1
|
Hourtoule M, Trienes S, Ackermann L. Anodic Commodity Polymer Recycling: The Merger of Iron-Electrocatalysis with Scalable Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202412689. [PMID: 39254508 DOI: 10.1002/anie.202412689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Plastics are omnipresent in our everyday life, and accumulation of post-consumer plastic waste in our environment represents a major societal challenge. Hence, methods for plastic waste recycling are in high demand for a future circular economy. Specifically, the degradation of post-consumer polymers towards value-added small molecules constitutes a sustainable strategy for a carbon circular economy. Despite of recent advances, chemical polymer degradation continues to be largely limited to chemical redox agents or low energy efficiency in photochemical processes. We herein report a powerful iron-catalyzed degradation of high molecular weight polystyrenes through electrochemistry to efficiently deliver monomeric benzoyl products. The robustness of the ferraelectrocatalysis was mirrored by the degradation of various real-life post-consumer plastics, also on gram scale. The cathodic half reaction was largely represented by the hydrogen evolution reaction (HER). The scalable electro-polymer degradation could be solely fueled by solar energy through a commercially available solar panel, indicating an outstanding potential for a decentralized green hydrogen economy.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Alabugin IV, Eckhardt P, Christopher KM, Opatz T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. J Am Chem Soc 2024; 146:27233-27254. [PMID: 39316772 DOI: 10.1021/jacs.4c10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and issometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
4
|
Juneau A, Abdolhosseini M, Rocq C, Pham HDM, Pascall M, Khaliullin RZ, Canesi S, McCalla E, Mauzeroll J. Overcoming Challenges in Electrosynthesis Using High‐Throughput Electrochemistry: Hypervalent Iodine‐Mediated Phenol Dearomatization, a Case Study. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202400193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/06/2025]
Abstract
AbstractDespite many recent efforts, the field of organic electrosyn‐thesis faces important challenges due to the intricate nature of heterogeneous redox processes, the wide parameter space to be explored and the lack of standardized methods. To overcome these limitations, we developed a cost‐effective high‐throughput electrochemical (HTE) reactor capable of running 24 individually controlled parallel reactions. This system allows the rapid testing of electrochemical parameters on a given reaction, assessing not only yield but also reproducibility. Using the hypervalent iodine‐mediated dearomatization of phloretic acid as a demonstration of HTE capabilities, we ran more than 200 electrosyntheses in different experimental conditions and demonstrate the effect of parameters such as total charge transferred, current, electrode materials, electrolyte formulation and concentration, mediator formulation and concentration and electrochemical technique of oxidation. Notably, this report demonstrates that while catalytic amounts of iodine mediator can be used successfully, the reproducibility may be affected, which calls for a cautious approach when developing similar transformations. Using cyclic voltammetry, density functional theory, chronopotentiometry, and Raman spectroscopy, we shed light on the causes of this issue.
