1
|
Cai I, Malig TC, Kurita KL, Derasp JS, Sirois LE, Hein JE. Investigating the Origin of Epimerization Attenuation during Pd-Catalyzed Cross-Coupling Reactions. ACS Catal 2024; 14:12331-12341. [PMID: 39169902 PMCID: PMC11334108 DOI: 10.1021/acscatal.4c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Palladium-catalyzed cross-couplings remain among the most robust methodologies to form carbon-carbon and carbon-heteroatom bonds. In particular, carbon-nitrogen (C-N) couplings (Buchwald-Hartwig aminations) find widespread use in fine chemicals industries. The use of base in these reactions is critical for catalyst activation and proton sequestration. Base selection also plays an important role in process design, as strongly basic conditions can impact sensitive stereocenters and result in erosion of stereochemical purity. Herein we investigate the role of a Pd catalyst in suppressing base-mediated epimerization of a sultam stereocenter during a C-N cross-coupling reaction to access the RORγ inhibitor GDC-0022. Online high-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to acquire reaction time course profiles and to delineate epimerization behavior, identify decomposition pathways, and monitor Pd-containing species. Our ability to monitor organopalladium complexes in real time by HPLC-MS provided strong evidence that the degree of epimerization was correlated to the Pd speciation in solution. Specifically, Pd(II) complexes were associated with mitigating epimerization of six-membered sultams. Additional studies showed that the suppression of epimerization in the presence of Pd(II) can impact Pd-catalyzed reactions of other substrates such as enolizable ketones, thus providing practical insight on the execution and optimization of such processes.
Collapse
Affiliation(s)
- Isabelle Cai
- Department
of Chemistry, The University of British
Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Thomas C. Malig
- Department
of Synthetic Molecule Analytical Chemistry, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Kenji L. Kurita
- Department
of Synthetic Molecule Analytical Chemistry, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Joshua S. Derasp
- Department
of Chemistry, The University of British
Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lauren E. Sirois
- Department
of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jason E. Hein
- Department
of Chemistry, The University of British
Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Department
of Chemistry, University of Bergen, Bergen N-5020, Norway
- Acceleration
Consortium, The University of Toronto, Toronto, Ontario M5G 1X6, Canada
| |
Collapse
|
2
|
Larson NG, Norman JP, Neufeldt SR. Mechanistic Origin of Ligand Effects on Exhaustive Functionalization During Pd-Catalyzed Cross-Coupling of Dihaloarenes. ACS Catal 2024; 14:7127-7135. [PMID: 38911468 PMCID: PMC11192547 DOI: 10.1021/acscatal.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We describe a detailed investigation into why bulky ligands-those that enable catalysis at "12e -" Pd0-tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs. difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e - PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e - PdL(L') by a second incoming ligand L'. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e - PdL(L') from the mono-cross-coupled product. This work has practical implications for optimizing selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that precatalyst structure can also impact selectivity.
Collapse
Affiliation(s)
- Nathaniel G. Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jacob P. Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
3
|
Marigo N, Morgenstern B, Biffis A, Munz D. (CAAC)Pd(py) Catalysts Disproportionate to Pd(CAAC) 2. Organometallics 2023; 42:1567-1572. [PMID: 37448536 PMCID: PMC10337258 DOI: 10.1021/acs.organomet.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 07/15/2023]
Abstract
Palladium complexes with one N-heterocyclic carbene (NHC) and a pyridine ancillary ligand are powerful cross-coupling precatalysts. Herein, we report such complexes with a cyclic (alkyl)(amino)carbene (CAAC) ligand replacing the NHC. We find that the alleged reduced form, (CAAC)Pd(py), disproportionates to the (CAAC)2Pd0 complex and palladium nanoparticles. This notwithstanding, they are potent catalysts in the Buchwald-Hartwig amination with aryl chlorides under mild conditions (60 °C). In the presence of dioxygen, these complexes catalyze the formation of diazenes from anilines. The catalytic activities of the NHC- and CAAC-supported palladium(0) and palladium(II) complexes are similar in the cross-coupling reaction, yet the CAAC complexes are superior for diazene formation.
