1
|
Li C, Wang J, Dong H, Yang D, Li P, Cao S, Li C, An Z, Zhang J, Wang YE. Design, Synthesis, and Herbicidal Activity Study of Novel Pyrazole-Carboxamides as Potential Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39708348 DOI: 10.1021/acs.jafc.4c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Transketolase (TKL; EC 2.2.1.1) has been identified as a potential new herbicide target. In order to discover highly herbicidal active compounds targeting TKL and improve their structural diversity for lead compounds, a series of pyrazole-carboxamides 7a-7v were designed and synthesized through structural optimization for pyrazole-containing phenoxy amide compound 4u. Among the synthesized compounds, compound 7r possessed excellent herbicidal efficacy against Digitaria sanguinalis (Ds) and Amaranthus retroflexus (Ar) by the small cup method (the inhibition about 95%, 100 mg/L) and the foliar spray method (the inhibition over 90%, 150 g ai/ha) in a greenhouse, which were superior to that of the positive control nicosulfuron. More significantly, compound 7r displayed good crop selectivity toward both maize and wheat even at 375 g of ai/ha. The studies on mode of action (MOA) of high herbicidal active compounds, including the enzyme inhibition activity, fluorescent quenching experiments, and molecular docking analysis between Setaria viridis (Sv)TKL and ligand, suggested that compound 7r acts as a typical TKL inhibitor, and the benzothiazole ring is an important motif for SvTKL inhibition activity. Above all, compound 7r could be a potential candidate for the development of herbicides with new MOA for weed control in maize and wheat field.
Collapse
Affiliation(s)
- Chengkun Li
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haijiao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Peng Li
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shuang Cao
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chao Li
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
2
|
Sun S, Li Y, Wang W, Kou S, Huo J, An Z, Zhu L, Li K, Chen L, Zhang J. Discovery of novel Propionamide-Pyrazole-Carboxylates as Transketolase-inhibiting herbicidal candidates. PEST MANAGEMENT SCIENCE 2024; 80:4897-4905. [PMID: 38808579 DOI: 10.1002/ps.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Yaze Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Wenfei Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lin Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Kaiwen Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| |
Collapse
|
3
|
Hu S, Wang Y, Wang K, Yang D, Chen L, An Z, Huo J, Zhang J. Design, Synthesis, and Herbicidal Activity of Pyrazole Amide Derivatives as Potential Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3334-3341. [PMID: 38346337 DOI: 10.1021/acs.jafc.3c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The design and synthesis of new herbicidal active compounds based on a new target are of great significance for the development of new herbicides. Transketolase (TK) plays a key role in the Calvin cycle of plant photosynthesis and has been confirmed as a potential candidate target to develop and discover new herbicides. To obtain compounds with ultraefficient targeting of TK, a series of pyrazole amide derivatives were designed and synthesized through structural optimization for lead compound 4u based on TK as the new target. The bioassay results showed that compounds 6ba and 6bj displayed a highly inhibitory effect with the root inhibition of about 90% against Digitaria sanguinalis (DS) and 80% against Amaranthus retroflexus (AR) and Setaria viridis (SV) by the small cup method, which was better than the positive control mesotrione and nicosulfuron. Furthermore, compounds 6ba and 6bj exhibited an excellent inhibitory effect with the inhibition of about 80% (against DS) and over 80% (against SV) at the dosage of 150 g of active ingredient/ha by the foliar spray method. The TK enzyme activity inhibition test showed that the inhibition effect of target compounds against TK was consistent with the results of herbicidal activities. Also, molecular docking analysis showed that compounds 6ba and 6bj went deep into the active cavity of TK, bound to TK by a strong interaction, and might act on the enzyme TK. Above of all, compounds 6ba and 6bj are promising herbicide lead compounds targeting TK. Hence, they could be developed into more efficient herbicides by further structural optimization.