Collapse
Affiliation(s)
- Antoine Juneau
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Marzieh Abdolhosseini
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Camille Rocq
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Hanh D. M. Pham
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Mia Pascall
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Rustam Z. Khaliullin
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Sylvain Canesi
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Eric McCalla
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Janine Mauzeroll
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| |
Collapse
|
5
|
Chicas-Baños DF, López-Rivas M, González-Bravo FJ, Sartillo-Piscil F, Frontana-Uribe BA. Access to carbonyl compounds via the electroreduction of N-benzyloxyphthalimides: Mechanism confirmation and preparative applications. Heliyon 2024; 10:e23808. [PMID: 38226225 PMCID: PMC10788431 DOI: 10.1016/j.heliyon.2023.e23808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
A method to access carbonyl compounds using reductive conditions was evaluated via electrochemical reduction of their corresponding N-benzyloxyphthalimide derivatives (NBOPIs). The mechanism of this originally reported electrochemical reaction was proposed based on DFT calculation and is experimentally confirmed herein, contrasting simulated and experimental cyclic voltammetry data. The reaction scope studied in a preparative scale and using redox sensitive functional groups showed good selectivity and tolerance toward oxidation under the reaction conditions with a moderate to good yield (50-71%). Nevertheless, some restrictions with reducible functional groups, like benzyl-brominated and nitro-aromatic derivatives, were observed. The present approach can be considered a self-sustainable electrochemical catalysis for the synthesis of aromatic carbonylic compounds passing through anion radical intermediates produced by a cathodic reaction.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Universidad de El Salvador (UES), Facultad de Ciencias Naturales y Matemática, Escuela de Química, Final 25 Av. Nte, 1101, San Salvador, El Salvador
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Mariely López-Rivas
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Felipe J. González-Bravo
- Departamento de Química, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, Mexico
| | - Bernardo Antonio Frontana-Uribe
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, 04510, Mexico
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| |
Collapse
|
6
|
Chabuka BK, Alabugin IV. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. J Am Chem Soc 2023; 145:19354-19367. [PMID: 37625247 DOI: 10.1021/jacs.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In order to use holes as catalysts, the oxidized product should be able to transfer the hole to a fresh reactant. For that, the hole-catalyzed reaction must increase the oxidation potential along the reaction path, i.e., lead to "hole upconversion." If this thermodynamic requirement is satisfied, a hole injected via one-electron oxidation can persist through multiple propagation cycles and serve as a true catalyst. This work provides guidelines for the rational design of hole-catalyzed Diels-Alder (DA) reactions, the prototypical cycloaddition. After revealing the crucial role of hyperconjugation in the absence of hole upconversion in the parent DA reaction, we show how upconversion can be reactivated by proper substitution. For this purpose, we computationally evaluate the contrasting effects of substituents at the three possible positions in the two reactants. The occurrence and magnitude of hole upconversion depend strongly on the placement and nature of substituents. For example, donors at C1 in 1,3-butadiene shift the reaction to the hole-upconverted regime with an increased oxidation potential of up to 1.0 V. In contrast, hole upconversion in C2-substituted 1,3-butadienes is activated by acceptors with the oxidation potential increase up to 0.54 V. Dienophile substitution results in complex trends because the radical cation can be formed at either the dienophile or the diene. Hole upconversion is always present in the former scenario (up to 0.65 V). Finally, we report interesting stereoelectronic effects that can activate or deactivate upconversion via a conformational change.
Collapse
Affiliation(s)
- Beauty K Chabuka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
7
|
Lv J, Sun R, Yang Q, Gan P, Yu S, Tan Z. Research on Electric Field-Induced Catalysis Using Single-Molecule Electrical Measurement. Molecules 2023; 28:4968. [PMID: 37446629 DOI: 10.3390/molecules28134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The role of catalysis in controlling chemical reactions is crucial. As an important external stimulus regulatory tool, electric field (EF) catalysis enables further possibilities for chemical reaction regulation. To date, the regulation mechanism of electric fields and electrons on chemical reactions has been modeled. The electric field at the single-molecule electronic scale provides a powerful theoretical weapon to explore the dynamics of individual chemical reactions. The combination of electric fields and single-molecule electronic techniques not only uncovers new principles but also results in the regulation of chemical reactions at the single-molecule scale. This perspective focuses on the recent electric field-catalyzed, single-molecule chemical reactions and assembly, and highlights promising outlooks for future work in single-molecule catalysis.
