1
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Zhang Z, Mao H, Li F, Wang D, Liu Y. METTL14-mediated lncRNA-FAS-AS1 promotes osteoarthritis progression by up-regulating ADAM8. Int J Rheum Dis 2024; 27:e15323. [PMID: 39221886 DOI: 10.1111/1756-185x.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS We exposed human immortalized chondrocytes to IL-1β for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1β-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1β-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- ADAM Proteins/metabolism
- ADAM Proteins/genetics
- Adenosine/analogs & derivatives
- Apoptosis
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Line
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Disease Progression
- Interleukin-1beta/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Mice, Inbred C57BL
- Osteoarthritis/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Zhehua Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Honggang Mao
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Fang Li
- Department of Experimental Center, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Dahai Wang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Yan Liu
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
3
|
Nawwar DA, Zaki HF, Sayed RH. Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 2022; 30:1891-1907. [PMID: 35876932 PMCID: PMC9499910 DOI: 10.1007/s10787-022-01031-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a common mental disorder affecting patients' thoughts, behavior, and cognition. Recently, the NRG1/ErbB4 signaling pathway emerged as a candidate therapeutic target for schizophrenia. This study investigates the effects of aripiprazole and sertindole on the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in ketamine-induced schizophrenia in rats. Young male Wistar rats received ketamine (30 mg/kg, intraperitoneally) for 5 consecutive days and aripiprazole (3 mg/kg, orally) or sertindole (2.5 mg/kg, orally) for 14 days. The proposed pathway was investigated by injecting LY294002 (a selective PI3K inhibitor) (25 μg/kg, intrahippocampal injection) 30 min before the drugs. Twenty-four hours after the last injection, animals were subjected to behavioral tests: the open field test, sucrose preference test, novel object recognition task, and social interaction test. Both aripiprazole and sertindole significantly ameliorated ketamine-induced schizophrenic-like behavior, as expected, because of their previously demonstrated antipsychotic activity. Besides, both drugs alleviated ketamine-induced oxidative stress and neurotransmitter level changes in the hippocampus. They also increased the gamma-aminobutyric acid and glutamate levels and glutamate decarboxylase 67 and parvalbumin mRNA expression in the hippocampus. Moreover, aripiprazole and sertindole increased the NRG1 and ErbB4 mRNA expression levels and PI3K, p-Akt, and mTOR protein expression levels. Interestingly, pre-injecting LY294002 abolished all the effects of the drugs. This study reveals that the antipsychotic effects of aripiprazole and sertindole are partly due to oxidative stress reduction as well as NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways activation. The NRG1/ErbB4 and PI3K signaling pathways may offer a new therapeutic approach for treating schizophrenia in humans.
Collapse
Affiliation(s)
- Dalia A Nawwar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Fusco C, Nardella G, Di Filippo L, Dejana E, Cacchiarelli D, Petracca A, Micale L, Malinverno M, Castori M. Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. Genes (Basel) 2022; 13:genes13060961. [PMID: 35741725 PMCID: PMC9222422 DOI: 10.3390/genes13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are capillary malformations affecting the central nervous system and commonly present with headaches, epilepsy and stroke. Treatment of CCM is symptomatic, and its prevention is limited. CCM are often sporadic but sometimes may be multifocal and/or affect multiple family members. Heterozygous pathogenic variants in PDCD10 cause the rarest and apparently most severe genetic variant of familial CCM. We carried out an RNA-Seq and a Q-PCR validation analysis in Pdcd10-silenced and wild-type mouse endothelial cells in order to better elucidate CCM molecular pathogenesis. Ninety-four differentially expressed genes presented an FDR-corrected p-value < 0.05. A functionally clustered dendrogram showed that differentially expressed genes cluster in cell proliferation, oxidative stress, vascular processes and immune response gene-ontology functions. Among differentially expressed genes, the major cluster fell in signaling related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling and immune regulation. Validation analysis performed on wild-type, Pdcd10-null and Pdcd10-null reconstituted cell lines was consistent with RNA-Seq data. This work confirmed previous mouse transcriptomic data in endothelial cells, which are recognized as a critical tissue for CCM formation and expands the potential molecular signatures of PDCD10-related familial CCM to alterations in inflammation and pathogen recognition pathways.
