1
|
Varinelli L, Di Bella M, Guaglio M, Battistessa D, Pisati F, Cavalleri T, Milione M, Martínez-Quintanilla J, Caswell PT, Baratti D, Kusamura S, Deraco M, Gariboldi M. A combinatorial culture strategy to develop pseudomyxoma peritonei organoid models. J Surg Oncol 2024. [PMID: 39360464 DOI: 10.1002/jso.27850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Few preclinical models of pseudomyxoma peritonei (PMP) have been developed, probably due to the tumor's low incidence and its peculiar characteristics of slow growth. Therefore, there is a need to develop more refined PMP models that better reflect its characteristics. The aim of the study is to develop a culture strategy to generate organoid models derived from PMP patient samples. METHODS We followed a strategy based on combinatorial culture conditions that include the different factors essential for PMP growth and that mimic the microenvironment present in the patients. RESULTS We cultured PMP samples in the presence of the various factors produced by the niche environment of PMP. We obtained 12 PMP organoid models, each of which grows under specific culture conditions. PMP-derived organoids show long-term expansion capacity and reproduce the genetic landscape and histological phenotype of the tumor of origin. CONCLUSION The organoids we developed faithfully reproduce the key features of PMP disease and will allow us to understand the biology of PMP. With them, we will be able to identify key regulatory networks that support PMP progression, providing a platform for multilevel preclinical testing, identify novel diagnostic biomarkers, and generate novel targets for patient treatments.
Collapse
Affiliation(s)
- Luca Varinelli
- Molecular Epigenomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Marzia Di Bella
- Molecular Epigenomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Davide Battistessa
- Molecular Epigenomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation with a Sole Shareholder, Milan, Italy
| | - Tommaso Cavalleri
- Peritoneal Surface Malignancies Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Phatology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Jordi Martínez-Quintanilla
- Translational Program, Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Shigeki Kusamura
- Peritoneal Surface Malignancies Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| |
Collapse
|
2
|
Janitri V, ArulJothi KN, Ravi Mythili VM, Singh SK, Prasher P, Gupta G, Dua K, Hanumanthappa R, Karthikeyan K, Anand K. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. MedComm (Beijing) 2024; 5:e745. [PMID: 39329017 PMCID: PMC11424683 DOI: 10.1002/mco2.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Patient-derived xenografts (PDX) involve transplanting patient cells or tissues into immunodeficient mice, offering superior disease models compared with cell line xenografts and genetically engineered mice. In contrast to traditional cell-line xenografts and genetically engineered mice, PDX models harbor the molecular and biologic features from the original patient tumor and are generationally stable. This high fidelity makes PDX models particularly suitable for preclinical and coclinical drug testing, therefore better predicting therapeutic efficacy. Although PDX models are becoming more useful, the several factors influencing their reliability and predictive power are not well understood. Several existing studies have looked into the possibility that PDX models could be important in enhancing our knowledge with regard to tumor genetics, biomarker discovery, and personalized medicine; however, a number of problems still need to be addressed, such as the high cost and time-consuming processes involved, together with the variability in tumor take rates. This review addresses these gaps by detailing the methodologies to generate PDX models, their application in cancer research, and their advantages over other models. Further, it elaborates on how artificial intelligence and machine learning were incorporated into PDX studies to fast-track therapeutic evaluation. This review is an overview of the progress that has been done so far in using PDX models for cancer research and shows their potential to be further improved in improving our understanding of oncogenesis.