Collapse
Affiliation(s)
- Jieyao Lv
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruiqin Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Qifan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Pengfei Gan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shiyong Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zhibing Tan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
8
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
9
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
10
|
Jiao Y, Stoddart J. Electron / hole catalysis: A versatile strategy for promoting chemical transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Salamon MJ, Briega-Martos V, Cuesta A, Herrero E. Insight into the role of adsorbed formate in the oxidation of formic acid from pH-dependent experiments with Pt single-crystal electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redox‐Tag Strategy. Chemistry 2022; 28:e202202018. [DOI: 10.1002/chem.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yasuhiro Hashimoto
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Genki Horiguchi
- Energy Catalyst Technology Group Energy Process Research Institute (EPRI) National Institute of Advanced Industrial Science and Technology (AIST) 16-1 Onogawa 305-8559 Tsukuba Ibaraki Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Yohei Okada
- Department of Applied Biological Science Tokyo University of Agriculture and Technology 3-5-8 Saiwai-cho 183-8509 Fuchu Tokyo Japan
| |
Collapse
|
13
|
Abstract
Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.
Collapse
Affiliation(s)
- Johannes L Röckl
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | | | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
14
|
Nakayama K, Kamiya H, Okada Y. Radical cation Diels–Alder reactions of arylidene cycloalkanes. Beilstein J Org Chem 2022; 18:1100-1106. [PMID: 36105722 PMCID: PMC9443414 DOI: 10.3762/bjoc.18.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
TiO2 photoelectrochemical and electrochemical radical cation Diels–Alder reactions of arylidene cycloalkanes are described, leading to the construction of spiro ring systems. Although the mechanism remains an open question, arylidene cyclobutanes are found to be much more effective in the reaction than other cycloalkanes. Since the reaction is completed with a substoichiometric amount of electricity, a radical cation chain pathway is likely to be involved.
Collapse
Affiliation(s)
- Kaii Nakayama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
15
|
Pham PH, Petersen HA, Katsirubas JL, Luca OR. Recent synthetic methods involving carbon radicals generated by electrochemical catalysis. Org Biomol Chem 2022; 20:5907-5932. [PMID: 35437556 DOI: 10.1039/d2ob00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Driven by a resurgence of interest in electrode-driven synthetic methods, this paper covers recent activity in the field of mediated electrochemical and photoelectrochemical bond activation, inclusive of C-H, C-C, C-N, and other C-heteroatom bonds.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Haley A Petersen
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Jaclyn L Katsirubas
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| |
Collapse
|
16
|
Abstract
Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.
Collapse
|
17
|
Francke R. Self-assembly of molecules triggered by electricity. Nature 2022; 603:229-230. [PMID: 35264746 DOI: 10.1038/d41586-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
19
|
Microscopic mechanisms of cooperative communications within single nanocatalysts. Proc Natl Acad Sci U S A 2022; 119:2115135119. [PMID: 35022239 PMCID: PMC8784103 DOI: 10.1073/pnas.2115135119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Catalysis is an experimental approach to accelerate chemical reactions. It plays a critical role in modern industries. Recent experimental studies uncovered striking observations of cooperative communications for reactions on nanocatalysts. In these experiments, it was shown that the chemical reactions observed at specific active sites might effectively stimulate the same reactions at the neighboring sites. We developed a theoretical model to investigate the microscopic mechanisms of these phenomena. Our idea is that the catalytic communication is the result of the complex dynamics of charged holes. Explicit calculations are able to quantitatively explain all experimental observations, clarifying the molecular origin of cooperative communications. The presented theoretical framework might be utilized for developing efficient catalytic systems with better control over chemical reactions. Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.
