1
|
Hu YX, You HM, Zhu RF, Liang YL, Li FF, Qin YW, Zhao XX, Liang C, Jing Q. Establishment of a lipid metabolism disorder model in ApoEb mutant zebrafish. Atherosclerosis 2022; 361:18-29. [PMID: 36306655 DOI: 10.1016/j.atherosclerosis.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ApoEb is a zebrafish homologous to mammalian ApoE, whose deficiency would lead to lipid metabolism disorders (LMDs) like atherosclerosis. We attempted to knock out the zebrafish ApoEb, then establish a zebrafish model with LMD. METHODS ApoEb was knocked out using the CRISPR/Cas9 system, and the accumulation of lipids was confirmed by Oil Red O staining, confocal imaging, and lipid measurements. The lipid-lowering effects of simvastatin (SIM), ezetimibe (EZE) and Xuezhikang (XZK), an extract derived from red yeast rice, were evaluated through in vivo imaging in zebrafish larvae. RESULTS In the ApoEb mutant, significant vascular lipid deposition occurred, and lipid measurement performed in the whole-body homogenate of larvae and adult plasma showed significantly increased lipid levels. SIM, EZE and XZK apparently relieved hyperlipidemia in ApoEb mutants, and XZK had a significant inhibitory effect on the recruitment of neutrophils and macrophages. CONCLUSIONS In this study, an LMD model has been established in ApoEb mutant zebrafish. We suggest that this versatile model could be applied in studying hypercholesterolemia and related vascular pathology in the context of early atherosclerosis, as well as the physiological function of ApoE.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Hong-Min You
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Rong-Fang Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Lai Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang-Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China.
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Radosinska J, Vrbjar N. Erythrocyte Deformability and Na,K-ATPase Activity in Various Pathophysiological Situations and Their Protection by Selected Nutritional Antioxidants in Humans. Int J Mol Sci 2021; 22:11924. [PMID: 34769355 PMCID: PMC8584536 DOI: 10.3390/ijms222111924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023] Open
Abstract
The physicochemical and functional properties of erythrocytes are worsened in a variety of diseases. Erythrocyte deformability refers to their ability to adjust their shape according to external forces exerted against them in the circulation. It is influenced by the functionality of the Na,K-ATPase enzyme, which is localized in their membranes. The proposed review is focused on knowledge regarding changes in erythrocyte Na,K-ATPase activity, and their impact on erythrocyte deformability in various pathophysiological situations observed exclusively in human studies, as well as on the potential erytroprotective effects of selected natural nutritional antioxidants. A clear link between the erythrocyte properties and the parameters of oxidative stress was observed. The undesirable consequences of oxidative stress on erythrocyte quality and hemorheology could be at least partially prevented by intake of diverse antioxidants occurring naturally in foodstuffs. Despite intensive research concerning the effect of antioxidants, only a small number of investigations on erythrocyte properties in humans is available in databases. It is worth shifting attention from animal and in vitro experiments and focusing more on antioxidant administration in human studies in order to establish what type of antioxidant, in what concentration, and in which individuals it may provide a beneficial effect on the human organism, by protecting erythrocyte properties.
Collapse
Affiliation(s)
- Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia;
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia;
| |
Collapse
|
3
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
4
|
Gale SC, Gao L, Mikacenic C, Coyle SM, Rafaels N, Murray Dudenkov T, Madenspacher JH, Draper DW, Ge W, Aloor JJ, Azzam KM, Lai L, Blackshear PJ, Calvano SE, Barnes KC, Lowry SF, Corbett S, Wurfel MM, Fessler MB. APOε4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 2014; 134:127-34. [PMID: 24655576 PMCID: PMC4125509 DOI: 10.1016/j.jaci.2014.01.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND The genetic determinants of the human innate immune response are poorly understood. Apolipoprotein (Apo) E, a lipid-trafficking protein that affects inflammation, has well-described wild-type (ε3) and disease-associated (ε2 and ε4) alleles, but its connection to human innate immunity is undefined. OBJECTIVE We sought to define the relationship of APOε4 to the human innate immune response. METHODS We evaluated APOε4 in several functional models of the human innate immune response, including intravenous LPS challenge in human subjects, and assessed APOε4 association to organ injury in patients with severe sepsis, a disease driven by dysregulated innate immunity. RESULTS Whole blood from healthy APOε3/APOε4 volunteers induced higher cytokine levels on ex vivo stimulation with Toll-like receptor (TLR) 2, TLR4, or TLR5 ligands than blood from APOε3/APOε3 patients, whereas TLR7/8 responses were similar. This was associated with increased lipid rafts in APOε3/APOε4 monocytes. By contrast, APOε3/APOε3 and APOε3/APOε4 serum neutralized LPS equivalently and supported similar LPS responses in Apoe-deficient macrophages, arguing against a differential role for secretory APOE4 protein. After intravenous LPS, APOε3/APOε4 patients had higher hyperthermia and plasma TNF-α levels and earlier plasma IL-6 than APOε3/APOε3 patients. APOE4-targeted replacement mice displayed enhanced hypothermia, plasma cytokines, and hepatic injury and altered splenic lymphocyte apoptosis after systemic LPS compared with APOE3 counterparts. In a cohort of 828 patients with severe sepsis, APOε4 was associated with increased coagulation system failure among European American patients. CONCLUSIONS APOε4 is a determinant of the human innate immune response to multiple TLR ligands and associates with altered patterns of organ injury in human sepsis.
