1
|
Ninck S, Klaus T, Kochetkova TV, Esser SP, Sewald L, Kaschani F, Bräsen C, Probst AJ, Kublanov IV, Siebers B, Kaiser M. Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities. ENVIRONMENTAL MICROBIOME 2024; 19:36. [PMID: 38831353 PMCID: PMC11145796 DOI: 10.1186/s40793-024-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging. RESULTS Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia. CONCLUSIONS By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Ninck
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.
| | - Thomas Klaus
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Tatiana V Kochetkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60-Let Oktyabrya 7-2, Moscow, 117312, Russia
| | - Sarah P Esser
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Leonard Sewald
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
- Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60-Let Oktyabrya 7-2, Moscow, 117312, Russia
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany.
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.
| |
Collapse
|
2
|
Chen X, Tian J, Zhao C, Wu Y, Li J, Ji Z, Lian D, Jia Z, Chen X, Zhou Z, Zhu B, Hua Z. Resveratrol, a novel inhibitor of fatty acid binding protein 5, inhibits cervical cancer metastasis by suppressing fatty acid transport into nucleus and downstream pathways. Br J Pharmacol 2024; 181:1614-1634. [PMID: 38158217 DOI: 10.1111/bph.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Because of cervical cancer (CC) metastasis, the prognosis of diagnosed patients is poor. However, the molecular mechanisms and therapeutic approach for metastatic CC remain elusive. EXPERIMENTAL APPROACH In this study, we first evaluated the effect of resveratrol (RSV) on CC cell migration and metastasis. Via an activity-based protein profiling (ABPP) approach, a photoaffinity probe of RSV (RSV-P) was synthesized, and the protein targets of RSV in HeLa cells were identified. Based on target information and subsequent in vivo and in vitro validation experiments, we finally elucidated the mechanism of RSV corresponding to its antimetastatic activity. KEY RESULTS The results showed that RSV concentration-dependently suppressed CC cell migration and metastasis. A list of proteins was identified as the targets of RSV, through the ABPP approach with RSV-P, among which fatty acid binding protein 5 (FABP5) attracted our attention based on The Cancer Genome Atlas (TCGA) database analysis. Subsequent knockout and overexpression experiments confirmed that RSV directly interacted with FABP5 to inhibit fatty acid transport into the nucleus, thereby suppressing downstream matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) expression, thus inhibiting CC metastasis. CONCLUSIONS AND IMPLICATIONS Our study confirmed the key role of FABP5 in CC metastasis and provided important target information for the design of therapeutic lead compounds for metastatic CC.
Collapse
Affiliation(s)
- Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunyuan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanhui Wu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zehan Ji
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Danchen Lian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhibo Jia
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Xingyu Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixin Zhou
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L. Application of PROTACs in Target Identification and Target Validation. ACTA MATERIA MEDICA 2024; 3:72-87. [PMID: 39373008 PMCID: PMC11452161 DOI: 10.15212/amm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PROTAC, as a novel therapeutic drug model, has received widespread attention from the academic and pharmaceutical industries. At the same time, PROTAC technology has led many researchers to focus on developing chemical biology tool properties due to its unique operating mechanism and protein dynamic regulatory properties. In recent years, the rapid development of PROTAC technology has gradually made it an essential tool for target identification and target validation. To further promote the application of PROTAC tools in drug discovery and basic medical sciences research, this review distinguished between target identification and target validation concepts. It summarized the research progress of PROTAC technology in these aspects.
Collapse
Affiliation(s)
- Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Wang
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
4
|
Porta EOJ. Mapping the Evolution of Activity-Based Protein Profiling: A Bibliometric Review. Adv Pharm Bull 2023; 13:639-645. [PMID: 38022804 PMCID: PMC10676541 DOI: 10.34172/apb.2023.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Activity-based protein profiling (ABPP) is a chemoproteomic approach that employs small-molecule probes to directly evaluate protein functionality within complex proteomes. This technology has proven to be a potent strategy for mapping ligandable sites in organisms and has significantly impacted drug discovery processes by enabling the development of highly selective small-molecule inhibitors and the identification of new therapeutic molecular targets. Despite being nearly a quarter of a century old as a chemoproteomic tool, ABPP has yet to undergo a bibliometric analysis. In order to gauge its scholarly impact and evolution, a bibliometric analysis was performed, comparing all 1919 reported articles with the articles published in the last five years. Through a comprehensive data analysis, including a 5-step workflow, the most influential articles were identified, and their bibliometric parameters were determined. The 1919 analyzed articles span from 1999 to 2022, providing a comprehensive overview of the historical and current state of ABPP research. This analysis presents, for the first time, the characteristics of the most influential ABPP articles, offering valuable insight into the research conducted in this field and its potential future directions. The findings underscore the crucial role of ABPP in drug discovery and novel therapeutic target identification, as well as the need for continued advancements in the development of novel chemical probes and proteomic technologies to further expand the utility of ABPP.