Collapse
Affiliation(s)
- Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
- Correspondence: ; Tel.: +39-0882-416350; Fax: +39-0882-411616
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | | | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy;
- Department of Translational Medicine, University of Naples “Federico II”, 80126 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples “Federico II”, 80126 Naples, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Matteo Malinverno
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| |
Collapse
|
5
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
6
|
Chougule P, Pradeep A, Rujuta P, Swathika S. Correlation between gingival crevicular fluid levels of a disintegrin and metalloproteinase 8 and periodontal disease. SCIENTIFIC DENTAL JOURNAL 2022. [DOI: 10.4103/sdj.sdj_105_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Liao R, Ma QZ, Zhou CY, Li JJ, Weng NN, Yang Y, Zhu Q. Identification of biomarkers related to Tumor-Infiltrating Lymphocytes (TILs) infiltration with gene co-expression network in colorectal cancer. Bioengineered 2021; 12:1676-1688. [PMID: 33960283 PMCID: PMC8806250 DOI: 10.1080/21655979.2021.1921551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors, ranking second in the global cause of death from cancer. The prognosis of advanced patients is still very poor. In this study, hub modules with the highest association with tumor-infiltrating immune cells were identified by weighted gene co-expression network analysis based on CRC expression data from the Gene Expression Omnibus database. Next, three hub genes (ADAM8, IL-1A, VAV3) related to infiltrating immune cells were identified by co-expression network and prognostic analysis. After analysis and verification of the TIMER database, ADAM8 was selected as a prognostic biomarker. Finally, the result of functional test showed that ADAM8 gene expression down-regulation partially reversed the immune tolerance of CRC cells to TILs. By bioinformatics analysis methods and the experimental techniques, we identified ADAM8 as a prognostic biomarker and clinical therapeutic target related to tumor-infiltrating immune cells in CRC.
Collapse
Affiliation(s)
- Rong Liao
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qi-Zhi Ma
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan P.R. China
| | - Cong-Ya Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medical, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jun-Jun Li
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ning-Na Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Yang
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
8
|
Schlomann U, Dorzweiler K, Nuti E, Tuccinardi T, Rossello A, Bartsch JW. Metalloprotease inhibitor profiles of human ADAM8 in vitro and in cell-based assays. Biol Chem 2020; 400:801-810. [PMID: 30738011 DOI: 10.1515/hsz-2018-0396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
Abstract
ADAM8 as a membrane-anchored metalloproteinase-disintegrin is upregulated under pathological conditions such as inflammation and cancer. As active sheddase, ADAM8 can cleave several membrane proteins, among them the low-affinity receptor FcεRII CD23. Hydroxamate-based inhibitors are routinely used to define relevant proteinases involved in ectodomain shedding of membrane proteins. However, for ADAM proteinases, common hydroxamates have variable profiles in their inhibition properties, commonly known for ADAM proteinases 9, 10 and 17. Here, we determined the inhibitor profile of human ADAM8 for eight ADAM/MMP inhibitors by in vitro assays using recombinant ADAM8 as well as the in vivo inhibition in cell-based assays using HEK293 cells to monitor the release of soluble CD23 by ADAM8. ADAM8 activity is inhibited by BB94 (Batimastat), GW280264, FC387 and FC143 (two ADAM17 inhibitors), made weaker by GM6001, TAPI2 and BB2516 (Marimastat), while no inhibition was observed for GI254023, an ADAM10 specific inhibitor. Modeling of inhibitor FC143 bound to the catalytic sites of ADAM8 and ADAM17 reveals similar geometries in the pharmacophoric regions of both proteinases, which is different in ADAM10 due to replacement in the S1 position of T300 (ADAM8) and T347 (ADAM17) by V327 (ADAM10). We conclude that ADAM8 inhibitors require maximum selectivity over ADAM17 to achieve specific ADAM8 inhibition.