Collapse
Affiliation(s)
- Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Yanen Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Kai Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| |
Collapse
|
4
|
Fúster Fernández I, Hecquet L, Fessner W. Transketolase Catalyzed Synthesis of
N
‐Aryl Hydroxamic Acids. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Fúster Fernández
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Laurence Hecquet
- Institut de Chimie de Clermont-Ferrand CNRS Auvergne Clermont INP Université Clermont Auverne 63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
5
|
Cárdenas-Fernández M, Subrizi F, Dobrijevic D, Hailes HC, Ward JM. Characterisation of a hyperthermophilic transketolase from Thermotoga maritima DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Org Biomol Chem 2021; 19:6493-6500. [PMID: 34250527 PMCID: PMC8317047 DOI: 10.1039/d1ob01237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Transketolase (TK) is a fundamentally important enzyme in industrial biocatalysis which carries out a stereospecific carbon-carbon bond formation, and is widely used in the synthesis of prochiral ketones. This study describes the biochemical and molecular characterisation of a novel and unusual hyperthermophilic TK from Thermotoga maritima DSM3109 (TKtmar). TKtmar has a low protein sequence homology compared to the already described TKs, with key amino acid residues in the active site highly conserved. TKtmar has a very high optimum temperature (>90 °C) and shows pronounced stability at high temperature (e.g. t1/2 99 and 9.3 h at 50 and 80 °C, respectively) and in presence of organic solvents commonly used in industry (DMSO, acetonitrile and methanol). Substrate screening showed activity towards several monosaccharides and aliphatic aldehydes. In addition, for the first time, TK specificity towards uronic acids was achieved with TKtmar catalysing the efficient conversion of d-galacturonic acid and lithium hydroxypyruvate into 7-keto-octuronic acid, a very rare C8 uronic acid, in high yields (98%, 49 mM).
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK. and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Ocal N, Lagarde A, L'enfant M, Charmantray F, Hecquet L. High-Throughput Solid-Phase Assay for Substrate Profiling and Directed Evolution of Transketolase. Chembiochem 2021; 22:2814-2820. [PMID: 34289225 DOI: 10.1002/cbic.202100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/10/2022]
Abstract
Thiamine diphosphate-dependent enzymes, and specifically transketolases, form one of the most important families of biocatalytic tools for enantioselective carbon-carbon bond formation yielding various hydroxyketones of biological interest. To enable substrate profiling of transketolases for acceptance of different donors and acceptors, a simple, direct colorimetric assay based on pH reaction variation was developed to establish a high-throughput solid-phase assay. This assay reduces the screening effort in the directed evolution of transketolases, as only active variants are selected for further analysis. Transketolase activity is detected as bicarbonate anions released from the α-ketoacid donor substrate, which causes the pH to rise. A pH indicator, bromothymol blue, which changes color from yellow to blue in alkaline conditions, was used to directly detect, with the naked eye, clones expressing active transketolase variants, obviating enzyme extraction.
Collapse
Affiliation(s)
- Nazim Ocal
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Mélanie L'enfant
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
James P, Isupov MN, De Rose SA, Sayer C, Cole IS, Littlechild JA. A 'Split-Gene' Transketolase From the Hyper-Thermophilic Bacterium Carboxydothermus hydrogenoformans: Structure and Biochemical Characterization. Front Microbiol 2020; 11:592353. [PMID: 33193259 PMCID: PMC7661550 DOI: 10.3389/fmicb.2020.592353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
A novel transketolase has been reconstituted from two separate polypeptide chains encoded by a ‘split-gene’ identified in the genome of the hyperthermophilic bacterium, Carboxydothermus hydrogenoformans. The reconstituted active α2β2 tetrameric enzyme has been biochemically characterized and its activity has been determined using a range of aldehydes including glycolaldehyde, phenylacetaldehyde and cyclohexanecarboxaldehyde as the ketol acceptor and hydroxypyruvate as the donor. This reaction proceeds to near 100% completion due to the release of the product carbon dioxide and can be used for the synthesis of a range of sugars of interest to the pharmaceutical industry. This novel reconstituted transketolase is thermally stable with no loss of activity after incubation for 1 h at 70°C and is stable after 1 h incubation with 50% of the organic solvents methanol, ethanol, isopropanol, DMSO, acetonitrile and acetone. The X-ray structure of the holo reconstituted α2β2 tetrameric transketolase has been determined to 1.4 Å resolution. In addition, the structure of an inactive tetrameric β4 protein has been determined to 1.9 Å resolution. The structure of the active reconstituted α2β2 enzyme has been compared to the structures of related enzymes; the E1 component of the pyruvate dehydrogenase complex and D-xylulose-5-phosphate synthase, in an attempt to rationalize differences in structure and substrate specificity between these enzymes. This is the first example of a reconstituted ‘split-gene’ transketolase to be biochemically and structurally characterized allowing its potential for industrial biocatalysis to be evaluated.