Collapse
|
5
|
McGary LC, Regan GL, Bearne SL. Reactive architecture profiling with a methyl acyl phosphate electrophile. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140945. [PMID: 37536394 DOI: 10.1016/j.bbapap.2023.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Activity-based protein profiling has facilitated the study of the activity of enzymes in proteomes, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of Paucimonas lemoignei with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate dehydrogenase (PlHBDH) and CTP synthase (E. coli orthologue, EcCTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of PlHBDH. MHP and MAP modified numerous residues of EcCTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gemma L Regan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
6
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
7
|
Yang J, Korovesis D, Ji S, Kahler JP, Vanhoutte R, Verhelst SHL. Efficient Synthesis of an Alkyne Fluorophosphonate Activity‐Based Probe and Applications in Dual Colour Serine Hydrolase Labelling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jian Yang
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
| | - Dimitris Korovesis
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
| | - Shanping Ji
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
| | - Jan Pascal Kahler
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
| | - Roeland Vanhoutte
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
| | - Steven H. L. Verhelst
- Department of Cellular and Molecular Medicine KU Leuven – University of Leuven Herestraat 49, box 901b 3000 Leuven Belgium
- Leibniz Institut für Analytische Wissenschaften – ISAS – e.V. Otto-Hahn Strasse 6b 44227 Dortmund Germany
| |
Collapse
|
8
|
Krammer L, Breinbauer R. Activity‐Based Protein Profiling of Oxidases and Reductases. Isr J Chem 2023. [DOI: 10.1002/ijch.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
- BIOTECHMED Graz A-8010 Graz Austria
| |
Collapse
|
9
|
He T, Cui PL, Liu J, Feng C, Wang JP. Production of a Natural Dihydropteroate Synthase and Development of a Signal-Amplified Pseudo-Immunoassay for the Determination of Sulfonamides in Pork. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3023-3032. [PMID: 35225617 DOI: 10.1021/acs.jafc.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a type of magnetic photoaffinity-labeled activity-based protein profiling probe for sulfonamide drugs was first synthesized for the purpose of capturing the natural dihydropteroate synthase of Escherichia coli by using simple incubation and magnetic separation. After characterization of its identity with LC-ESI-MS/MS, this enzyme was used as a recognition reagent to develop a direct competitive pseudo-ELISA for the determination of the residues of 40 sulfonamides in pork. Because of the use of streptavidin-horseradish peroxidase and biotinylated horseradish peroxidase as a signal-amplified system, the limits of detection for the 40 drugs were in the range of 0.001-0.016 ng/mL. Compared to the steps in a conventional assay formation, the operation steps were the same, but the sensitivities increased 32-88-fold. Furthermore, the assay performances were better than the previously reported immunoassays performances for sulfonamides. Therefore, this method could be used as a practical tool for multiscreening the trace levels of sulfonamides residues in food samples.
Collapse
Affiliation(s)
- Tong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Peng Lei Cui
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Cheng Feng
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei 071000, China
| |
Collapse
|
10
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
11
|
Xia WQ, Cui PL, Wang JP, Liu J. Synthesis of photoaffinity labeled activity-based protein profiling probe and production of natural TetR protein for immunoassay of tetracyclines in milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Bhukta S, Gopinath P, Dandela R. Target identification of anticancer natural products using a chemical proteomics approach. RSC Adv 2021; 11:27950-27964. [PMID: 35480761 PMCID: PMC9038044 DOI: 10.1039/d1ra04283a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a strong demand worldwide for the identification and development of potential anticancer drugs based on natural products. Natural products have been explored for their diverse biological and therapeutic applications from ancient time. In order to enhance the efficacy and selectivity and to minimize the undesired side effects of anti cancer natural products (ANPs), it is essential to understand their target proteins and their mechanistic pathway. Chemical proteomics is one of the most powerful tools to connect ANP target identification and quantification where labeling and non-labeling based approaches have been used. Herein, we have discussed the various strategies to systemically develop selective ANP based chemical probes to characterise their specific and non-specific target proteins using a chemical proteomic approach in various cancer cell lysates.