Collapse
Affiliation(s)
- Stephen C Gale
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Li Gao
- Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Susette M Coyle
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | | | - Jennifer H Madenspacher
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - David W Draper
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - William Ge
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Jim J Aloor
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kathleen M Azzam
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Lihua Lai
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Steven E Calvano
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Stephen F Lowry
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Siobhan Corbett
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Mark M Wurfel
- Department of Medicine, University of Washington, Seattle, Wash
| | - Michael B Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
5
|
Kawamoto EM, Vasconcelos AR, Degaspari S, Böhmer AE, Scavone C, Marcourakis T. Age-related changes in nitric oxide activity, cyclic GMP, and TBARS levels in platelets and erythrocytes reflect the oxidative status in central nervous system. AGE (DORDRECHT, NETHERLANDS) 2013; 35:331-342. [PMID: 22278206 PMCID: PMC3592952 DOI: 10.1007/s11357-011-9365-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Aging is associated with an increased susceptibility to neurodegenerative disorders which has been linked to chronic inflammation. This process generates oxygen-reactive species, ultimately responsible for a process known as oxidative stress, leading to changes in nitric oxide (NO), and cyclic guanosine monophosphate (cyclic GMP) signaling pathway. In previous studies, we showed that human aging was associated with an increase in NO Synthase (NOS) activity, a decrease in basal cyclic GMP levels in human platelets, and an increase in thiobarbituric acid-reactant substances (TBARS) in erythrocytes. The aim of the present work was to evaluate NOS activity, TBARS and cyclic GMP levels in hippocampus and frontal cortex and its correlation to platelets and erythrocytes of 4-, 12-, and 24-month-old rats. The result showed an age-related decrease in cyclic GMP levels which was linked to an increase in NOS activity and TBARS in both central areas as well as in platelets and erythrocytes of rats. The present data confirmed our previous studies performed in human platelets and erythrocytes and validate NOS activity and cyclic GMP in human platelet as well as TBARS in erythrocytes as biomarkers to study age-related disorders and new anti-aging therapies.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- />Department of Pharmacology, Institute of Biomedical Science—ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
- />Laboratory of Neurosciences, NIA, NIH, Baltimore, MD USA
| | - Andrea Rodrigues Vasconcelos
- />Department of Pharmacology, Institute of Biomedical Science—ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | - Sabrina Degaspari
- />Department of Pharmacology, Institute of Biomedical Science—ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | - Ana Elisa Böhmer
- />Department of Pharmacology, Institute of Biomedical Science—ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | - Cristoforo Scavone
- />Department of Pharmacology, Institute of Biomedical Science—ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | - Tania Marcourakis
- />Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Talib LL, Joaquim HP, Forlenza OV. Platelet biomarkers in Alzheimer’s disease. World J Psychiatry 2012; 2:95-101. [PMID: 24175175 PMCID: PMC3782189 DOI: 10.5498/wjp.v2.i6.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 10/23/2012] [Accepted: 11/17/2012] [Indexed: 02/05/2023] Open
Abstract
The search for diagnostic and prognostic markers in Alzheimer’s disease (AD) has been an area of active research in the last decades. Biochemical markers are correlates of intracerebral changes that can be identified in biological fluids, namely: peripheral blood (total blood, red and white blood cells, platelets, plasma and serum), saliva, urine and cerebrospinal fluid. An important feature of a biomarker is that it can be measured objectively and evaluated as (1) an indicator of disease mechanisms (markers of core pathogenic processes or the expression of downstream effects of these processes), or (2) biochemical responses to pharmacological or therapeutic intervention, which can be indicative of disease modification. Platelets have been used in neuropharmacological models since the mid-fifties, as they share several homeostatic functions with neurons, such as accumulation and release of neurotransmitters, responsiveness to variations in calcium concentration, and expression of membrane-bound compounds. Recent studies have shown that platelets also express several components related to the pathogenesis of AD, in particular to the amyloid cascade and the regulation of oxidative stress: thus they can be used in the search for biomarkers of the disease process. For instance, platelets are the most important source of circulating forms of the amyloid precursor protein and other important proteins such as Tau and glycogen synthase kinase-3B. Moreover, platelets express enzymes involved in membrane homeostasis (e.g., phospholipase A2), and markers of the inflammatory process and oxidative stress. In this review we summarize the available literature and discuss evidence concerning the potential use of platelet markers in AD.