Collapse
Affiliation(s)
- Uwe Schlomann
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Kristina Dorzweiler
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Jörg W Bartsch
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| |
Collapse
|
9
|
Sun S, Jin S, Guo R. [Role of STAT3 in Resistance of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:457-463. [PMID: 31315785 PMCID: PMC6712271 DOI: 10.3779/j.issn.1009-3419.2019.07.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
近年来,肿瘤炎症微环境对非小细胞肺癌(non-small cell lung cancer, NSCLC)耐药影响的机制研究刚刚起步,信号传导及转录激活因子3(signal transducers and activators of transcription 3, STAT3)作为连接炎症和肿瘤的关键信号通路分子,其活化可引起肿瘤细胞中诸多基因沉默、表达异常及基因的不稳定等,诱导化疗、靶向药物治疗耐药,有望成为潜在的逆转耐药的新靶点。本综述阐述了STAT3在NSCLC获得性耐药中的研究进展,以探讨其作为逆转耐药新靶点的可能性,为NSCLC获得性耐药的临床治疗新策略提供理论依据。
Collapse
Affiliation(s)
- Sibo Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shidai Jin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Renhua Guo
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines. Metab Eng 2019; 52:57-67. [DOI: 10.1016/j.ymben.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 01/24/2023]
|
11
|
Rath B, Klameth L, Plangger A, Hochmair M, Ulsperger E, Huk I, Zeillinger R, Hamilton G. Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines. Cancers (Basel) 2019; 11:cancers11010114. [PMID: 30669448 PMCID: PMC6357007 DOI: 10.3390/cancers11010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
12
|
ADAM8 in invasive cancers: links to tumor progression, metastasis, and chemoresistance. Clin Sci (Lond) 2019; 133:83-99. [PMID: 30635388 DOI: 10.1042/cs20180906] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Ectodomain shedding of extracellular and membrane proteins is of fundamental importance for cell-cell communication in neoplasias. A Disintegrin And Metalloproteinase (ADAM) proteases constitute a family of multifunctional, membrane-bound proteins with traditional sheddase functions. Their protumorigenic potential has been attributed to both, essential (ADAM10 and ADAM17) and 'dispensable' ADAM proteases (ADAM8, 9, 12, 15, and 19). Of specific interest in this review is the ADAM proteinase ADAM8 that has been identified as a significant player in aggressive malignancies including breast, pancreatic, and brain cancer. High expression levels of ADAM8 are associated with invasiveness and predict a poor patient outcome, indicating a prognostic and diagnostic potential of ADAM8. Current knowledge of substrates and interaction partners gave rise to the hypothesis that ADAM8 dysregulation affects diverse processes in tumor biology, attributable to different functional cores of the multidomain enzyme. Proteolytic degradation of extracellular matrix (ECM) components, cleavage of cell surface proteins, and subsequent release of soluble ectodomains promote cancer progression via induction of angiogenesis and metastasis. Moreover, there is increasing evidence for significance of a non-proteolytic function of ADAM8. With the disintegrin (DIS) domain ADAM8 binds integrins such as β1 integrin, thereby activating integrin signaling pathways. The cytoplasmic domain is critical for that activation and involves focal adhesion kinase (FAK), extracellular regulated kinase (ERK1/2), and protein kinase B (AKT/PKB) signaling, further contributing to cancer progression and mediating chemoresistance against first-line therapies. This review highlights the remarkable effects of ADAM8 in tumor biology, concluding that pharmacological inhibition of ADAM8 represents a promising therapeutic approach not only for monotherapy, but also for combinatorial therapies.