Collapse
Affiliation(s)
- Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| |
Collapse
|
13
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shoichi Hosoya
- Institute of Research Tokyo Medical and Dental University 1-5-45, Yushima, Bunkyo-ku Tokyo 113-8510 Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| |
Collapse
|
14
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021; 60:17080-17087. [PMID: 34060195 DOI: 10.1002/anie.202104347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Collapse
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
15
|
Soto-Acosta R, Jung E, Qiu L, Wilson DJ, Geraghty RJ, Chen L. 4,7-Disubstituted 7 H-Pyrrolo[2,3-d]pyrimidines and Their Analogs as Antiviral Agents against Zika Virus. Molecules 2021; 26:molecules26133779. [PMID: 34206327 PMCID: PMC8270260 DOI: 10.3390/molecules26133779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Discovery of compound 1 as a Zika virus (ZIKV) inhibitor has prompted us to investigate its 7H-pyrrolo[2,3-d]pyrimidine scaffold, revealing structural features that elicit antiviral activity. Furthermore, we have demonstrated that 9H-purine or 1H-pyrazolo[3,4-d]pyrimidine can serve as an alternative core structure. Overall, we have identified 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs including compounds 1, 8 and 11 as promising antiviral agents against flaviviruses ZIKV and dengue virus (DENV). While the molecular target of these compounds is yet to be elucidated, 4,7-disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs are new chemotypes in the design of small molecules against flaviviruses, an important group of human pathogens.
Collapse
|
16
|
Li X, Chandra D, Letarte S, Adam GC, Welch J, Yang RS, Rivera S, Bodea S, Dow A, Chi A, Strulson CA, Richardson DD. Profiling Active Enzymes for Polysorbate Degradation in Biotherapeutics by Activity-Based Protein Profiling. Anal Chem 2021; 93:8161-8169. [PMID: 34032423 DOI: 10.1021/acs.analchem.1c00042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polysorbate is widely used to maintain stability of biotherapeutic proteins in pharmaceutical formulation development. Degradation of polysorbate can lead to particle formation in drug products, which is a major quality concern and potential patient risk factor. Enzymatic activity from residual host cell enzymes such as lipases and esterases plays a major role for polysorbate degradation. Their high activity, often at very low concentration, constitutes a major analytical challenge in the biopharmaceutical industry. In this study, we evaluated and optimized the activity-based protein profiling (ABPP) approach to identify active enzymes responsible for polysorbate degradation. Using an optimized chemical probe, we established the first global profile of active serine hydrolases in harvested cell culture fluid (HCCF) for monoclonal antibodies (mAbs) production from two Chinese hamster ovary (CHO) cell lines. A total of eight known lipases were identified by ABPP with enzyme activity information, while only five lipases were identified by a traditional abundance-based proteomics (TABP) approach. Interestingly, phospholipase B-like 2 (PLBL2), a well-known problematic HCP was not found to be active in process-intermediates from two different mAbs. In a proof-of-concept study with downstream samples, phospholipase A2 group VII (PLA2G7) was only identified by ABPP and confirmed to contribute to polysorbate-80 degradation for the first time. The established ABBP approach is approved to be able to identify low-abundance host cell enzymes and fills the gap between lipase abundance and activity, which enables more meaningful polysorbate degradation investigations for biotherapeutic development.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Divya Chandra
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Simon Letarte
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gregory C Adam
- Quantitative Biosciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jonathan Welch
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Rong-Sheng Yang
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Shannon Rivera
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Smaranda Bodea
- Chemical Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Alex Dow
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - An Chi
- Chemical Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Christopher A Strulson
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
17
|
Fuerst R, Breinbauer R. Activity-Based Protein Profiling (ABPP) of Oxidoreductases. Chembiochem 2021; 22:630-638. [PMID: 32881211 PMCID: PMC7894341 DOI: 10.1002/cbic.202000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Over the last two decades, activity-based protein profiling (ABPP) has been established as a tremendously useful proteomic tool for measuring the activity of proteins in their cellular context, annotating the function of uncharacterized proteins, and investigating the target profile of small-molecule inhibitors. Unlike hydrolases and other enzyme classes, which exhibit a characteristic nucleophilic residue, oxidoreductases have received much less attention in ABPP. In this minireview, the state of the art of ABPP of oxidoreductases is described and the scope and limitations of the existing approaches are discussed. It is noted that several ABPP probes have been described for various oxidases, but none so far for a reductase, which gives rise to opportunities for future research.
Collapse
Affiliation(s)
- Rita Fuerst
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
- BIOTECHMEDGrazAustria
| |
Collapse
|
18
|
Abstract
Volatolomics allows us to elucidate cell metabolic processes in real time. In particular, a volatile organic compound (VOC) excreted from our bodies may be specific for a certain disease, such that measuring this VOC may afford a simple, fast, accessible and safe diagnostic approach. Yet, finding the optimal endogenous volatile marker specific to a pathology is non-trivial because of interlaboratory disparities in sample preparation and analysis, as well as high interindividual variability. These limit the sensitivity and specificity of volatolomics and its applications in biological and clinical fields but have motivated the development of induced volatolomics. This approach aims to overcome issues by measuring VOCs that result not from an endogenous metabolite but, rather, from the pathogen-specific or metabolic-specific enzymatic metabolism of an exogenous biological or chemical probe. In this Review, we introduce volatile-compound-based probes and discuss how they can be exploited to detect and discriminate pathogenic infections, to assess organ function and to diagnose and monitor cancers in real time. We focus on cases in which labelled probes have informed us about metabolic processes and consider the potential and drawbacks of the probes for clinical trials. Beyond diagnostics, VOC-based probes may also be effective tools to explore biological processes more generally.