Collapse
Affiliation(s)
- Nicola Marigo
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova I-35131, Italy
| | - Bernd Morgenstern
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
| | - Andrea Biffis
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova I-35131, Italy
| | - Dominik Munz
- Coordination
Chemistry, Saarland University, Campus C4.1, Saarbrücken D-66123, Germany
| |
Collapse
|
4
|
The applications of organozinc reagents in continuous flow chemistry: Negishi coupling. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Liu T, Hu Y, Shen A. Mechanism of Carbon-Carbon Coupling Reactions Catalyzed by Imine-Ligand-Assisted N-Heterocyclic Carbene Palladium Complexes. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
6
|
Pierce JK, Hiatt LD, Howard JR, Hu H, Qu F, Shaughnessy KH. Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordan K. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Lindsey D. Hiatt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - James R. Howard
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Huaiyuan Hu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
7
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
8
|
Mollar-Cuni A, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA, Vicent C. Introducing Ion Mobility Mass Spectrometry to Identify Site-Selective C-H Bond Activation in N-Heterocyclic Carbene Metal Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2291-2300. [PMID: 36374280 DOI: 10.1021/jasms.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activation of C-H bonds in a selective manner still constitutes a major challenge from a synthetic point of view; thus, it remains an active area of fundamental and applied research. Herein, we introduce ion mobility spectrometry mass spectrometry-based (IM-MS) approaches to uncover site-selective C-H bond activation in a series of metal complexes of general formula [(NHC)LMCl]+ (NHC = N-heterocyclic carbene; L = pentamethylcyclopentadiene (Cp*) or p-cymene; M = Pd, Ru, and Ir). The C-H bond activation at the N-bound groups of the NHC ligand is promoted upon collision induced dissociation (CID). The identification of the resulting [(NHC-H)LM]+ isomers relies on the distinctive topology that such cyclometalated isomers adopt upon site-selective C-H bond activation. Such topological differences can be reliably evidenced as different mobility peaks in their respective CID-IM mass spectra. Alternative isomers are also identified via dehydrogenation at the Cp*/p-cymene (L) ligands to afford [(NHC)(L-H)M]+. The fragmentation of the ion mobility-resolved peaks is also investigated by CID-IM-CID. It enables the assignment of mobility peaks to the specific isomers formed from C(sp2)-H or C(sp3)-H bond activation and distinguishes them from the Cp*/p-cymene (L) dehydrogenation isomers. The conformational change of the NHC ligands upon C-H bond activation, concomitant with cyclometalation, is also discussed on the basis of the estimated collision cross section (CCS). A unique conformation change of the pyrene-tagged NHC members is identified that involves the reorientation of the NHC ring accompanied by a folding of the pyrene moiety.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009Zaragoza, Spain
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Cristian Vicent
- Serveis Centrals d'Intrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071Castellón, Spain
| |
Collapse
|
9
|
Lichte D, Pirkl N, Heinrich G, Dutta S, Goebel JF, Koley D, Gooßen LJ. Palladium-Catalyzed para-C-H Arylation of Anilines with Aromatic Halides. Angew Chem Int Ed Engl 2022; 61:e202210009. [PMID: 36112053 PMCID: PMC9828783 DOI: 10.1002/anie.202210009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/12/2023]
Abstract
Controlling regioselectivity in C-H functionalizations is a key challenge in chemical method development. In arenes, functionalizations are most difficult to direct towards the C-H group furthest away from a substituent, in its para position. We herein demonstrate how the para-C-H arylation of anilines with non-activated aryl halides, elusive to date, is achieved by a base-assisted "metalla-tautomerism" approach. A proton is abstracted from the aniline substrate and replaced by an arylpalladium species, generated from the aryl halide coupling partner. In this step, the palladium is directed away from the N- to the tautomeric para-C-H position by a large phosphine ligand combined with a triphenylmethyl shielding group. The triphenylmethyl group is easily installed and removed, and can be recycled.
Collapse
Affiliation(s)
- Dominik Lichte
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Nico Pirkl
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Gregor Heinrich
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sayan Dutta
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)Kolkata, Mohanpur 741 246India
| | - Jonas F. Goebel
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Debasis Koley
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)Kolkata, Mohanpur 741 246India
| | - Lukas J. Gooßen
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
10
|
Burilov V, Radaev D, Sultanova E, Mironova D, Duglav D, Evtugyn V, Solovieva S, Antipin I. Novel PEPPSI-Type NHC Pd(II) Metallosurfactants on the Base of 1H-Imidazole-4,5-dicarboxylic Acid: Synthesis and Catalysis in Water-Organic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4100. [PMID: 36432382 PMCID: PMC9694788 DOI: 10.3390/nano12224100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Carrying out organic reactions in water has attracted much attention. Catalytic reactions in water with metallosurfactants, which have both a metallocenter and the surface activity necessary for solubilizing hydrophobic reagents, are of great demand. Herein we proposed new approach to the synthesis of NHC PEPPSI metallosurfactants based on the sequential functionalization of imidazole 4,5-dicarboxylic acid with hydrophilic oligoethylene glycol and lipophilic alkyl fragments. Complexes of different lipophilicity were obtained, and their catalytic activity was studied in model reduction and Suzuki-Miyaura reactions. A comparison was made with the commercial PEPPSI-type catalytic systems designed by Organ. It was found that the reduction reaction in an aqueous solution of the metallosurfactant with the tetradecyl lipophilic fragment was three times more active than the commercially available PEPPSI complexes, which was associated with the formation of stable monodisperse aggregates detected by DLS and TEM.