Collapse
|
20
|
Frey J, Hou X, Ackermann L. Atropoenantioselective Palladaelectro-Catalyzed Anilide C–H Olefinations Viable with Natural Sunlight as Sustainable Power Source. Chem Sci 2022; 13:2729-2734. [PMID: 35340853 PMCID: PMC8890107 DOI: 10.1039/d1sc06135f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Enantioselective electrocatalyzed transformations represent a major challenge. We herein achieved atropoenantioselective pallada-electrocatalyzed C–H olefinations and C–H allylations with high efficacy and enantioselectivity under exceedingly mild reaction conditions. With (S)-5-oxoproline as the chiral ligand, activated and non-activated olefins were suitable substrates for the electro-C–H activations. Dual catalysis was devised in terms of electro-C–H olefination, along with catalytic hydrogenation. Challenging enantiomerically-enriched chiral anilide scaffolds were thereby obtained with high levels of enantio-control in the absence of toxic and cost-intensive silver salts. The resource-economy of the transformation was even improved by directly employing renewable solar energy. Asymmetric pallada-electrocatalyzed C–H activation of achiral anilides were accomplished by catalyst control with high levels of enantioselectivity. Dual catalysis was devised, while photovoltaic cells could be used to empower the electrocatalysis.![]()
Collapse
Affiliation(s)
- Johanna Frey
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 237077 Göttingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 237077 Göttingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 237077 Göttingen Germany http://www.ackermann.chemie.uni-goettingen.de/
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
21
|
Guan Z, Zhu S, Yang Y, Liu Y, Wang S, Bu F, Cong H, Alhumade H, Zhang H, Lei A. Electrochemically selective double C(sp 2)-X (X = S/Se, N) bond formation of isocyanides. Chem Sci 2021; 12:14121-14125. [PMID: 34760196 PMCID: PMC8565391 DOI: 10.1039/d1sc04475c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
The construction of C(sp2)-X (X = B, N, O, Si, P, S, Se, etc.) bonds has drawn growing attention since heteroatomic compounds play a prominent role from biological to pharmaceutical sciences. The current study demonstrates the C(sp2)-S/Se and C(sp2)-N bond formation of one carbon of isocyanides with thiophenols or disulfides or diselenides and azazoles simultaneously. The reported findings could provide access to novel multiple isothioureas, especially hitherto rarely reported selenoureas. The protocol showed good atom-economy and step-economy with only hydrogen evolution and theoretical calculations accounted for the stereoselectivity of the products. Importantly, the electrochemical reaction could exclusively occur at the isocyano part regardless of the presence of susceptible radical acceptors, such as a broad range of arenes and alkynyl moieties, even alkenyl moieties.
Collapse
Affiliation(s)
- Zhipeng Guan
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Shuxiang Zhu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Yankai Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Yanlong Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Siyuan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Faxiang Bu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Hengjiang Cong
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University Jeddah Saudi Arabia.,Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University Jeddah Saudi Arabia
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 People's Republic of China .,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 Jiangxi P. R. China.,King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
22
|
Nikpour F, Zandi S, Sharafi-Kolkeshvandi M. Electrochemically Catalyzed N–N Coupling and Ring Cleavage Reaction of 1H-Pyrazoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThe electrocatalyzed N–N coupling and ring cleavage reaction of 3-methyl-, 3,5-dimethyl-, 3-methyl-5-phenyl- and 3,5-diphenyl-1H-pyrazole was investigated and led to the electro-organic synthesis of new heterocyclic compounds. The results revealed that electrochemically produced 1H-pyrazoleox plays the role of acceptor in a reaction with the starting molecule via a N–N coupling and ring cleavage reaction of pyrazoles. The proposed reaction sequence consists of anodic oxidation, dimerization, rearrangement and reduction. The electrochemically catalyzed reactions were accomplished under constant-current and constant-potential conditions using an undivided electrochemical cell with the advantages of mild reaction conditions, remarkable yields and environmental compatibility.
Collapse
|
23
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
24
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor-Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp 3 )-C(sp 3 ) Cleavage Mode. Angew Chem Int Ed Engl 2021; 60:15928-15934. [PMID: 33890714 PMCID: PMC8362004 DOI: 10.1002/anie.202101477] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Indexed: 12/03/2022]
Abstract
We describe the first electrochemical activation of D-A cyclopropanes and D-A cyclobutanes leading after C(sp3 )-C(sp3 ) cleavage to the formation of highly reactive radical cations. This concept is utilized to formally insert molecular oxygen after direct or DDQ-assisted anodic oxidation of the strained carbocycles, delivering β- and γ-hydroxy ketones and 1,2-dioxanes electrocatalytically. Furthermore, insights into the mechanism of the oxidative process, obtained experimentally and by additional quantum-chemical calculations are presented. The synthetic potential of the reaction products is demonstrated by diverse derivatizations.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Martin Petzold
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Felix Brandt
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph R. Jacob
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
25
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
26
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor–Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp
3
)−C(sp
3
) Cleavage Mode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Martin Petzold
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Felix Brandt
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
27
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
28
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021; 60:12883-12890. [PMID: 33768678 DOI: 10.1002/anie.202100193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non-electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.