Collapse
|
19
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
20
|
Benns HJ, Wincott CJ, Tate EW, Child MA. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery. Curr Opin Chem Biol 2020; 60:20-29. [PMID: 32768892 DOI: 10.1016/j.cbpa.2020.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Activity-based protein profiling (ABPP) is recognized as a powerful and versatile chemoproteomic technology in drug discovery. Central to ABPP is the use of activity-based probes to report the activity of specific enzymes or reactivity of amino acid types in complex biological systems. Over the last two decades, ABPP has facilitated the identification of new drug targets and discovery of lead compounds in human and infectious disease. Furthermore, as part of a sustained global effort to illuminate the druggable proteome, the repertoire of target classes addressable with activity-based probes has vastly expanded in recent years. Here, we provide an overview of ABPP and summarise the major technological advances with an emphasis on probe development.
Collapse
Affiliation(s)
- Henry James Benns
- Department of Life Sciences, London, UK; Department of Chemistry, Imperial College London, London, UK
| | | | | | | |
Collapse
|
21
|
Discovery of small-molecule enzyme activators by activity-based protein profiling. Nat Chem Biol 2020; 16:997-1005. [PMID: 32514184 PMCID: PMC7442688 DOI: 10.1038/s41589-020-0555-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Activity-based protein profiling (ABPP) has been used extensively to discover and optimize selective inhibitors of enzymes. Here, we show that ABPP can also be implemented to identify the converse – small-molecule enzyme activators. Using a kinetically controlled, fluorescence polarization-ABPP assay, we identify compounds that stimulate the activity of LYPLAL1 – a poorly characterized serine hydrolase with complex genetic links to human metabolic traits. We apply ABPP-guided medicinal chemistry to advance a lead into a selective LYPLAL1 activator suitable for use in vivo. Structural simulations coupled to mutational, biochemical, and biophysical analyses indicate that this compound increases LYPLAL1’s catalytic activity likely by enhancing the efficiency of the catalytic triad charge-relay system. Treatment with this LYPLAL1 activator confers beneficial effects in a mouse model of diet-induced obesity. These findings reveal a new mode of pharmacological regulation for this large enzyme family and suggest that ABPP may aid discovery of activators for additional enzyme classes.
Collapse
|
22
|
Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020; 5:72. [PMID: 32435053 PMCID: PMC7239890 DOI: 10.1038/s41392-020-0186-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yutong Wang
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Tian
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yurou Shao
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Zhu
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Zhen Liang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
23
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Deng H, Lei Q, Wu Y, He Y, Li W. Activity-based protein profiling: Recent advances in medicinal chemistry. Eur J Med Chem 2020; 191:112151. [PMID: 32109778 DOI: 10.1016/j.ejmech.2020.112151] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023]
Abstract
Activity-based protein profiling (ABPP) has become an emerging chemical proteomic approach to illustrate the interaction mechanisms between compounds and proteins. This approach has combined organic synthesis, biochemistry, cell biology, biophysics and bioinformatics to accelerate the process of drug discovery in target identification and validation, as well as in the stage of lead discovery and optimization. This review will summarize new developments and applications of ABPP in medicinal chemistry. Here, we mainly described the design principles of activity-base probes (ABPs) and general workflows of ABPP approach. Moreover, we discussed various basic and advanced ABPP strategies and their applications in medicinal chemistry, including competitive and comparative ABPP, two-step ABPP, fluorescence polarization ABPP (FluoPol-ABPP) and ABPs for visualization. In conclusion, this review will give a general overview of the applications of ABPP as a powerful and efficient technique in medicinal chemistry.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
25
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
26
|
Xin BT, Espinal C, de Bruin G, Filippov DV, van der Marel GA, Florea BI, Overkleeft HS. Two-Step Bioorthogonal Activity-Based Protein Profiling of Individual Human Proteasome Catalytic Sites. Chembiochem 2020; 21:248-255. [PMID: 31597011 DOI: 10.1002/cbic.201900551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry allows the selective modification of biomolecules in complex biological samples. One application of this methodology is in two-step activity-based protein profiling (ABPP), a methodology that is particularly attractive where direct ABPP using fluorescent or biotinylated probes is ineffective. Herein we describe a set of norbornene-modified, mechanism-based proteasome inhibitors aimed to be selective for each of the six catalytic sites of human constitutive proteasomes and immunoproteasomes. The probes developed for β1i, β2i, β5c, and β5i proved to be useful two-step ABPs that effectively label their developed proteasome subunits in both Raji cell extracts and living Raji cells through inverse-electron-demand Diels-Alder (iEDDA) ligation. The compound developed for β1c proved incapable of penetrating the cell membrane, but effectively labels β1c in vitro. The compound developed for β2c proved not selective, but its azide-containing analogue LU-002c proved effective in labeling of β2c via azide-alkyne click ligation chemistry both in vitro and in situ. In total, our results contribute to the growing list of proteasome activity tools to include five subunit-selective activity-based proteasome probes, four of which report on proteasome activities in living cells.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Present address, Acerta Pharma B.V., Industrielaan 63, 5349 AE, Oss, The Netherlands