Collapse
Affiliation(s)
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Vijay Murali Ravi Mythili
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Parteek Prasher
- Department of ChemistryUniversity of Petroleum & Energy Studies, Energy AcresDehradunIndia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative, MedicineUniversity of Technology SydneyUltimoNSWAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Rakshith Hanumanthappa
- JSS Banashankari Arts, Commerce, and SK Gubbi Science CollegeKarnatak UniversityDharwadKarnatakaIndia
| | - Karthikeyan Karthikeyan
- Centre of Excellence in PCB Design and Analysis, Department of Electronics and Communication EngineeringM. Kumarasamy College of EngineeringKarurTamil NaduIndia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health SciencesUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
3
|
Zhao Q, Wei T, Ma R, Fu Y, Yang R, Su Y, Yu Y, Li B, Li Y. Progress on immuno-microenvironment and immune-related therapies in patients with pseudomyxoma peritonei. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0109. [PMID: 39026438 PMCID: PMC11271218 DOI: 10.20892/j.issn.2095-3941.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is an indolent malignant syndrome. The standard treatment for PMP is cytoreductive surgery combined with intraperitoneal hyperthermic chemotherapy (CRS + HIPEC). However, the high recurrence rate and latent clinical symptoms and signs are major obstacles to further improving clinical outcomes. Moreover, patients in advanced stages receive little benefit from CRS + HIPEC due to widespread intraperitoneal metastases. Another challenge in PMP treatment involves the progressive sclerosis of PMP cell-secreted mucus, which is often increased due to activating mutations in the gene coding for guanine nucleotide-binding protein alpha subunit (GNAS). Consequently, the development of other PMP therapies is urgently needed. Several immune-related therapies have shown promise, including the use of bacterium-derived non-specific immunogenic agents, radio-immunotherapeutic agents, and tumor cell-derived neoantigens, but a well-recognized immunotherapy has not been established. In this review the roles of GNAS mutations in the promotion of mucin secretion and disease development are discussed. In addition, the immunologic features of the PMP microenvironment and immune-associated treatments are discussed to summarize the current understanding of key features of the disease and to facilitate the development of immunotherapies.
Collapse
Affiliation(s)
- Qidi Zhao
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Tian Wei
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yubin Fu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Rui Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yandong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yang Yu
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bing Li
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yan Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
4
|
Weitz J, Montecillo Gulay KC, Hurtado de Mendoza T, Tiriac H, Baumgartner J, Kelly K, Veerapong J, Lowy AM. Culture and Imaging of Ex Vivo Organotypic Pseudomyxoma Peritonei Tumor Slices from Resected Human Tumor Specimens. J Vis Exp 2022:10.3791/64620. [PMID: 36571414 PMCID: PMC10880464 DOI: 10.3791/64620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare condition that results from the dissemination of a mucinous primary tumor and the resultant accumulation of mucin-secreting tumor cells in the peritoneal cavity. PMP can arise from various types of cancers, including appendiceal, ovarian, and colorectal, though appendiceal neoplasms are by far the most common etiology. PMP is challenging to study due to its (1) rarity, (2) limited murine models, and (3) mucinous, acellular histology. The method presented here allows real-time visualization and interrogation of these tumor types using patient-derived ex vivo organotypic slices in a preparation where the tumor microenvironment (TME) remains intact. In this protocol, we first describe the preparation of tumor slices using a vibratome and subsequent long-term culture. Second, we describe confocal imaging of tumor slices and how to monitor functional readouts of viability, calcium imaging, and local proliferation. In short, slices are loaded with imaging dyes and are placed in an imaging chamber that can be mounted onto a confocal microscope. Time-lapse videos and confocal images are used to assess the initial viability and cellular functionality. This procedure also explores translational cellular movement, and paracrine signaling interactions in the TME. Lastly, we describe a dissociation protocol for tumor slices to be used for flow cytometry analysis. Quantitative flow cytometry analysis can be used for bench-to-bedside therapeutic testing to determine changes occurring within the immune landscape and epithelial cell content.
Collapse
|
5
|
Weitz J, Hurtado de Mendoza T, Tiriac H, Lee J, Sun S, Garg B, Patel J, Li K, Baumgartner J, Kelly KJ, Veerapong J, Hosseini M, Chen Y, Lowy AM. An Ex Vivo Organotypic Culture Platform for Functional Interrogation of Human Appendiceal Cancer Reveals a Prominent and Heterogenous Immunological Landscape. Clin Cancer Res 2022; 28:4793-4806. [PMID: 36067351 DOI: 10.1158/1078-0432.ccr-22-0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/04/2022] [Accepted: 08/31/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Epithelial neoplasms of the appendix are difficult to study preclinically given their low incidence, frequent mucinous histology, and absence of a comparable organ in mice for disease modeling. Although surgery is an effective treatment for localized disease, metastatic disease has a poor prognosis as existing therapeutics borrowed from colorectal cancer have limited efficacy. Recent studies reveal that appendiceal cancer has a genomic landscape distinct from colorectal cancer and thus preclinical models to study this disease are a significant unmet need. EXPERIMENTAL DESIGN We adopted an ex vivo slice model that permits the study of cellular interactions within the tumor microenvironment. Mucinous carcinomatosis peritonei specimens obtained at surgical resection were cutoff using a vibratome to make 150-μm slices cultured in media. RESULTS Slice cultures were viable and maintained their cellular composition regarding the proportion of epithelial, immune cells, and fibroblasts over 7 days. Within donor specimens, we identified a prominent and diverse immune landscape and calcium imaging confirmed that immune cells were functional for 7 days. Given the diverse immune landscape, we treated slices with TAK981, an inhibitor of SUMOylation with known immunomodulatory functions, in early-phase clinical trials. In 5 of 6 donor samples, TAK981-treated slices cultures had reduced viability, and regulatory T cells (Treg). These data were consistent with TAK981 activity in purified Tregs using an in vitro murine model. CONCLUSIONS This study demonstrates an approach to study appendiceal cancer therapeutics and pathobiology in a preclinical setting. These methods may be broadly applicable to the study of other malignancies.