Collapse
|
13
|
Deng G, Yu S, He Y, Sun T, Liang W, Yu L, Xu D, Li Q, Zhang R. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction. Mol Med Rep 2017; 16:2835-2843. [PMID: 28677771 DOI: 10.3892/mmr.2017.6901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/24/2017] [Indexed: 01/28/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet count and insufficient platelet production. Previous studies identified that microRNAs (miRNAs/miRs) are important for platelet function. However, the regulatory role of miRNAs in the pathogenesis of thrombocytopenia in ITP remains unclear. The aim of the present study is to isolate differentially expressed miRNAs, and identify their roles in platelets from ITP. A total of 5 ml blood from 22 patients with ITP and 8 healthy controls was isolated for platelet collection. A microarray assay was performed to analyze the differentially expressed miRNAs in the patients with ITP and healthy patients. Furthermore, the expression of differentially expressed miRNAs was verified by reverse transcription‑quantitative polymerase chain reaction. In addition, the target mRNAs of the differentially expressed miRNAs were predicted via miRWalk databases, and the target genes and miRNAs were classified by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses. In the present study, 115 miRNAs were identified to be differentially expressed in platelets from patients with ITP compared with the healthy controls (>3‑fold alteration; P<0.05). Among them, 57 miRNAs were upregulated in ITP, while 58 miRNAs were downregulated. Bioinformatic prediction demonstrated that hsa‑miR‑548a‑5p, hsa‑miR‑1185‑2‑3p, hsa‑miR‑30a‑3p, hsa‑miR‑6867‑5p, hsa‑miR‑765 and hsa‑miR‑3125 were associated with platelet apoptosis and adhesion in ITP. The present study performed miRNA profiling of platelets from patients with ITP and the results may aid in the understanding of the regulatory mechanism of ITP.
Collapse
Affiliation(s)
- Gang Deng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Shifang Yu
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Tao Sun
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Liang
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Lu Yu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Deyi Xu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Qiang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ri Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
14
|
Hu J, Ni S, Cao Y, Zhang T, Wu T, Yin X, Lang Y, Lu H. The Angiogenic Effect of microRNA-21 Targeting TIMP3 through the Regulation of MMP2 and MMP9. PLoS One 2016; 11:e0149537. [PMID: 26872030 PMCID: PMC4752282 DOI: 10.1371/journal.pone.0149537] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
microRNAs are a novel set of small, non-protein-coding nucleotide RNAs that negatively regulate the expression of target mRNAs. miRNA-21 is a microRNA that is highly enriched in endothelial cells. miRNA-21 has been shown to be a potential pro-angiogenic factor in some biological systems. Our previous study showed that the expression of miRNA-21 was up-regulated after spinal cord injury. However, the effect of miRNA-21 on angiogenesis in the spinal cord was unclear. In this study, to understand the role of miRNA-21 on injured endothelial cells exclusively, an oxygen and glucose deprivation model of endothelial cells was constructed, and the up-regulation of miRNA-21 was discovered in this model. An increased level of miRNA-21 by mimics promoted the survival, migration and tube formation of endothelial cells, which simultaneously inhibited tissue inhibitor of metalloproteinase-3 (TIMP3) expression and promoted matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) expression and secretion. A decreased level of miRNA-21 by antagomir exerted an opposite effect. As is well known, survival, migration and tube formation of endothelial cells are necessary prerequisites for angiogenesis after injury. TIMP3 was validated as a direct target of miRNA-21 by dual-luciferase reporter assay. Silencing with small interfering RNA against TIMP3 promoted tube formation and increased MMP2 and MMP9 expression at the protein level. In vivo, we found that decreased levels of miRNA-21 inhibited angiogenesis after spinal cord injury in rats using synchrotron radiation micro-computed tomography. In summary, these findings suggest that miRNA-21 has a protective effect on angiogenesis by reducing cell death and promoting cell survival, migration and tube formation via partially targeting the TIMP3 by potentially regulating MMP2 and MMP9. TIMP3 is a functional target gene. Identifying the role of miRNA-21 in the protection of angiogenesis might offer a novel therapeutic target for secondary spinal cord injury, in which angiogenesis is indispensable.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Tao Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Ye Lang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- * E-mail:
| |
Collapse
|
15
|