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
27
|
Ma N, Zhang ZM, Lee JS, Cheng K, Lin L, Zhang DM, Hao P, Ding K, Ye WC, Li Z. Affinity-Based Protein Profiling Reveals Cellular Targets of Photoreactive Anticancer Inhibitors. ACS Chem Biol 2019; 14:2546-2552. [PMID: 31742988 DOI: 10.1021/acschembio.9b00784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Affinity-based protein profiling has proven to be a powerful method in target identification of bioactive molecules. Here, this technology was applied in two photoreactive anticancer inhibitors, arenobufagin and HM30181. Using UV irradiation, these photoreactive reagents can covalently cross-link to target proteins, leading to a covalent binding with target proteins. Moreover, the cellular on/off targets of these two molecules, including ATP1A1, MDR1, PARP1, DDX5, NOP2, RAB6A, and ERGIC1 were first identified by affinity-based protein profiling and bioimaging approaches. The protein hit, PARP1, was further validated to be involved in the function of the anticancer effects.
Collapse
Affiliation(s)
- Nan Ma
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
| | - Ke Cheng
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Dong-Mei Zhang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Ding
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wen-Cai Ye
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine, Modernization and Innovative Drug Development Ministry of Education (MOE) of People’s Republic of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
28
|
Muytjens CMJ, Yu Y, Diamandis EP. Functional proteomic profiling reveals KLK13 and TMPRSS11D as active proteases in the lower female reproductive tract. F1000Res 2019; 7:1666. [PMID: 30647911 PMCID: PMC6329257 DOI: 10.12688/f1000research.16255.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Cervical-vaginal fluid (CVF) hydrates the mucosa of the lower female reproductive tract and is known to contain numerous proteases. The low pH of CVF (4.5 or below in healthy women of reproductive age) is a uniquely human attribute and poses a challenge for the proteolytic functioning of the proteases identified in this complex biological fluid. Despite the abundance of certain proteases in CVF, the proteolytic activity and function of proteases in CVF is not well characterized. Methods: In the present study, we employed fluorogenic substrate screening to investigate the influence of pH and inhibitory compounds on the proteolytic activity in CVF. Activity-based probe (ABP) proteomics has evolved as a powerful tool to investigate active proteases within complex proteomes and a trypsin-specific ABP was used to identify active proteases in CVF. Results: Serine proteases are among the most abundant proteins in the CVF proteome. Labeling human CVF samples with the trypsin-specific ABP revealed serine proteases transmembrane protein serine 11D and kallikrein-related peptidase 13 as active proteases in CVF. Furthermore, we demonstrated that the proteolytic activity in CVF is highly pH-dependent with an almost absolute inhibition of trypsin-like proteolytic activity at physiological pH levels. Conclusions: These findings provide a framework to understand proteolytic activity in CVF. Furthermore, the present results provide clues for a novel regulatory mechanism in which fluctuations in CVF pH have the potential to control the catalytic activity in the lower female reproductive tract.
Collapse
Affiliation(s)
- Carla M J Muytjens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada
| | - Yijing Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Canada, Toronto, Canada
| |
Collapse
|
29
|
Masuda M, Matsuo K, Hamachi I. Ligand-Directed N-Sulfonyl Pyridone Chemistry for Selective Native Protein Labeling and Imaging in Live Cell. Methods Mol Biol 2019; 2008:203-224. [PMID: 31124099 DOI: 10.1007/978-1-4939-9537-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Advances in biocompatible organic chemistry applicable for endogenous protein modification under live-cell conditions have been longed as these can produce an important tool for the elucidation of a variety of biological phenomena. However, there are still various obstacles to be overcome, such as the limited repertories of the reaction modes, the slow reaction kinetics, and the insufficient specificity for endogenous protein modification. We have recently reported a new type of affinity-based labeling technique termed ligand-directed (LD) chemistry that does not need any genetic manipulation, which shows a sharp contrast with other strategies including peptide/enzyme-tag methods or bioorthogonal chemistry-based methods. Here we describe the general principles of LD chemistry using N-sulfonyl pyridone (SP) as a new reactive group (LDSP chemistry) that allows for endogenous protein sulfonylation with the higher labeling rate and specificity, relative to our previously reported LD chemistry on the surface of and the inside of live cells. The detailed protocols of LDSP chemistry for carbonic anhydrase labeling and imaging in vitro and in living cells are explained.