Collapse
Affiliation(s)
- Jonathan Weitz
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Tatiana Hurtado de Mendoza
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Herve Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - James Lee
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Siming Sun
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Bharti Garg
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Jay Patel
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Kevin Li
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Joel Baumgartner
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Kaitlin J Kelly
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Jula Veerapong
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Mojgan Hosseini
- Department of Pathology and Laboratory Medicine, University of California, San Diego, California
| | - Yuan Chen
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, California
| |
Collapse
|
6
|
Heterogeneity, inherent and acquired drug resistance in patient-derived organoid models of primary liver cancer. Cell Oncol (Dordr) 2022; 45:1019-1036. [PMID: 36036881 DOI: 10.1007/s13402-022-00707-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE We aimed to elucidate the applicability of tumor organoids for inherent drug resistance of primary liver cancer (PLC) and mechanisms of acquired drug resistance. METHODS PLC tissues were used to establish organoids, organoid-derived xenograft (ODX) and patient-derived xenograft (PDX) models. Acquired drug resistance was induced in hepatocellular carcinoma (HCC) organoids. Gene expression profiling was performed by RNA-sequencing. RESULTS Fifty-two organoids were established from 153 PLC patients. Compared with establishing PDX models, establishing organoids of HCC showed a trend toward a higher success rate (29.0% vs. 23.7%) and took less time (13.0 ± 4.7 vs. 25.1 ± 5.4 days, p = 2.28 × 10-13). Larger tumors, vascular invasion, higher serum AFP levels, advanced stages and upregulation of stemness- and proliferation-related genes were significantly associated with the successful establishment of HCC organoids and PDX. Organoids and ODX recapitulated PLC histopathological features, but were enriched in more aggressive cell types. PLC organoids were mostly resistant to lenvatinib in vitro but sensitive to lenvatinib in ODX models. Stemness- and epithelial-mesenchymal transition (EMT)-related gene sets were found to be upregulated, whereas liver development- and liver specific molecule-related gene sets were downregulated in acquired sorafenib-resistant organoids. Targeting the mTOR signaling pathway was effective in treating acquired sorafenib-resistant HCC organoids, possibly via inducing phosphorylated S6 kinase. Genes upregulated in acquired sorafenib-resistant HCC organoids were associated with an unfavorable prognosis. CONCLUSIONS HCC organoids perform better than PDX for drug screening. Acquired sorafenib resistance in organoids promotes HCC aggressiveness via facilitating stemness, retro-differentiation and EMT. Phosphorylated S6 kinase may be predictive for drug resistance in HCC.