Collapse
Affiliation(s)
- Tiandi Wu
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
29
|
Samanta RC, Ackermann L. Evolution of Earth-Abundant 3 d-Metallaelectro-Catalyzed C-H Activation: From Chelation-Assistance to C-H Functionalization without Directing Groups. CHEM REC 2021; 21:2430-2441. [PMID: 34028175 DOI: 10.1002/tcr.202100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Kurioka T, Inagi S. Electricity-Driven Post-Functionalization of Conducting Polymers. CHEM REC 2021; 21:2107-2119. [PMID: 33835681 DOI: 10.1002/tcr.202100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Electrochemical doping of conducting polymers (CPs) generates polarons (radical ionic species) and bipolarons (ionic species) in their backbone via multi-electron transfer between an electrode and the CP. In the electrochemical polymer reaction (ePR), these generated ionic species are regarded as reactive intermediates for further transformation of the chemical structures of CPs. This electrochemical post-functionalization can easily be used to control the degree of reactions by turning a power supply on/off, as well as tuning the applied electrode potential, which leads to fine-tuning of the various properties of the CPs, such as the HOMO/LUMO level and PL properties. This Account summarizes recent developments in the electrochemical post-functionalization of CPs. In particular, we focus on reaction design for the ePR, with respect to the preparation and structure of the precursor polymers, applicable functional groups, efficient reaction conditions, and electrolytic methodologies.
Collapse
Affiliation(s)
- Tomoyuki Kurioka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
31
|
Okada Y. Synthetic Semiconductor Photoelectrochemistry. CHEM REC 2021; 21:2223-2238. [PMID: 33769685 DOI: 10.1002/tcr.202100029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Indexed: 01/06/2023]
Abstract
In the field of synthetic organic chemistry, photochemical and electrochemical approaches are often considered to be competing technologies that induce single electron transfer (SET). Recently, their fusion, i. e., the "photoelectrochemical" approach, has become the focus of attention. In this approach, both solar and electrical energy are used in creative combinations. Historically, the term "photoelectrochemistry" has been used in more inorganic fields, where a photovoltaic effect exhibited by semiconducting materials is employed. Semiconductors have also been studied intensively as photocatalysts; however, they recently have taken a back seat to molecular photocatalysts. In this account, we would like to revisit semiconductor photocatalysts in the field of synthetic organic chemistry to demonstrate that semiconductor "photoelectrochemical" approaches are more than mere alternatives to molecular photochemical and/or electrochemical approaches.