Collapse
Affiliation(s)
- Paul James
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Simone Antonio De Rose
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christopher Sayer
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Isobel S Cole
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Casajus H, Lagarde A, Leremboure M, De Dios Miguel T, Nauton L, Thery V, Fessner W, Duguet N, Charmantray F, Hecquet L. Enzymatic Synthesis of Aliphatic Acyloins Catalyzed by Thermostable Transketolase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
9
|
The Two-Species Model of transketolase explains donor substrate-binding, inhibition and heat-activation. Sci Rep 2020; 10:4148. [PMID: 32139871 PMCID: PMC7057962 DOI: 10.1038/s41598-020-61175-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/22/2020] [Indexed: 11/23/2022] Open
Abstract
We recently characterised a low-activity form of E. coli transketolase, TKlow, which also binds the cofactor thiamine pyrophosphate (TPP) with an affinity up to two-orders of magnitude lower than the previously known high TPP-affinity and high-activity form, TKhigh, in the presence of Mg2+. We observed previously that partial oxidation was responsible for increased TKhigh activity, while low-activity TKlow was unmodified. In the present study, the fluorescence-based cofactor-binding assay was adapted to detect binding of the β-hydroxypyruvate (HPA) donor substrate to wild-type transketolase and a variant, S385Y/D469T/R520Q, that is active towards aromatic aldehydes. Transketolase HPA affinity again revealed the two distinct forms of transketolase at a TKhigh:TKlow ratio that matched those observed previously via TPP binding to each variant. The HPA dissociation constant of TKlow was comparable to the substrate-inhibition dissociation constant, KiHPA, determined previously. We provide evidence that KiHPA is a convolution of binding to the low-activity TKlow-TKlow dimer, and the TKlow subunit of the partially-active TKhigh-TKlow mixed dimer, where HPA binding to the TKlow subunit of the mixed dimer results in inhibition of the active TKhigh subunit. Heat-activation of transketolase was similarly investigated and found to convert the TKlow subunit of the mixed dimer to have TKhigh-like properties, but without oxidation.
Collapse
|
10
|
Yu H, Hernández López RI, Steadman D, Méndez‐Sánchez D, Higson S, Cázares‐Körner A, Sheppard TD, Ward JM, Hailes HC, Dalby PA. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones. FEBS J 2019; 287:1758-1776. [DOI: 10.1111/febs.15108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering University College London UK
| | | | | | | | - Sally Higson
- Department of Chemistry University College London UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering University College London UK
| | | | - Paul A. Dalby
- Department of Biochemical Engineering University College London UK
| |
Collapse
|
11
|
Lorillière M, Dumoulin R, L’enfant M, Rambourdin A, Thery V, Nauton L, Fessner WD, Charmantray F, Hecquet L. Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Romain Dumoulin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Agnès Rambourdin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
L'enfant M, Bruna F, Lorillière M, Ocal N, Fessner W, Pollegioni L, Charmantray F, Hecquet L. One‐Pot Cascade Synthesis of (3 S)‐Hydroxyketones Catalyzed by Transketolase viaHydroxypyruvate Generated in Situfrom d‐Serine by d‐Amino Acid Oxidase. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mélanie L'enfant
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Felipe Bruna
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Marion Lorillière
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Nazim Ocal
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt 64287 Darmstadt Germany
| | - Loredano Pollegioni
- Department of Biotechnology and Life SciencesUniversità degli Studi dell'Insubria Varese Italy
| | - Franck Charmantray
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont AuvergneCNRSSIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
13
|