Collapse
|
7
|
Lin YL, Zhang J, Yan FC, Jiang X, Ma R, Yang ZR, Xu HB, Peng Z, Chen Q, Li Y. Establishment of patient-derived xenograft model of peritoneal mucinous carcinomatosis with signet ring cells and in vivo study on the efficacy and toxicity of intraperitoneal injection of 5-fluorouracil. Cancer Med 2019; 9:1104-1114. [PMID: 31814323 PMCID: PMC6997068 DOI: 10.1002/cam4.2766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/04/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pseudomyxoma peritonei (PMP) is an indolent malignancy and insensitive to systemic chemotherapy. The authors established patient-derived xenograft (PDX) model of PMP, and evaluated the efficacy and toxicity of intraperitoneal (i.p.) administration of 5-fluorouracil (5-FU) in this model. METHODS Human PMP sample was collected to establish subcutaneous (s.c.) and i.p. MODEL In vivo study of i.p. injection of 5-FU was performed in i.p. model, with experimental peritoneal cancer index (ePCI) score and pathological examinations for evaluating the efficacy and toxicity. RESULTS Both s.c. and i.p. models were constructed. The average passage interval of s.c. model was 44.2 ± 5.2 days, and the i.p. model was characterized by disseminated solid tumor nodules in abdominal-pelvic cavity. Both models were diagnosed as peritoneal mucinous carcinomatosis with signet ring cells (PMCA-S). Immunohistochemical characteristics was similar to human. GNAS mutation was detected in both model and patient. In the in vivo study, average ePCI of treatment group was lower than control and vehicle group (P = .004). Histopathology revealed obvious tumor necrosis in treatment group, and decreased Ki67 positive rate (P = .010). In toxicity study, 5-FU significantly influenced body weight (P = .010) and 1 animal from treatment group died on day 14. Congestive splenomegaly was observed (88.9%). Hepatotoxicity presented as acidophilic body (55.6%), cholestasis (100%), bile canaliculus hyperplasia and obstruction (22.2%), and lymphocyte accumulation (77.8%). CONCLUSIONS PDX model of PMCA-S was established successfully, and i.p. 5-FU could inhibit tumor proliferation and progression, with decreased Ki67 positive rate and ePCI score. Hepatotoxicity was the main side effect.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jue Zhang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng-Cai Yan
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xi Jiang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Ran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Bin Xu
- Department of Myxoma, Aerospace Central Hospital, Beijing, China
| | - Zheng Peng
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | | | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang Y, Zhang B, Huang H, Wang T. An improved method to build lung cancer PDX models by surgical resection samples and its association with B7-H3 expression. Transl Cancer Res 2019; 8:2848-2857. [PMID: 35117042 PMCID: PMC8798245 DOI: 10.21037/tcr.2019.10.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Background Patient-derived xenograft (PDX) models are biologically stable and can accurately reflect the primary tumor in histopathology and genetic expression in many cancers. In lung cancer, the models' engraftment rate by endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) and computed tomography (CT)-guided biopsy is exceptionally low, and this limits the development of PDX models in lung cancer research. In this study, we aimed to improve the traditional method, and explore the feasibility and convenience of establishing lung cancer PDX models using the samples directly from surgical resection. We also endeavored to explore the correlation between PDX formation and primary tumor B7-H3 protein expression. Methods From September 2017 to July 2018, 24 patients were enrolled in this study. The pathological diagnoses were as follows: 15 adenocarcinomas, 7 squamous cell carcinomas, 1 large cell carcinoma, and 1 small cell carcinoma. The tumor tissues were cut into sizes of 2×2×2 mm3/fragment and inoculated subcutaneously into immunodeficiency mice with a trocar needle. The engrafted tumors were passaged at least 3 generations, and B7-H3 IHC staining was performed on primary tumors. To explore the correlation between PDX formation and B7-H3 protein expression, we also performed H&E staining to evaluate whether the established PDX models could retain the histological features of the primary tumor. Results Xenograft formation success was achieved in 19 out of 24 cases (79.2%). The time between implantation to tumor formation was an average of 81.5 days (27-154 days) in P1, an average of 44.4 days (14-122 days) in P2, and an average of 26.9 days (12-75 days) in P3. The diameter of the tumor was associated with tumor engraftment: the longer the diameter, the easier engraftment formation was (P=0.0342). The data also suggests that lung cancers with B7-H3 expression greatly induced PDX formation (P=0.0375). The histological characters of each passage resembled the primary tumors. Conclusions This study shows that the samples from carefully selected lung cancer by surgical resection can be used for the establishment of PDX models with a high success rate; this improved method is closer to actual clinical work. Compared with the same kind of research, the success rate of the xenograft indicates significant improvement, so this improved method is suitable for promotion and application. The results of H&E staining showed that the histological characters of each passage resembled the primary tumors. Furthermore, the diameter of the tumor was associated with tumor engraftment, and higher B7-H3 expression demonstrated a statistically significant difference compared with the PDX model formation.