Collapse
Affiliation(s)
- Vladimir Burilov
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Dmitriy Radaev
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Elza Sultanova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Diana Mironova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daria Duglav
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420008 Kazan, Russia
| | - Igor Antipin
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| |
Collapse
|
11
|
Santamaría N, Velasco C, Marín M, Maya C, Nicasio MC. LPdCl 2(amine) complexes supported by terphenyl phosphanes: applications in aryl amination reactions. Dalton Trans 2022; 51:15734-15740. [PMID: 36178081 DOI: 10.1039/d2dt01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the excellent catalytic properties display by NHC-Pd-PEPPSI complexes in cross-coupling, phosphane analogs have been barely screened. In this work, we report the synthesis and characterization of a series of LPdCl2(amine) complexes bearing dialkylterphenyl phosphanes (PR2Ar') and pyridine or morpholine ligands. The novel compounds have been tested as precatalysts in aryl amination reactions. The complex [(PCyp2ArXyl2)PdCl2(morpholine)] shows the best catalytic activity allowing the room-temperature coupling of aryl bromides and chlorides with aniline.
Collapse
Affiliation(s)
- Nazaret Santamaría
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| | - Clara Velasco
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| | - Mario Marín
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - M Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| |
Collapse
|
12
|
Rahman MM, Zhang J, Zhao Q, Feliciano J, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Pd-PEPPSI N-Heterocyclic Carbene Complexes from Caffeine: Application in Suzuki, Heck, and Sonogashira Reactions. Organometallics 2022; 41:2281-2290. [PMID: 38031591 PMCID: PMC10686539 DOI: 10.1021/acs.organomet.2c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first synthesis of Pd-PEPPSI N-heterocyclic carbene complexes derived from the abundant and renewable natural product caffeine is reported. The catalysts bearing 3-chloro-pyridine, pyridine and N-methylimidazole ancillary ligands were readily prepared from the corresponding N9-Me caffeine imidazolium salt by direct deprotonation and coordination to PdX2 in the presence of N-heterocycles or by ligand displacement of PdX2(Het)2. The model Pd-PEPPSI-caffeine complex has been characterized by x-ray crystallography. The complexes were successfully employed in the Suzuki cross-coupling of aryl bromides, Suzuki cross-coupling of amides, Heck cross-coupling and Sonogashira cross-coupling. Computational studies were employed to determine frontier molecular orbitals and bond order analysis of caffeine derived Pd-PEPPSI complexes. This class of catalysts offers an entry to utilize benign and sustainable biomass-derived Xanthine NHC ligands in the popular Pd-PEPPSI systems in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
13
|
Eckert P, Organ MG. Impact of N‐Aryl‐ and NHC Core‐Substituents on the Coupling of Alkylzinc Nucleophiles: Is Bigger always Better? Chemistry 2022; 28:e202200665. [DOI: 10.1002/chem.202200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Philip Eckert
- Centre for Catalysis Research and Innovation (CCRI) Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario, K1N6N5 Canada
| | - Michael G. Organ
- Centre for Catalysis Research and Innovation (CCRI) Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario, K1N6N5 Canada
| |
Collapse
|
14
|
Liang SW, Guo Y, Lee WC, Zeng PR, Lin TH, Xie PZ, Kang HH, Lu IC, Chang YC. Reactivity‐Tunable Palladium Precatalysts with Favorable Catalytic Properties in Suzuki–Miyaura Cross‐Coupling Reactions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siou-Wei Liang
- Providence University Department of Applied Chemistry TAIWAN
| | - Yingjie Guo
- Providence University Department of Cosmetic Science TAIWAN
| | - Wan-Ching Lee
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Pin-Rui Zeng
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Tzu-Hao Lin
- Providence University Department of Applied Chemistry TAIWAN
| | - Pei-Zhen Xie
- Providence University Department of Applied Chemistry TAIWAN