Aymard CMG, Halma M, Comte A, Mousty C, Prévot V, Hecquet L, Charmantray F, Blum LJ, Doumèche B. Innovative Electrochemical Screening Allows Transketolase Inhibitors to Be Identified. Anal Chem 2018; 90:9241-9248. [PMID: 29950093 DOI: 10.1021/acs.analchem.8b01752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transketolases (TKs) are ubiquitous thiamine pyrophosphate (TPP)-dependent enzymes of the nonoxidative branch of the pentose phosphate pathway. They are considered as interesting therapeutic targets in numerous diseases and infections (e.g., cancer, tuberculosis, malaria), for which it is important to find specific and efficient inhibitors. Current TK assays require important amounts of enzyme, are time-consuming, and are not specific. Here, we report a new high throughput electrochemical assay based on the oxidative trapping of the TK-TPP intermediate. After electrode characterization, the enzyme loading, electrochemical protocol, and substrate concentration were optimized. Finally, 96 electrochemical assays could be performed in parallel in only 7 min, which allows a rapid screening of TK inhibitors. Then, 1360 molecules of an in-house chemical library were screened and one early lead compound was identified to inhibit TK from E. coli with an IC50 of 63 μM and an inhibition constant ( KI) of 3.4 μM. The electrochemical assay was also used to propose an inhibition mechanism.
Collapse
Affiliation(s)
- Chloé M G Aymard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Matilte Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Arnaud Comte
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Christine Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Vanessa Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Franck Charmantray
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Loïc J Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| |
Collapse
|
14
|
A high-throughput pH-based colorimetric assay: application focus on alpha/beta hydrolases. Anal Biochem 2018; 549:80-90. [DOI: 10.1016/j.ab.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022]
|
15
|
Phillips RS, Poteh P, Miller KA, Hoover TR. STM2360 encodes a d-ornithine/d-lysine decarboxylase in Salmonella enterica serovar typhimurium. Arch Biochem Biophys 2017; 634:83-87. [PMID: 29024617 DOI: 10.1016/j.abb.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 11/27/2022]
Abstract
STM2360 is a gene located in a small operon of undetermined function in Salmonella enterica serovar Typhimurium LT2. The amino acid sequence of STM2360 shows significant similarity (∼30% identity) to diaminopimelate decarboxylase (DapDC), a Fold III pyridoxal-5'-phosphate (PLP) dependent enzyme involved in l-lysine biosynthesis. We have found that the protein coded by STM2360 has a previously undocumented catalytic activity, d-ornithine/d-lysine decarboxylase (DOKDC). The reaction products, cadaverine and putrescine, respectively, were identified by NMR and mass spectrometry. The substrate specificity of DOKDC is d-Lysine > d-Ornithine. This is the first pyridoxal-5'-phosphate dependent decarboxylase identified to act on d-amino acids. STM2358, located in the same operon, has ornithine racemase activity. This suggests that the physiological substrate of the decarboxylase and the operon is ornithine. Homologs of STM2360 with high sequence identity (>80%) are found in other common enterobacteria, including species of Klebsiella, Citrobacter, Vibrio and Hafnia, as well as Clostridium in the Firmicutes, and Pseudomonas.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Pafe Poteh
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Katherine A Miller
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Peng T, Nagy G, Trinidad JC, Jackson JM, Pohl NLB. A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases. Chembiochem 2017; 18:2306-2311. [PMID: 28960712 DOI: 10.1002/cbic.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/10/2022]
Abstract
The most commonly employed glycosidase assays rely on bulky ultraviolet or fluorescent tags at the anomeric position in potential carbohydrate substrates, thereby limiting the utility of these assays for broad substrate characterization. Here we report a qualitative mass spectrometry-based glycosidase assay amenable to high-throughput screening for the identification of the biochemical functions of putative glycosidases. The assay utilizes a library of methyl glycosides and is demonstrated on a high-throughput robotic liquid handling system for enzyme substrate screening. Identification of glycosidase biochemical function is achieved through the observation of an appropriate decrease in mass between a potential sugar substrate and its corresponding product by electrospray ionization mass spectrometry (ESI-MS). In addition to screening known glycosidases, the assay was demonstrated to characterize the biochemical function and enzyme substrate competency of the recombinantly expressed product of a putative glycosidase gene from the thermophilic bacterium Thermus thermophilus.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Joy Marie Jackson
