnostic tools in living bacteria with retention of theranostic activity until reaching the targets and easy clearance of the remainder following the treatment. We report that living Lactobacillus rhamnosus, when functionalized with photoluminescent Au nanoclusters and the anticancer drug methotrexate, was cytotoxic to monolayer and spheroids of cancer cells (HeLa and HT29) even at a low dose of bacteria used (107 cfu/mL). The observed cell death was nearly 90% in HeLa spheroids and 70% in HT29 spheroids. Further, functionalization of the bacterial surface with the nanoclusters helped incorporate the drug onto their cell surfaces. The drug and nanocluster-loaded bacteria annihilated the cells and the spheroids in a rather short time (6 h) that revealed the specificity and effectiveness of the bacbots. The bacbots exhibited synergistic toxicity on the cells as their effect was more than the drug and the bacteria individually. This higher toxicity could be associated with elevated levels of reactive oxygen species generated in the bacbot-treated cells. The multifunctional bacbots reported here provide an option for guided therapy with the natural variant of the human gut-friendly living bacteria without the need for attenuation or genetic modification.
Collapse
|
48
|
Zhang X, Zhang Y, Wang N, Shen Y, Chen Q, Han L, Hu B. Photothermal Nanoheaters-Modified Spores for Safe and Controllable Antitumor Therapy. Int J Nanomedicine 2022; 17:6399-6412. [PMID: 36545219 PMCID: PMC9762999 DOI: 10.2147/ijn.s385269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction To present a safer tumor therapy based on bacteria and identify in detail how the activation and infection behavior of spores can be controlled remotely by near-infrared light (NIR-irradiation) based on nanoheaters' modification. Methods Spores bring a better tolerance to surface modification. Transitive gold-nanorods-allied-nanoclusters-modified spores (Spore@NRs/NCs) were constructed by covalent glutaraldehyde crosslink. The photothermal properties of nanoheaters before and after attachment to spores were studied by recording temperature-irradiation time curves. The controlled viability and infection behavior of Spore@NRs/NCs were investigated by NIR-irradiation. Results In this work, a controllable sterilizing effect to activated vegetative bacteria was obtained obviously. When met with a suitable growth-environment, Spore@NRs/NCs could germinate, activate into vegetative bacteria and continue to reproduce. Without NIR-irradiation, nanoheaters could not affect the activity of both spores and vegetative bacterial cells. However, with NIR-irradiation after incubating in growth medium, nanoheaters on spores could control the spores' germination and affect the growth curve as well as the viability of the vegetative bacterial cells. For Spore@NRs/NCs (Spore:NCs:NRs=1:1:4, 67.5 μg mL-1), a ~98% killing rate of vegetative bacterial cells was obtained with NIR-irradiation (2.8 W cm-2, 20 min) after 2 h-incubation. In addition, these nanoheaters modified on spores could be taken not only to the vegetative bacteria cells, but also to the first-generation bacteria cells with their excellent photothermal and bactericidal performance, as well as synergetic anticancer effect. NIR-irradiation after 2 h-incubation could also trigger Spore@NRs/NCs (1:1:4, 6 μL) to synergistically reduce the viability of HCT116 cells to 15.63±2.90%. Conclusion By using NIR-irradiation, the "transitive" nanoheaters can remotely control the activity of both bacteria (germinated from spore) and cancer cells. This discovery provides basis and a feasible plan for controllable safer treatment of bacteria therapy, especially anaerobes with spores in hypoxic areas of the malignant solid tumors.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yetong Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Lu Han
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China,Correspondence: Bo Hu, Email ;
| |
Collapse
|
49
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
50
|
Li Y, Nie J, Dai J, Yin J, Huang B, Liu J, Chen G, Ren L. pH/Redox Dual-Responsive Drug Delivery System with on-Demand RGD Exposure for Photochemotherapy of Tumors. Int J Nanomedicine 2022; 17:5621-5639. [DOI: 10.2147/ijn.s388342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|