| | - Hsuan-Hao Kang
- Providence University Department of Applied Chemistry TAIWAN
| | - I-Chung Lu
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Yu-Chang Chang
- Providence University Department of Applied Chemistry 200, Sec. 7, Taiwan Boulevard, Shalu Dist. 43301 Taichung TAIWAN
| |
Collapse
|
15
|
Synthesis and characterization of novel PEPPSI type bicyclic (alkyl)(amino)carbene (BICAAC)-Pd complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Zheng DZ, Li DH, Liu H, Shao Y, Ke Z, Liu FS. Bis(imino)acenaphthene (BIAN)-Supported N-Heterocyclic Carbene Palladium Complexes with Ancillary Ligands: Readily Activated Precatalysts for Direct C–H Arylation of Thiophenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Di-Zhong Zheng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Huan Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Youxiang Shao
- School of Materials Science &Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science &Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
17
|
Liu Y, Voloshkin VA, Scattolin T, Peng M, Van Hecke K, Cazin CSJ, Nolan SP. Versatile and highly efficient trans‐[Pd(NHC)Cl2(DMS/THT)] precatalysts for C‐C and C‐N coupling reactions in green solvents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaxu Liu
- Universiteit Gent Chemistry BELGIUM
| | | | | | - Min Peng
- Universiteit Gent Chemistry BELGIUM
| | | | | | | |
Collapse
|
18
|
Ishikawa S, Masuyama Y, Adachi T, Shimonishi T, Morimoto S, Tanabe Y. Synthesis of Naphthaleman Family Utilizing Regiocontrolled Benzannulation: Unique Molecules Composed of Multisubstituted Naphthalenes. ACS OMEGA 2021; 6:32682-32694. [PMID: 34901617 PMCID: PMC8655906 DOI: 10.1021/acsomega.1c04413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The naphthaleman family, a set of uniquely designed visual molecular structures comprising multisubstituted naphthalenes, was synthesized utilizing regiocontrolled benzannulation as a key step. The naphthaleman family possesses a common naphthalene body with a head comprising the 3,4-methylenedioxy group, symmetrical or unsymmetrical right and left arms, and two alkynyl legs. The synthesis involves six C-C bond-forming reaction sequences. (i) syn-Stereoselective gem-dichlorocyclopropanation of methyl angelate (86%). (ii) Acylation with ArMgBr (three examples, 60-91% yield). (iii) Stereocontrolled introduction of the 3,4-methylenedioxyphenyl group (three examples, 67-92% yield). (iv) Crucial regiocontrolled benzannulation to construct a common body segment (71-73% yield). (v) Two Suzuki-Miyaura cross-couplings to install the right or left arms (first-stage route: four examples, 77-93% and second-stage route: four examples, 42-90% yield). (vi) Double alkynylation to insert two legs (first-stage route: four examples, 61-77% yield and second-stage route: sole example, 83% yield). The four core members were produced through both first-stage and second-stage routes, with the second-stage approach demonstrating superiority over the first-stage approach. One of the members was alternatively synthesized by switching the installation order of the right and left arms, and identical twin members were produced by high-performance liquid chromatography chiral separation. The most stable conformations of two naphthaleman family members were calculated by Spartan software.
Collapse
|
19
|
Zhang K, Yao Y, Sun W, Wen R, Wang Y, Sun H, Zhang W, Zhang G, Gao Z. Triazine-wingtips accelerated NHC-Pd catalysed carbonylative Sonogashira cross-coupling reaction. Chem Commun (Camb) 2021; 57:13020-13023. [PMID: 34807198 DOI: 10.1039/d1cc05280b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transmetalation as the rate-limiting step was effectively accelerated by newly designed N-heterocyclic carbenes with triazine wingtips (T-NHC). By using a ppm-level precatalyst T-NHC-Pd (8), the highly efficient coupling of aryl iodide, alkyne and carbon monoxide furnished a variety of ynone compounds. T-NHC-Pd (5), which deprotonated 4-methyl-phenylacetylene under mild conditions, converted into alkynyl-coordinated catalytic active species PdCl(T-NHC)(Py)(alkynyl). In the putative Pd/Pd catalytic cycle, both triazine-wingtips and NHCs are key players for establishing the carbonylative cross-couplings with high TON and TOF.