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|
17
|
Saravanan T, Junker S, Kickstein M, Hein S, Link MK, Ranglack J, Witt S, Lorillière M, Hecquet L, Fessner WD. Donor-Promiskuität einer thermostabilen Transketolase durch gelenkte Evolution - effektive Komplementierung der 1-Desoxy-d
- xylulose-5-phosphat-Synthase-Aktivität. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Michael Kickstein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Sascha Hein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Marie-Kristin Link
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Jan Ranglack
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Samantha Witt
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Marion Lorillière
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, CNRS UMR 6296, ICCF; BP10448 63177 Aubière Frankreich
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, CNRS UMR 6296, ICCF; BP10448 63177 Aubière Frankreich
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
18
|
Saravanan T, Junker S, Kickstein M, Hein S, Link MK, Ranglack J, Witt S, Lorillière M, Hecquet L, Fessner WD. Donor Promiscuity of a Thermostable Transketolase by Directed Evolution: Efficient Complementation of 1-Deoxy-d
-xylulose-5-phosphate Synthase Activity. Angew Chem Int Ed Engl 2017; 56:5358-5362. [DOI: 10.1002/anie.201701169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Michael Kickstein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Sascha Hein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Marie-Kristin Link
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Jan Ranglack
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Samantha Witt
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Marion Lorillière
- Université Clermont Auvergne; CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-; 63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne; CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-; 63000 Clermont-Ferrand France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
19
|
Gruber P, Marques MP, Sulzer P, Wohlgemuth R, Mayr T, Baganz F, Szita N. Real-time pH monitoring of industrially relevant enzymatic reactions in a microfluidic side-entry reactor (μSER) shows potential for pH control. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering; University College London; Gordon Street London UK
| | - Marco P.C. Marques
- Department of Biochemical Engineering; University College London; Gordon Street London UK
| | - Philipp Sulzer
- Institute of Analytical Chemistry and Food Chemistry; Graz University of Technology; Graz Austria
| | - Roland Wohlgemuth
- Member of Merck Group; Sigma-Aldrich; Member of Merck Group; Buchs Switzerland
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry; Graz University of Technology; Graz Austria
| | - Frank Baganz
- Institute of Analytical Chemistry and Food Chemistry; Graz University of Technology; Graz Austria
| | - Nicolas Szita
- Department of Biochemical Engineering; University College London; Gordon Street London UK
| |
Collapse
|
20
|
Zhou C, Saravanan T, Lorillière M, Wei D, Charmantray F, Hecquet L, Fessner WD, Yi D. Second-Generation Engineering of a Thermostable Transketolase (TKGst) for Aliphatic Aldehyde Acceptors with Either Improved or Reversed Stereoselectivity. Chembiochem 2017; 18:455-459. [DOI: 10.1002/cbic.201600609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Chaoqiang Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Meilong Road 130 200237 Shanghai P.R. China
| | - Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Marion Lorillière
- Université Blaise Pascal ou Université Clermont Auvergne; Institut de Chimie de Clermont-Ferrand; B. P. 10448 63000 Clermont-Ferrand France
- CNRS; UMR 6296; ICCF; 63177 Aubière France
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Meilong Road 130 200237 Shanghai P.R. China
| | - Franck Charmantray
- Université Blaise Pascal ou Université Clermont Auvergne; Institut de Chimie de Clermont-Ferrand; B. P. 10448 63000 Clermont-Ferrand France
- CNRS; UMR 6296; ICCF; 63177 Aubière France
| | - Laurence Hecquet
- Université Blaise Pascal ou Université Clermont Auvergne; Institut de Chimie de Clermont-Ferrand; B. P. 10448 63000 Clermont-Ferrand France
- CNRS; UMR 6296; ICCF; 63177 Aubière France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Dong Yi