Collapse
Affiliation(s)
- Marie Masuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Matsuo
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. .,Japan Science and Technology Agency (JST), ERATO, Tokyo, Japan.
| |
Collapse
|
30
|
Ying S, Du S, Dong J, Ng BX, Zhang C, Li L, Ge J, Zhu Q. Intracellular effects of prodrug-like wortmannin probes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wu G, Cheng B, Qian H, Ma S, Chen Q. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Org Biomol Chem 2019; 17:6854-6859. [DOI: 10.1039/c9ob01264h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global profiling of the target proteins of ART for its anti-inflammatory activity via ABPP combined with quantitative chemical proteomics.
Collapse
Affiliation(s)
- Guolin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Bao Cheng
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
32
|
Jedinak A, Loughlin KR, Moses MA. Approaches to the discovery of non-invasive urinary biomarkers of prostate cancer. Oncotarget 2018; 9:32534-32550. [PMID: 30197761 PMCID: PMC6126692 DOI: 10.18632/oncotarget.25946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. Prostate specific antigen (PSA) measured in blood has been used for decades as an aid for physicians to detect the presence of prostate cancer. However, the PSA test has limited sensitivity and specificity, leading to unnecessary biopsies, overdiagnosis and overtreatment of patients. For these reasons, there is an urgent need for more accurate PCa biomarkers that can detect PCa with high sensitivity and specificity. Urine is a unique source of potential protein biomarkers that can be measured in a non-invasive way. This review comprehensively summarizes state of the art approaches used in the discovery and validation of urinary biomarkers for PCa. Numerous strategies are currently being used in the discovery of urinary biomarkers for prostate cancer including gel-based separation techniques, mass spectrometry, activity-based proteomic assays and software approaches. Antibody-based approaches remain preferred method for validation of candidate biomarkers with rapidly advancing multiplex immunoassays and MS-based targeted approaches. In the last decade, there has been a dramatic acceleration in the development of new techniques and approaches in the discovery of protein biomarkers for prostate cancer including computational, statistical and data mining methods. Many urinary-based protein biomarkers have been identified and have shown significant promise in initial studies. Examples of these potential biomarkers and the methods utilized in their discovery are also discussed in this review.
Collapse
Affiliation(s)
- Andrej Jedinak
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kevin R Loughlin
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Benns HJ, Tate EW, Child MA. Activity-Based Protein Profiling for the Study of Parasite Biology. Curr Top Microbiol Immunol 2018; 420:155-174. [PMID: 30105424 DOI: 10.1007/82_2018_123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
Collapse
Affiliation(s)
- Henry J Benns
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew A Child
- Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
34
|
(-)-Gochnatiolide B, synthesized from dehydrocostuslactone, exhibits potent anti-bladder cancer activity in vitro and in vivo. Sci Rep 2018; 8:8807. [PMID: 29891980 PMCID: PMC5995859 DOI: 10.1038/s41598-018-27036-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
With limited success achieved in bladder cancer patient management, novel agents are in urgent need for the purpose of therapy and prevention. As a sesquiterpenoid dimmer isolated from Gochnatia pomculat, (−)-gochnatiolide B has been bio-mimetically synthesized in multiple steps with a poor yield, which heavily limited the further research and clinical application. Herein, (−)-gochnatiolide B was synthesized beginning with dehydrocostuslactone in four steps with a total yield of 26%. MTT assays showed that (−)-gochnatiolide B inhibited the growth of vast majority of human cancer cells especially bladder cancer cells. Mechanistically, (−)-gochnatiolide B induced the increased expression of pro-apoptotic proteins and the decreased expression of anti-apoptosis proteins and further resulted in apoptosis of T24 cells. (−)-Gochnatiolide B induced G1 arrest which associated with SKP2 downregulation, leading to p27/Kip1 accumulation and downregulation of cyclin D1 in T24 cells. Furthermore, in vivo studies showed that (−)-gochnatiolide B remarkably inhibited tumor growth by 81% compared with vehicle control. Taken together, (−)-gochnatiolide B exhibits inhibitory activity against bladder cancer cells both in vitro and in vivo by inducing apoptosis, which suggests that (−)-gochnatiolide B could be an important candidate compound for prevention and treatment of bladder cancer.