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Biao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haitao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tingjing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Zhong W, Yang W, Qin Y, Gu W, Xue Y, Tang Y, Xu H, Wang H, Zhang C, Wang C, Sun B, Liu Y, Liu H, Zhou H, Chen S, Sun T, Yang C. 6-Gingerol stabilized the p-VEGFR2/VE-cadherin/β-catenin/actin complex promotes microvessel normalization and suppresses tumor progression. J Exp Clin Cancer Res 2019; 38:285. [PMID: 31266540 PMCID: PMC6604152 DOI: 10.1186/s13046-019-1291-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Anti-angiogenic therapies demonstrate anti-tumor effects by decreasing blood supply to tumors and inhibiting tumor growth. However, anti-angiogenic therapy may leads to changes in tumor microenvironment and increased invasiveness of tumor cells, which in turn promotes distant metastasis and increased drug resistance. METHODS The CO-IP assays, N-STORM and cytoskeleton analysis were used to confirm the mechanism that p-VEGFR2/VE-cadherin/β-catenin/actin complex regulates vascular remodeling and improves the tumor microenvironment. 6-gingerol (6G), the major bioactive component in ginger, stabilized this complex by enhancing the binding of VEGFa to VEGFR2 with non-pathway dependent. Biacore, pull down and molecular docking were employed to confirm the interaction between 6G and VEGFR2 and enhancement of VEGFa binding to VEGFR2. RESULTS Here, we report that microvascular structural entropy (MSE) may be a prognostic factor in several tumor types and have potential as a biomarker in the clinic. 6G regulates the structural organization of the microvascular bed to decrease MSE via the p-VEGFR2/VE-cadherin/β-catenin/actin complex and inhibit tumor progression. 6G promotes the normalization of tumor vessels, improves the tumor microenvironment and decreases MSE, facilitating the delivery of chemotherapeutic agents into the tumor core and thereby reducing tumor growth and metastasis. CONCLUSIONS This study demonstrated the importance of vascular normalization in tumor therapy and elucidated the mechanism of action of ginger, a medicinal compound that has been used in China since ancient times.
Collapse
Affiliation(s)
- Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, 300041 China
| | - Wendong Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Wenguang Gu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Yinyin Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Hengwei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Hongzhi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Changhua Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Bo Sun
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Yanrong Liu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350 China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450 China
| |
Collapse
|
11
|
De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L, Melsens E, Praet M, Van Dorpe J, Boone MN, Ghobeira R, De Geyter N, Bracke M, Vanhove C, Neyt S, Berx G, De Geest BG, Dubruel P, Declercq H, Ceelen W, De Wever O. Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials 2017; 158:95-105. [PMID: 29306747 DOI: 10.1016/j.biomaterials.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
Peritoneal metastasis is a major cause of death and preclinical models are urgently needed to enhance therapeutic progress. This study reports on a hybrid hydrogel-polylactic acid (PLA) scaffold that mimics the architecture of peritoneal metastases at the qualitative, quantitative and spatial level. Porous PLA scaffolds with controllable pore size, geometry and surface properties are functionalized by type I collagen hydrogel. Co-seeding of cancer-associated fibroblasts (CAF) increases cancer cell adhesion, recovery and exponential growth by in situ heterocellular spheroid formation. Scaffold implantation into the peritoneum allows long-term follow-up (>14 weeks) and results in a time-dependent increase in vascularization, which correlates with cancer cell colonization in vivo. CAF, endothelial cells, macrophages and cancer cells show spatial and quantitative aspects as similarly observed in patient-derived peritoneal metastases. CAF provide long-term secretion of complementary paracrine factors implicated in spheroid formation in vitro as well as in recruitment and organization of host cells in vivo. In conclusion, the multifaceted heterocellular interactions that occur within peritoneal metastases are reproduced in this tissue-engineered implantable scaffold model.