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Meilong Road 130 200237 Shanghai P.R. China
| |
Collapse
|
21
|
Pinsolle A, Charmantray F, Hecquet L, Sarrazin F. Droplet millifluidics for kinetic study of transketolase. BIOMICROFLUIDICS 2016; 10:064103. [PMID: 27917251 PMCID: PMC5106428 DOI: 10.1063/1.4966619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
We present a continuous-flow reactor at the millifluidic scale coupled with an online, non-intrusive spectroscopic monitoring method for determining the kinetic parameters of an enzyme, transketolase (TK) used in biocatalysis for the synthesis of polyols by carboligation. The millifluidic system used is based on droplet flow, a well-established method for kinetic chemical data acquisition. The TK assay is based on the direct quantitative measurement of bicarbonate ions released during the transketolase-catalysed reaction in the presence of hydroxypyruvic acid as the donor, thanks to an irreversible reaction: bicarbonate ions react with phosphoenolpyruvate (PEP) in the presence of PEP carboxylase as the first auxiliary enzyme. The oxaloacetate formed is reduced to malate by NADH in the reaction catalysed by malate dehydrogenase as the second auxiliary enzyme. The extent of oxidation of NADH was measured by spectrophotometry at 340 nm. This system gives a direct, quantitative, generic method to evaluate the TK activity versus different substrates. We demonstrate the accuracy of this strategy to determine the enzymatic kinetic parameters and to study the substrate specificity of a thermostable TK from thermophilic microorganism Geobacillus stearothermophilus, offering promising prospects in biocatalysis. Millifluidic systems are useful in this regard as they can be used to rapidly evaluate the TK activity towards various substrates, and also different sets of conditions, identifying the optimal operating environment while minimizing resource consumption and ensuring high control over the operating conditions.
Collapse
Affiliation(s)
- A Pinsolle
- Laboratory of the Future (LOF) , SOLVAY/CNRS UMR 5258, 178 avenue du Docteur Schweitzer, F-33608 Pessac Cedex, France
| | | | | | - F Sarrazin
- Laboratory of the Future (LOF) , SOLVAY/CNRS UMR 5258, 178 avenue du Docteur Schweitzer, F-33608 Pessac Cedex, France
| |
Collapse
|
22
|
Giovannini PP, Bortolini O, Massi A. Thiamine-Diphosphate-Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoin-Type Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| |
Collapse
|
23
|
Richter C, Berndt F, Kunde T, Mahrwald R. Decarboxylative Cascade Reactions of Dihydroxyfumaric Acid: A Preparative Approach to the Glyoxylate Scenario. Org Lett 2016; 18:2950-3. [DOI: 10.1021/acs.orglett.6b01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Celin Richter
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Falko Berndt
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Tom Kunde
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| |
Collapse
|
24
|
Bubner P, Czabany T, Luley-Goedl C, Nidetzky B. Comparison of broad-scope assays of nucleotide sugar-dependent glycosyltransferases. Anal Biochem 2015; 490:46-51. [PMID: 26297818 DOI: 10.1016/j.ab.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GTs) are abundant in nature and diverse in their range of substrates. Application of GTs is, however, often complicated by their narrow substrate specificity. GTs with tailored specificities are highly demanded for targeted glycosylation reactions. Engineering of such GTs is, however, restricted by lack of practical and broad-scope assays currently available. Here we present an improvement of an inexpensive and simple assay that relies on the enzymatic detection of inorganic phosphate cleaved from nucleoside phosphate products released in GT reactions. This phosphatase-coupled assay (PCA) is compared with other GT assays: a pH shift assay and a commercially available immunoassay in Escherichia coli cell-free extract (CE). Furthermore, we probe PCA with three GTs with different specificities. Our results demonstrate that PCA is a versatile and apparently general GT assay with a detection limit as low as 1 mU. The detection limit of the pH shift assay is roughly 4 times higher. The immunoassay, by contrast, detected only nucleoside diphosphates (NDPs) but had the lowest detection limit. Compared with these assays, PCA showed superior robustness and, therefore, appears to be a suitable general screening assay for nucleotide sugar-dependent GTs.