Dong F, Eibach M, Bartsch JW, Dolga AM, Schlomann U, Conrad C, Schieber S, Schilling O, Biniossek ML, Culmsee C, Strik H, Koller G, Carl B, Nimsky C. The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol 2015; 17:1474-85. [PMID: 25825051 PMCID: PMC4648299 DOI: 10.1093/neuonc/nov042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/22/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma. METHODS TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of GBM cells were assessed in the presence of the metalloprotease inhibitors batimastat (BB-94) and marimastat (BB-2516). Metalloprotease-dependent effects of TMZ on mitochondria and pAkt/phosphatidylinositol-3 kinase (PI3K) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) pathways were analyzed by fluorescence activated cell sorting, morphometry, and immunoblotting. Invasiveness of GBM cells was determined by Matrigel invasion assays. Potential metalloprotease substrates were identified by proteomics and tested for invasion using blocking antibodies. RESULTS TMZ induces expression of MMP-1, -9, -14, and ADAM8 in GBM cells and in recurrent GBM tissues. BB-94, but not BB-2516 (ADAM8-sparing) increased TMZ sensitivity of TMZ-resistant and -nonresistant GBM cells with different O(6)-methylguanine-DNA methyltransferase states, suggesting that ADAM8 mediates chemoresistance, which was confirmed by ADAM8 knockdown, ADAM8 overexpression, or pharmacological inhibition of ADAM8. Levels of pAkt and pERK1/2 were increased in GBM cells and correlated with ADAM8 expression, cell survival, and invasiveness. Soluble hepatocyte growth factor (HGF) R/c-met and CD44 were identified as metalloprotease substrates in TMZ-treated GBM cells. Blocking of HGF R/c-met prevented TMZ-induced invasiveness. CONCLUSIONS ADAM8 causes TMZ resistance in GBM cells by enhancing pAkt/PI3K, pERK1/2, and cleavage of CD44 and HGF R/c-met. Specific ADAM8 inhibition can optimize TMZ chemotherapy of GBM in order to prevent formation of recurrent GBM in patients.
Collapse
Affiliation(s)
| | | | | | - Amalia M. Dolga
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Catharina Conrad
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Susanne Schieber
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Oliver Schilling
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Martin L. Biniossek
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Carsten Culmsee
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Herwig Strik
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Garrit Koller
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Barbara Carl
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany (F.D., M.E., J.W.B., U.S., C.Co., S.S., B.C., C.N.); Department of Neurosurgery, Tongji Hospital, Wuhan, China (F.D.); Philipps-University Marburg, Institute for Pharmacology and Clinical Pharmacy, Marburg, Germany (A.M.D., C.Cu.); Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany (O.S., M.L.B.); BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (O.S.); Department of Neurology, Philipps-University Marburg, Marburg, Germany (H.S.); Biomaterials, Biomimetics and Biophotonics Research Group, King's College London Dental Institute, London, United Kingdom (G.K.)
| |
Collapse
|
16
|
Li SQ, Wang DM, Zhu S, Ma Z, Li RF, Xu ZS, Han HM. The important role of ADAM8 in the progression of hepatocellular carcinoma induced by diethylnitrosamine in mice. Hum Exp Toxicol 2015; 34:1053-72. [DOI: 10.1177/0960327114567767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study focuses on investigating the concrete role of a disintegrin and metalloproteinase 8 (ADAM8) in the progression of hepatocellular carcinoma (HCC). Mice received anti-ADAM8 monoclonal antibody (mAb) of 100 μg/100 μl, 200 μg/100 μl or 300 μg/100 μl, respectively, in phosphate-buffered saline (PBS) or PBS intervention during the progression of HCC induced by diethylnitrosamine. The survival rate, body weight, and relative liver weight were determined in the mice. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and α-fetoprotein (AFP) level, hematoxylin–eosin staining, the expression level of vascular endothelial growth factor A (VEGF-A), proliferating cell nuclear antigen (PCNA), caspase 3 (Casp3), B cell leukemia 2 (Bcl2), B cell leukemia 2-associated X protein (Bax), protein p53 (P53), and ADAM8 were detected in the mice at the end of the 24th week. Our results showed that anti-ADAM8 mAb intervention effectively improved the survival rate, reduced the body weight loss and increased the relative liver weight in mice in a dose-dependent manner ( p < 0.05 or p < 0.01). Anti-ADAM8 mAb intervention also significantly lowered serum AST, ALT, and AFP levels ( p < 0.05 or p < 0.01), slowed the progression of HCC ( p < 0.05 or p < 0.01), induced the expression of Casp3, Bax, and P53 ( p < 0.05 or p < 0.01), and inhibited the expression of VEGF-A, PCNA, and Bcl2 in the liver of mice ( p < 0.05 or p < 0.01) in a dose-dependent manner compared with the mice receiving PBS intervention. Our study suggested that ADAM8 might promote the progression of HCC by regulating the expression of these factors. Anti-ADAM8 mAb intervention might be suitable as a potential method for HCC therapy.