Collapse
Affiliation(s)
- Emiel De Jaeghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Glenn Wagemans
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Leen Pieters
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elodie Melsens
- Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Matthieu N Boone
- Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Marc Bracke
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Institute Biomedical Technology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sara Neyt
- MOLECUBES NV, Ottergemsesteenweg-Zuid 808, 325 Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark Zwijnaarde 927, 9052 Ghent, Belgium
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pharmaceutics, Ghent University, Ottergemstesteenweg 460, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Heidi Declercq
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Olivier De Wever
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Wyatt RA, Trieu NPV, Crawford BD. Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology. Genes (Basel) 2017; 8:E220. [PMID: 28872594 PMCID: PMC5615353 DOI: 10.3390/genes8090220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Though the cancer research community has used mouse xenografts for decades more than zebrafish xenografts, zebrafish have much to offer: they are cheap, easy to work with, and the embryonic model is relatively easy to use in high-throughput assays. Zebrafish can be imaged live, allowing us to observe cellular and molecular processes in vivo in real time. Opponents dismiss the zebrafish model due to the evolutionary distance between zebrafish and humans, as compared to mice, but proponents argue for the zebrafish xenograft's superiority to cell culture systems and its advantages in imaging. This review places the zebrafish xenograft in the context of current views on cancer and gives an overview of how several aspects of this evolutionary disease can be addressed in the zebrafish model. Zebrafish are missing homologs of some human proteins and (of particular interest) several members of the matrix metalloproteinase (MMP) family of proteases, which are known for their importance in tumour biology. This review draws attention to the implicit evolutionary experiment taking place when the molecular ecology of the xenograft host is significantly different than that of the donor.
Collapse
Affiliation(s)
- Rachael A Wyatt
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Nhu P V Trieu
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
13
|
Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 2017; 10:106. [PMID: 28499452 PMCID: PMC5427553 DOI: 10.1186/s13045-017-0470-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/22/2017] [Indexed: 12/15/2022] Open
Abstract
Cancers remain a major public health problem worldwide, which still require profound research in both the basic and preclinical fields. Patient-derived xenograft (PDX) models are created when cancerous cells or tissues from patients' primary tumors are implanted into immunodeficient mice to simulate human tumor biology in vivo, which have been extensively used in cancer research. The routes of implantation appeared to affect the outcome of PDX research, and there has been increasing applications of patient-derived orthotopic xenograft (PDOX) models. In this review, we firstly summarize the methodology to establish PDX models and then go over recent application and function of PDX models in basic cancer research on the areas of cancer characterization, initiation, proliferation, metastasis, and tumor microenvironment and in preclinical explorations of anti-cancer targets, drugs, and therapeutic strategies and finally give our perspectives on the future prospects of PDX models.
Collapse
|
14
|
Kuracha MR, Thomas P, Loggie BW, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med 2016; 5:711-9. [PMID: 26833741 PMCID: PMC4831290 DOI: 10.1002/cam4.640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a neoplastic syndrome characterized by peritoneal tumor implants with copious mucinous ascites. The standard of care for PMP patients is aggressive cytoreductive surgery performed in conjunction with heated intraperitoneal chemotherapy. Not all patients are candidates for these procedures and a majority of the patients will have recurrent disease. In addition to secreted mucin, inflammation and fibrosis are central to PMP pathogenesis but the molecular processes that regulate tumor-stromal interactions within the peritoneal tumor microenvironment remain largely unknown. This knowledge is critical not only to elucidate PMP pathobiology but also to identify novel targets for therapy. Here, we report the generation of patient-derived xenograft (PDX) mouse models for PMP and assess the ability of these models to replicate the inflammatory peritoneal microenvironment of human PMP patients. PDX mouse models of low- and high-grade PMP were generated and were of a similar histopathology as human PMP. Cytokines previously shown to be elevated in human PMP were also elevated in PDX ascites. Significant differences in IL-6 and IL-8/KC/MIP2 were seen between human and PDX ascites. Interestingly, these cytokines were mostly secreted by mouse-derived, tumor-associated stromal cells rather than by human-derived PMP tumor cells. Our data suggest that the PMP PDX mouse models are especially suited to the study of tumor-stromal interactions that regulate the peritoneal inflammatory environment in PMP as the tumor and stromal cells in these mouse models are of human and murine origins, respectively. These mouse models are therefore, likely to be useful in vivo surrogates for testing and developing novel therapeutic treatment interventions for PMP.
Collapse
Affiliation(s)
- Murali R Kuracha
- Department of Surgery, Creighton University, 2500 California Plaza, Omaha, Nebraska, 68178
| | - Peter Thomas
- Department of Surgery, Creighton University, 2500 California Plaza, Omaha, Nebraska, 68178
| | - Brian W Loggie
- Department of Surgery, Creighton University, 2500 California Plaza, Omaha, Nebraska, 68178
| | - Venkatesh Govindarajan
- Department of Surgery, Creighton University, 2500 California Plaza, Omaha, Nebraska, 68178.,Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska, 68178
| |
Collapse
|