Collapse
Affiliation(s)
- Patricia Bubner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | - Christiane Luley-Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria.
| |
Collapse
|
25
|
Abdoul Zabar J, Lorillière M, Yi D, Saravanan T, Devamani T, Nauton L, Charmantray F, Hélaine V, Fessner WD, Hecquet L. Engineering a Thermostable Transketolase for Unnatural Conversion of (2S
)-Hydroxyaldehydes. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Payongsri P, Steadman D, Hailes HC, Dalby PA. Second generation engineering of transketolase for polar aromatic aldehyde substrates. Enzyme Microb Technol 2015; 71:45-52. [DOI: 10.1016/j.enzmictec.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
27
|
Yi D, Saravanan T, Devamani T, Charmantray F, Hecquet L, Fessner WD. A thermostable transketolase evolved for aliphatic aldehyde acceptors. Chem Commun (Camb) 2015; 51:480-3. [DOI: 10.1039/c4cc08436e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed evolution of a thermostable transketolase yields catalysts with significant improvement in activity, enantioselectivity and substrate scope.
Collapse
Affiliation(s)
- Dong Yi
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Titu Devamani
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Franck Charmantray
- Clermont Université
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- CNRS UMR 6296
- ICCF
| | - Laurence Hecquet
- Clermont Université
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- CNRS UMR 6296
- ICCF
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
28
|
Huang W, Diallo AK, Dailey JL, Besar K, Katz HE. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. JOURNAL OF MATERIALS CHEMISTRY. C 2015; 3:6445-6470. [PMID: 29238595 PMCID: PMC5724786 DOI: 10.1039/c5tc00755k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Abdou Karim Diallo
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Jennifer L Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Kalpana Besar
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| |
Collapse
|
29
|
An efficient amperometric transketolase assay: Towards inhibitor screening. Biosens Bioelectron 2014; 62:90-6. [DOI: 10.1016/j.bios.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/16/2014] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
|
30
|
Lawrence J, O'Sullivan B, Lye GJ, Wohlgemuth R, Szita N. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase. JOURNAL OF MOLECULAR CATALYSIS. B, ENZYMATIC 2013; 95:111-117. [PMID: 24187515 PMCID: PMC3724052 DOI: 10.1016/j.molcatb.2013.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 11/14/2022]
Abstract
Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor.
Collapse
Affiliation(s)
- James Lawrence
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Brian O'Sullivan
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Gary J. Lye
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
31
|
Hailes HC, Rother D, Müller M, Westphal R, Ward JM, Pleiss J, Vogel C, Pohl M. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J 2013; 280:6374-94. [DOI: 10.1111/febs.12496] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Helen C. Hailes
- Department of Chemistry; Christopher Ingold Laboratories; University College London; UK
| | - Dörte Rother
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Germany
| | | | - John M. Ward
- Department of Biochemical Engineering; University College London; UK
| | - Jürgen Pleiss
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Constantin Vogel
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Martina Pohl
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| |
Collapse
|
32
|
|
33
|
Müller M, Sprenger GA, Pohl M. CC bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 2013; 17:261-70. [PMID: 23523314 DOI: 10.1016/j.cbpa.2013.02.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
The present review summarizes recent achievements in enzymatic thiamine catalysis during the past three years. With well-established enzymes such as BAL, PDC and TK new reactions have been identified and respective variants were prepared, which enable access to stereoisomeric products. Further we highlight recent progress with 'new' ThDP-dependent enzymes like MenD and PigD, which catalyze the Stetter-like 1,4 addition of aldehydes and YerE, which is the first known ThDP-dependent enzyme accepting ketones as acceptors.
Collapse
Affiliation(s)
- Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
34
|
|
35
|
Abdoul-Zabar J, Sorel I, Hélaine V, Charmantray F, Devamani T, Yi D, de Berardinis V, Louis D, Marlière P, Fessner WD, Hecquet L. Thermostable Transketolase fromGeobacillus stearothermophilus:Characterization and Catalytic Properties. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|