Collapse
Affiliation(s)
- S-Q Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - D-M Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - S Zhu
- Department of Microbiology Immunology, College of Basic Medical Sciences, Zhengzhou University, People’s Republic of China
| | - Z Ma
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - R-F Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Z-S Xu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - H-M Han
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| |
Collapse
|
17
|
Yang Z, Bai Y, Huo L, Chen H, Huang J, Li J, Fan X, Yang Z, Wang L, Wang J. Expression of A disintegrin and metalloprotease 8 is associated with cell growth and poor survival in colorectal cancer. BMC Cancer 2014; 14:568. [PMID: 25098630 PMCID: PMC4141088 DOI: 10.1186/1471-2407-14-568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
Background A disintegrin and metalloprotease 8 (ADAM8) has been reported to be associated with various malignancies. However, no studies have examined ADAM8 association in colorectal cancer (CRC). The aim of this study was to investigate the expression and function of ADAM8 in CRC. Methods Expression level of ADAM8 in CRC was evaluated by quantitative RT-PCR, western blot and immunohistochemical staining analysis. The role of ADAM8 in colorectal carcinogenesis was evaluated by in vitro assays. The correlations between ADAM8 status and clinicopathological features including survival were analyzed. Results ADAM8 was highly expressed in CRC tissues compared with adjacent normal tissues. Knockdown of ADAM8 in two CRC cell lines resulted in reduced cellular growth and proliferation, and increased apoptosis. Immunohistochemistry analysis showed no significant correlations of ADAM8 protein expression with clinicopathologic features. Survival analysis indicated that patients with ADAM8-positive tumors had worse 5-year overall survival (OS, p = 0.037) and 5-year disease free survival (DFS, p = 0.014) compared with those with ADAM8-negative tumors. Multivariate analysis indicated ADAM8 expression was an independent prognostic factor for both OS and DFS (both p< 0.001). Subgroup analysis showed that 5-year OS of colon cancer, T3-T4 stage and N0 stage was worse for patients with ADAM8-positive tumors than those with ADAM8-negative tumors (p< 0.05). The 5-year DFS in colon cancer, T3-T4 stage, N0 stage, TNM stage II, adenocarcinoma, moderate differentiation and male patient subgroups was also worse for patients with ADAM8-positive tumors than those with ADAM8-negative tumors (p < 0.05). Conclusions Our results show that ADAM8 is overexpressed in CRC, promotes cell growth and correlates with worse OS and DFS, and thus could serve as a biomarker for individual CRC patient therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Wang
- Department of Colon & Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University Guangzhou, 26 YuancunErheng Road, Guangzhou, 510655, P,R China.
| | | |
Collapse
|
18
|
The Role of STAT3 in Non-Small Cell Lung Cancer. Cancers (Basel) 2014; 6:708-22. [PMID: 24675568 PMCID: PMC4074799 DOI: 10.3390/cancers6020708] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
Persistent phosphorylation of signal transducer and activator of transcription 3 (STAT3) has been demonstrated in 22%~65% of non-small cell lung cancers (NSCLC). STAT3 activation is mediated by receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and MET, cytokine receptors, such as IL-6, and non-receptor kinases, such as Src. Overexpression of total or phosphorylated STAT3 in resected NSCLC leads to poor prognosis. In a preclinical study, overexpression of STAT3 was correlated with chemoresistance and radioresistance in NSCLC cells. Here, we review the role of STAT3 and the mechanisms of treatment resistance in malignant diseases, especially NSCLC. As STAT3 is a critical mediator of the oncogenic effects of EGFR mutations, we discuss STAT3 pathways in EGFR-mutated NSCLC, referring to mechanisms of EGFR tyrosine kinase inhibitor resistance.
Collapse
|