Collapse
Affiliation(s)
- Leda L Talib
- Leda L Talib, Helena PG Joaquim, Orestes V Forlenza, Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, 05403-010 São Paulo, SP, Brazil
| | | | | |
Collapse
|
7
|
de Souza-Talarico JN, Marin MF, Sindi S, Lupien SJ. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement Neuropsychol 2011; 5:8-16. [PMID: 29213714 PMCID: PMC5619133 DOI: 10.1590/s1980-57642011dn05010003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/14/2011] [Indexed: 12/04/2022] Open
Abstract
Several studies have demonstrated a wide cognitive variability among aged individuals. One factor thought to be associated with this heterogeneity is exposure to chronic stress throughout life. Animal and human evidence demonstrates that glucocorticoids (GCs), the main class of stress hormones, are strongly linked to memory performance whereby elevated GC levels are associated with memory performance decline in both normal and pathological cognitive aging. Accordingly, it is believed that GCs may increase the brain's vulnerability to the effects of internal and external insults, and thus may play a role in the development of age-related cognitive disorders such as Alzheimer's disease (AD). The aim of this review article was to investigate the effects of GCs on normal and pathological cognitive aging by showing how these hormones interact with different brain structures involved in cognitive abilities, subsequently worsen memory performance, and increase the risk for developing dementia.
Collapse
Affiliation(s)
- Juliana Nery de Souza-Talarico
- PhD, Department of Medical-Surgical Nursing, School of
Nursing, University of São Paulo, São Paulo SP, Brazil and Behavioral
and Cognitive Neurology Unit, Department of Neurology, Faculty of Medicine,
University of São Paulo, São Paulo SP, Brazil
| | - Marie-France Marin
- MSc, Center for Studies on Human Stress, Mental Health
Research Center Fernand-Seguin, Louis-H. Lafontaine Hospital, Université de
Montreal, Canada
| | - Shireen Sindi
- MSc, Department of Neurology and Neurosurgery, McGill
University, Montreal, Canada
| | - Sonia J. Lupien
- PhD, Center for Studies on Human Stress, Mental Health
Research Center Fernand-Seguin, Louis-H. Lafontaine Hospital, Université de
Montreal, Canada
| |
Collapse
|
8
|
Apolipoprotein E genotype and oxidative stress response to traumatic brain injury. Neuroscience 2010; 168:811-9. [DOI: 10.1016/j.neuroscience.2010.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 11/22/2022]
|
9
|
Katrancioglu N, Manduz S, Ozen F, Yilmaz MB, Atahan E, Ozdemir O, Berkan O. Association Between ApoE4 Allele and Deep Venous Thrombosis: A Pilot Study. Clin Appl Thromb Hemost 2009; 17:225-8. [DOI: 10.1177/1076029609348646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Deep vein thrombosis (DVT) is a multifactorial disease with genetic and acquired risk factors playing in concert in its pathogenesis. ApoE gene polymorphisms seem to have some impact among patients with cardiovascular disease; however, association between DVT and ApoE gene polymorphism has not been evaluated. Materials and Methods: We aimed to search the relative frequencies ApoE alleles among patients with DVT and healthy participants. We enrolled 59 consecutive patients with DVT and 59 age- and sex-matched healthy controls. Results: In the DVT group, E3/E4 gene polymorphism was detected in 20 patients (33.9%), in the control group E3/E4 polymorphism was detected in six patients (10.2%; P = .002). In the multivariable regression analysis, E3/E4 was independently associated with 1.31-fold increased risk of DVT (odds ratio [OR] 1.31; 95% confidence interval [CI], 1.30-10.48). Conclusion: It seems there is a relationship between ApoE3/E4 gene polymorphism and DVT in the Turkish population. However, this pilot study should be supported with large-scale studies.
Collapse
Affiliation(s)
- Nurkay Katrancioglu
- Department of Cardiovascular Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey,
| | - Sinasi Manduz
- Department of Cardiovascular Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Filiz Ozen
- Department of Medical Biology and Genetics, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Erhan Atahan
- Department of Cardiovascular Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Ozturk Ozdemir
- Department of Medical Biology and Genetics, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Ocal Berkan
- Department of Cardiovascular Surgery, Cumhuriyet University, School of Medicine, Sivas, Turkey
| |
Collapse
|