Collapse
Affiliation(s)
- Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
32
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Saha D, Taily IM, Kumar R, Banerjee P. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chem Commun (Camb) 2021; 57:2464-2478. [PMID: 33616597 DOI: 10.1039/d1cc00116g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rearrangement reactions constitute a critical facet of synthetic organic chemistry and demonstrate an attractive way to take advantage of existing structures to access various important molecular frameworks. Electroorganic chemistry has emerged as an environmentally benign approach to carry out organic transformations by directly employing an electric current and avoids the use of stoichiometric chemical oxidants. The last few years have witnessed a resurgence of electroorganic chemistry that has promoted a renaissance of interest in the development of novel redox electroorganic transformations. This review manifests the evolution of electrosynthesis in the area of rearrangement chemistry and covers the achievements in the field of migration, ring expansion, and rearrangements along with the mechanisms involved.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
34
|
Budnikova YH. Electrochemical Insight into Mechanisms and Metallocyclic Intermediates of C-H Functionalization. CHEM REC 2021; 21:2148-2163. [PMID: 33629800 DOI: 10.1002/tcr.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Transition metal-catalyzed C-H activation has emerged as a powerful tool in organic synthesis and electrosynthesis as well as in the development of new methodologies for producing fine chemicals. In order to achieve efficient and selective C-H functionalization, different strategies have been used to accelerate the C-H activation step, including the incorporation of directing groups in the substrate that facilitate coordination to the catalyst. In this review, we try to underscore that the understanding the mechanisms of the catalytic cycle and the reactivity or redox activity of the key metal cyclic intermediates in these reactions is the basis for controlling the selectivity of synthesis and electrosynthesis. Combination of the electrosynthesis and voltammetry with traditional synthetic and physico-chemical methods allows one to achieve selective transformation of C-H bonds to functionalized C-C or C-X (X=heteroatom or halogen) bonds which may encourage organic chemists to use it in the future more often. The possibilities and the benefits of electrochemical techniques are analyzed and summarized.
Collapse
Affiliation(s)
- Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088, Kazan, Russia.,Kazan National Research Technological University, Karl Marx street, 68, 420015, Kazan, Russia
| |
Collapse
|
35
|
Fokin I, Siewert I. Chemoselective Electrochemical Hydrogenation of Ketones and Aldehydes with a Well-Defined Base-Metal Catalyst. Chemistry 2020; 26:14137-14143. [PMID: 32497312 PMCID: PMC7702145 DOI: 10.1002/chem.202002075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Indexed: 01/06/2023]
Abstract
Hydrogenation reactions are fundamental functional group transformations in chemical synthesis. Here, we introduce an electrochemical method for the hydrogenation of ketones and aldehydes by in situ formation of a Mn-H species. We utilise protons and electric current as surrogate for H2 and a base-metal complex to form selectively the alcohols. The method is chemoselective for the hydrogenation of C=O bonds over C=C bonds. Mechanistic studies revealed initial 3 e- reduction of the catalyst forming the steady state species [Mn2 (H-1 L)(CO)6 ]- . Subsequently, we assume protonation, reduction and internal proton shift forming the hydride species. Finally, the transfer of the hydride and a proton to the ketone yields the alcohol and the steady state species is regenerated via reduction. The interplay of two manganese centres and the internal proton relay represent the key features for ketone and aldehyde reduction as the respective mononuclear complex and the complex without the proton relay are barely active.
Collapse
Affiliation(s)
- Igor Fokin
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| | - Inke Siewert
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| |
Collapse
|
36
|
Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. Facilitating Ir-Catalyzed C-H Alkynylation with Electrochemistry: Anodic Oxidation-Induced Reductive Elimination. ACS Catal 2020; 10:11693-11699. [PMID: 38107025 PMCID: PMC10723742 DOI: 10.1021/acscatal.0c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrochemical approach in promoting directed C-H alkynylation with terminal alkyne via iridium catalysis is reported. This work employed anodic oxidation of Ir(III) intermediate (characterized by X-ray crystallography) to promote reductive elimination, giving the desired coupling products in good yields (up to 95%) without the addition of any other external oxidants. This transformation is suitable for various directing groups with H2 as the only by-product, which warrants a high atom economy and practical oxidative C-C bond formation under mild conditions.