Collapse
|
35
|
Kim D, Jetson RR, Krusemark CJ. A DNA-assisted immunoassay for enzyme activity via a DNA-linked, activity-based probe. Chem Commun (Camb) 2018; 53:9474-9477. [PMID: 28795701 DOI: 10.1039/c7cc05236g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we describe an immunoassay approach for the detection of enzyme activity by quantitative PCR (qPCR) or parallel DNA sequencing which relies on activity-based probes linked to barcoding DNAs. We demonstrate this technique in the detection of serine hydrolase activities using a fluorophosphonate-oligonucleotide conjugate.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
36
|
Abstract
Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.
Collapse
|
37
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
38
|
Abstract
The activity of proteases is tightly regulated, and dysregulation is linked to a variety of human diseases. For this reason, ABPP is a well-suited method to study protease biology and the design of protease probes has pushed the boundaries of ABPP. The development of highly selective protease probes is still a challenging task. After an introduction, the first section of this chapter discusses several strategies to enable detection of a single active protease species. These range from the usage of non-natural amino acids, combination of probes with antibodies, and engineering of the target proteases. A next section describes the different types of detection tags that facilitate the read-out possibilities including various types of imaging methods and mass spectrometry-based target identification. The power of protease ABPP is illustrated by examples for a selected number of proteases. It is expected that some protease probes that have been evaluated in animal models of human disease will find translation into clinical application in the near future.
Collapse
|
39
|
Nakagawa Y, Sawaki Y, Kimura T, Tomura T, Igarashi Y, Ojika M. Quinocidin, a Cytotoxic Antibiotic with an Unusual 3,4-Dihydroquinolizinium Ring and Michael Acceptor Reactivity toward Thiols. Chemistry 2017; 23:17894-17897. [DOI: 10.1002/chem.201704729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Yu Nakagawa
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| | - Yuki Sawaki
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| | - Takahiro Kimura
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| | - Tomohiko Tomura
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center; Toyama Prefectural University; 5180 Kurokawa Imazu Toyama 939-0398 Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
40
|
Zheng YG, Wu XQ, Su J, Jiang P, Xu L, Gao J, Cai B, Ji M. Design and synthesis of a novel photoaffinity probe for labelling EGF receptor tyrosine kinases. J Enzyme Inhib Med Chem 2017; 32:954-959. [PMID: 28718674 PMCID: PMC6009917 DOI: 10.1080/14756366.2017.1344979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and HER2 are two important tyrosine kinases that play crucial roles in signal transduction pathways that regulate numerous cellular functions including proliferation, differentiation, migration, and angiogenesis. In the past 20 years, many proteomic methods have emerged as powerful methods to evaluate proteins in biological processes and human disease states. Among them, activity-based protein profiling (ABPP) is one useful approach for the functional analysis of proteins. In this study, a novel photoaffinity probe 11 was designed and synthesised to assess the target profiling of the reactive group in the photoaffinity probe 11. Biological evaluation was performed, and the results showed that the novel photoaffinity probe binds to EGFR and HER2 proteins and it hits targets by the reactive group.
Collapse
Affiliation(s)
- You-Guang Zheng
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Xiao-Qing Wu
- b Departments of Molecular Biosciences and Radiation Oncology , University of Kansas , Lawrence , KS , USA
| | - Jun Su
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Ping Jiang
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Liang Xu
- b Departments of Molecular Biosciences and Radiation Oncology , University of Kansas , Lawrence , KS , USA
| | - Jian Gao
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Bin Cai
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Min Ji
- c School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| |
Collapse
|
41
|
Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils. J Am Chem Soc 2017; 139:10115-10125. [PMID: 28672107 DOI: 10.1021/jacs.7b04394] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils, the front line defenders against infection, express four serine proteases (NSPs) that play roles in the control of cell-signaling pathways and defense against pathogens and whose imbalance leads to pathological conditions. Dissecting the roles of individual NSPs in humans is problematic because neutrophils are end-stage cells with a short half-life and minimal ongoing protein synthesis. To gain insight into the regulation of NSP activity we have generated a small-molecule chemical toolbox consisting of activity-based probes with different fluorophore-detecting groups with minimal wavelength overlap and highly selective natural and unnatural amino acid recognition sequences. The key feature of these activity-based probes is the ability to use them for simultaneous observation and detection of all four individual NSPs by fluorescence microscopy, a feature never achieved in previous studies. Using these probes we demonstrate uneven distribution of NSPs in neutrophil azurophil granules, such that they seem to be mutually excluded from each other, suggesting the existence of unknown granule-targeting mechanisms.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Yoav Altman
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Maximiliano D'Angelo