Collapse
Affiliation(s)
- Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shuyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jingwen Wei
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P.R.China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
37
|
Affiliation(s)
- R. Daniel Little
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
38
|
Roesel AF, Ugandi M, Huyen NTT, Májek M, Broese T, Roemelt M, Francke R. Electrochemically Catalyzed Newman-Kwart Rearrangement: Mechanism, Structure-Reactivity Relationship, and Parallels to Photoredox Catalysis. J Org Chem 2020; 85:8029-8044. [PMID: 32456428 DOI: 10.1021/acs.joc.0c00831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The facilitation of redox-neutral reactions by electrochemical injection of holes and electrons, also known as "electrochemical catalysis", is a little explored approach that has the potential to expand the scope of electrosynthesis immensely. To systematically improve existing protocols and to pave the way toward new developments, a better understanding of the underlying principles is crucial. In this context, we have studied the Newman-Kwart rearrangement of O-arylthiocarbamates to the corresponding S-aryl derivatives, the key step in the synthesis of thiophenols from the corresponding phenols. This transformation is a particularly useful example because the conventional method requires temperatures up to 300 °C, whereas electrochemical catalysis facilitates the reaction at room temperature. A combined experimental-quantum chemical approach revealed several reaction channels and rendered an explanation for the relationship between the structure and reactivity. Furthermore, it is shown how rapid cyclic voltammetry measurements can serve as a tool to predict the feasibility for specific substrates. The study also revealed distinct parallels to photoredox-catalyzed reactions, in which back-electron transfer and chain propagation are competing pathways.
Collapse
Affiliation(s)
- Arend F Roesel
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Mihkel Ugandi
- Chair for Theoretical Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nguyen Thi Thu Huyen
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.,School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Michal Májek
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.,Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Timo Broese
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Michael Roemelt
- Chair for Theoretical Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Robert Francke
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| |
Collapse
|
39
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|
40
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Mechanistische Studien zu Cobalta(III/IV/II)‐Elektrokatalyse: Oxidativ‐induzierte reduktive Eliminierung zur zweifachen C‐H‐Aktivierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tjark H. Meyer
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
41
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Insights into Cobalta(III/IV/II)-Electrocatalysis: Oxidation-Induced Reductive Elimination for Twofold C-H Activation. Angew Chem Int Ed Engl 2020; 59:10955-10960. [PMID: 32154625 PMCID: PMC7318662 DOI: 10.1002/anie.202002258] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
The merger of cobalt‐catalyzed C−H activation and electrosynthesis provides new avenues for resource‐economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high‐valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt‐catalyzed C−H oxygenations. Detailed mechanistic studies provided support for an oxidatively‐induced reductive elimination via highly‐reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two‐fold C−H/C−H activation.
Collapse
Affiliation(s)
- Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| |
Collapse
|
42
|
Abstract
To improve the efficacy of molecular syntheses, researchers wish to capitalize upon the selective modification of otherwise inert C-H bonds. The past two decades have witnessed considerable advances in coordination chemistry that have set the stage for transformative tools for C-H functionalizations. Particularly, oxidative C-H/C-H and C-H/Het-H transformations have gained major attention because they avoid all elements of substrate prefunctionalization. Despite considerable advances, oxidative C-H activations have been dominated by precious transition metal catalysts based on palladium, ruthenium, iridium, and rhodium, thus compromising the sustainable nature of the overall C-H activation approach. The same holds true for the predominant use of stoichiometric chemical oxidants for the regeneration of the active catalyst, prominently featuring hypervalent iodine(III), copper(II), and silver(I) oxidants. Thereby, stoichiometric quantities of undesired byproducts are generated, which are preventive for applications of C-H activation on scale. In contrast, the elegant merger of homogeneous metal-catalyzed C-H activation with molecular electrosynthesis bears the unique power to achieve outstanding levels of oxidant and resource economy. Thus, in contrast to classical electrosyntheses by substrate control, metalla-electrocatalysis holds huge and largely untapped potential for oxidative C-H activations with unmet site selectivities by means of catalyst control. While indirect electrolysis using precious palladium complexes has been realized, less toxic and less expensive base metal catalysts feature distinct beneficial assets toward sustainable resource economy. In this Account, I summarize the emergence of electrocatalyzed C-H activation by earth-abundant 3d base metals and beyond, with a topical focus on contributions from our laboratories through November 2019. Thus, cobalt electrocatalysis was identified as a particularly powerful platform for a wealth of C-H transformations, including C-H oxygenations and C-H nitrogenations as well as C-H activations with alkynes, alkenes, allenes, isocyanides, and carbon monoxide, among others. As complementary tools, catalysts based on nickel, copper, and very recently iron have been devised for metalla-electrocatalyzed C-H activations. Key to success were detailed mechanistic insights, prominently featuring oxidation-induced reductive elimination scenarios. Likewise, the development of methods that make use of weak O-coordination benefited from crucial insights into the catalyst's modes of action by experiment, in operando spectroscopy, and computation. Overall, metalla-electrocatalyzed C-H activations have thereby set the stage for molecular syntheses with unique levels of resource economy. These electrooxidative C-H transformations overall avoid the use of chemical oxidants and are frequently characterized by improved chemoselectivities. Hence, the ability to dial in the redox potential at the minimum level required for the desired transformation renders electrocatalysis an ideal platform for the functionalization of structurally complex molecules with sensitive functional groups. This strategy was, inter alia, successfully applied to scale-up by continuous flow and the step-economical assembly of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
43
|
Sen PP, Dagar N, Singh S, Roy VJ, Pathania V, Raha Roy S. Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond formation. Org Biomol Chem 2020; 18:8994-9017. [DOI: 10.1039/d0ob01874k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metallo-electro catalysis has emerged as sustainable alternate to conventional transition metal methodologies. This review highlights the recent advances for the formation of C–N bonds by merging transition metal catalysis with electrosynthesis.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Neha Dagar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Swati Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Vishal Jyoti Roy
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Vishali Pathania
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Sudipta Raha Roy
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|
44
|
Qin Y, Lu J, Zou Z, Hong H, Li Y, Li Y, Chen L, Hu J, Huang Y. Metal-free chemoselective hydrogenation of unsaturated carbon–carbon bonds via cathodic reduction. Org Chem Front 2020. [DOI: 10.1039/d0qo00547a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A straightforward protocol for efficient and highly selective hydrogenation of unsaturated carbon–carbon bonds via electrochemical reduction has been reported.
Collapse
Affiliation(s)
- Yongwei Qin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Jingjun Lu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Zirong Zou
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Huanliang Hong
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Yamei Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Lu Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| |
Collapse
|
45
|
Lai YL, Mo Y, Yan S, Zhang S, Zhu L, Luo J, Guo H, Cai J, Liao J. Electrochemical sulfonylation of alkenes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of (E)-vinyl sulfones in water. RSC Adv 2020; 10:33155-33160. [PMID: 35515034 PMCID: PMC9056656 DOI: 10.1039/d0ra07212e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 01/03/2023] Open
Abstract
An electrochemical sulfonylation of alkenes with sulfonyl hydrazides for the synthesis of (E)-vinyl sulfones in water is reported.
Collapse
Affiliation(s)
- Yin-Long Lai
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Yunyan Mo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Shaoxi Yan
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Shengling Zhang
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Lejie Zhu
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianmin Luo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Huishi Guo
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianpeng Cai
- College of Chemistry and Civil Engineering
- Shaoguan University
- Shaoguan
- P. R. China
| | - Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| |
Collapse
|
46
|
He TJ, Zhong WQ, Huang JM. The synthesis of sulfonated 4H-3,1-benzoxazines via an electro-chemical radical cascade cyclization. Chem Commun (Camb) 2020; 56:2735-2738. [DOI: 10.1039/c9cc09551a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We achieved sulfonated 4H-3,1-benzoxazines under ambient conditions without any metals and external chemical oxidants via electrochemical radical cascade cyclizations.
Collapse
Affiliation(s)
- Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
47
|
Affiliation(s)
- Gerhard Hilt
- Institut für ChemieOldenburg University Carl-von-Ossietzky-Str. 9–11 26129 Oldenburg Germany
| |
Collapse
|