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Guy S Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
42
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
43
|
Byrne R, Mund T, Licchesi JDF. Activity-Based Probes for HECT E3 Ubiquitin Ligases. Chembiochem 2017; 18:1415-1427. [PMID: 28425671 PMCID: PMC5575557 DOI: 10.1002/cbic.201700006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Indexed: 01/02/2023]
Abstract
Activity‐based probes (ABPs) have been used to dissect the biochemical/structural properties and cellular functions of deubiquitinases. However, their utility in studying cysteine‐based E3 ubiquitin ligases has been limited. In this study, we evaluate the use of ubiquitin‐ABPs (Ub‐VME and Ub‐PA) and a novel set of E2–Ub‐ABPs on a panel of HECT E3 ubiquitin ligases. Our in vitro data show that ubiquitin‐ABPs can label HECT domains. We also provide the first evidence that, in addition to the RBR E3 ubiquitin ligase Parkin, E2–Ub‐ABPs can also label the catalytic HECT domains of NEDD4, UBE3C, and HECTD1. Importantly, the endogenous proteasomal E3 ligase UBE3C was also successfully labelled by Ub‐PA and His‐UBE2D2–Ub‐ABP in lysate of cells grown under basal conditions. Our findings provide novel insights into the use of ABPs for the study of HECT E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Robert Byrne
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Thomas Mund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Julien D F Licchesi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
44
|
Activity-based protein profiling as a robust method for enzyme identification and screening in extremophilic Archaea. Nat Commun 2017; 8:15352. [PMID: 28480883 PMCID: PMC5424146 DOI: 10.1038/ncomms15352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Archaea are characterized by a unique life style in often environmental extremes but their thorough investigation is currently hampered by a limited set of suitable in vivo research methodologies. Here, we demonstrate that in vivo activity-based protein profiling (ABPP) may be used to sensitively detect either native or heterogeneously expressed active enzymes in living archaea even under these extreme conditions. In combination with the development of a genetically engineered archaeal screening strain, ABPP can furthermore be used in functional enzyme screenings from (meta)genome samples. We anticipate that our ABPP approach may therefore find application in basic archaeal research but also in the discovery of novel enzymes from (meta)genome libraries. Activity-based protein profiling (ABPP) is a chemical proteomics method to profile activity states of enzymes under physiological conditions. Here the authors show that ABPP can be applied to archaeal serine hydrolases in the model organism Sulfolobus acidocaldarius and can be used to identify novel putative serine hydrolases.
Collapse
|
45
|
|
46
|
Pampalakis G, Zingkou E, Vekrellis K, Sotiropoulou G. “Activography”: a novel, versatile and easily adaptable method for monitoring enzymatic activities in situ. Chem Commun (Camb) 2017; 53:3246-3248. [DOI: 10.1039/c7cc01081h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed activography to map enzymatic activities on tissue sections using activity-based probes.
Collapse
Affiliation(s)
- G. Pampalakis
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| | - E. Zingkou
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| | - K. Vekrellis
- Center for Neurosciences
- Biomedical Research Foundation
- Academy of Athens
- Athens
- Greece
| | - G. Sotiropoulou
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| |
Collapse
|
47
|
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2016; 17. [PMID: 27723264 DOI: 10.1002/pmic.201600212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China.,Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P. R., China
| | - Yew-Mun Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| |
Collapse
|
48
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016; 55:12300-5. [PMID: 27612308 PMCID: PMC5218545 DOI: 10.1002/anie.201606876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity-based probes of 15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15-LOX-1 activity-based probe for the efficient activity-based labeling of recombinant 15-LOX-1. 15-LOX-1-dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity-based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity-based labeling of 15-LOX-1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.
Collapse
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Stephanie A Thee
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Martijn R H Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niek G J Leus
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
49
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Stephanie A. Thee
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Martijn R. H. Zwinderman
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Niek G. J. Leus
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
50
|
Wells SM, Widen JC, Harki DA, Brummond KM. Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction. Org Lett 2016; 18:4566-9. [PMID: 27570975 DOI: 10.1021/acs.orglett.6b02088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Nicholas reaction has been applied to the installation of alkyne ligation handles. Acid-promoted propargylation of hydroxyl, sulfhydryl, amino, and carboxyl groups using dicobalt hexacarbonyl-stabilized propargylium ions is reported. This method is useful for introduction of propargyl groups into base-sensitive molecules, thereby expanding the toolbox of methods for the incorporation of alkynes for bio-orthogonal reactions. High-value molecules are used as the limiting reagent, and various propargylium ion precursors are compared.
Collapse
Affiliation(s)
- Sarah M Wells
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| |
Collapse
|