Collapse
Affiliation(s)
- Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Yanxiu Yao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Wenjin Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Rui Wen
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China. .,School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P. R. China
| |
Collapse
|
20
|
Buchwald–Hartwig reaction: an update. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ovezova M, Eroğlu Z, Metin Ö, Çetinkaya B, Gülcemal S. Unveiling the catalytic nature of palladium-N-heterocyclic carbene catalysts in the α-alkylation of ketones with primary alcohols. Dalton Trans 2021; 50:10896-10908. [PMID: 34308936 DOI: 10.1039/d1dt01704g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the synthesis of four new Pd-PEPPSI complexes with backbone-modified N-heterocyclic carbene (NHC) ligands and their application as catalysts in the α-alkylation of ketones with primary alcohols using a borrowing hydrogen process and tandem Suzuki-Miyaura coupling/α-alkylation reactions. Among the synthesized Pd-PEPPSI complexes, complex 2c having 4-methoxyphenyl groups at the 4,5-positions and 4-methoxybenzyl substituents on the N-atoms of imidazole exhibited the highest catalytic activity in the α-alkylation of ketones with primary alcohols (18 examples) with yields reaching up to 95%. Additionally, complex 2c was demonstrated to be an effective catalyst for the tandem Suzuki-Miyaura-coupling/α-alkylation of ketones to give biaryl ketones with high yields. The heterogeneous nature of the present catalytic system was verified by mercury poisoning and hot filtration experiments. Moreover, the formation of NHC-stabilized Pd(0) nanoparticles during the α-alkylation reactions was identified by advanced analytical techniques.
Collapse
Affiliation(s)
- Mamajan Ovezova
- Department of Chemistry, Ege University, 35100 Izmir, Turkey.
| | - Zafer Eroğlu
- Department of Chemistry, College of Sciences, Koç University, 34450 Istanbul, Turkey. and Nanoscience and Nanoengineering Division, Graduate School of Natural and Applied Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, 34450 Istanbul, Turkey.
| | - Bekir Çetinkaya
- Department of Chemistry, Ege University, 35100 Izmir, Turkey.
| | | |
Collapse
|
22
|
Palani V, Perea MA, Sarpong R. Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. Chem Rev 2021; 122:10126-10169. [PMID: 34402611 DOI: 10.1021/acs.chemrev.1c00513] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Methods to functionalize arenes and heteroarenes in a site-selective manner are highly sought after for rapidly constructing value-added molecules of medicinal, agrochemical, and materials interest. One effective approach is the site-selective cross-coupling of polyhalogenated arenes bearing multiple, but identical, halogen groups. Such cross-coupling reactions have proven to be incredibly effective for site-selective functionalization. However, they also present formidable challenges due to the inherent similarities in the reactivities of the halogen substituents. In this Review, we discuss strategies for site-selective cross-couplings of polyhalogenated arenes and heteroarenes bearing identical halogens, beginning first with an overview of the reaction types that are more traditional in nature, such as electronically, sterically, and directing-group-controlled processes. Following these examples is a description of emerging strategies, which includes ligand- and additive/solvent-controlled reactions as well as photochemically initiated processes.
Collapse
Affiliation(s)
- Vignesh Palani
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Melecio A Perea
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Garypidou A, Ypsilantis K, Tsolis T, Kourtellaris A, Plakatouras JC, Garoufis A. Synthesis and characterization of mixed ligand cyclopalladates with 2-phenylpyridine and substituted phenanthrolines: Investigation into the hydroxylation reaction of 2-phenylpyridine. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Kılıç-Cıkla I, Şahin N, Özdemir N, Gürbüz N, Özdemir İ. Pd-PEPPSI: X-ray Structure, Spectroscopic Analyses, and Quantum Mechanical Studies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s003602442114003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ahmadvand Z, Bayat M. Competition between the Hiyama and Suzuki–Miyaura Pd-catalyzed cross-coupling reaction mechanisms for the formation of some regioselective derivatives of quinoxaline and benzofuran; Which reaction mechanism is more favorable? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Razgoniaev AO, Glasstetter LM, Kouznetsova TB, Hall KC, Horst M, Craig SL, Franz KJ. Single-Molecule Activation and Quantification of Mechanically Triggered Palladium-Carbene Bond Dissociation. J Am Chem Soc 2021; 143:1784-1789. [PMID: 33480680 DOI: 10.1021/jacs.0c13219] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-complexed N-heterocyclic carbene (NHC) mechanophores are latent reactants and catalysts for a range of mechanically driven chemical responses, but mechanochemical scission of the metal-NHC bond has not been experimentally characterized. Here we report the single-molecule force spectroscopy of ligand dissociation from a pincer NHC-pyridine-NHC Pd(II) complex. The force-coupled rate constant for ligand dissociation reaches 50 s-1 at forces of approximately 930 pN. Experimental and computational observations support a dissociative, rather than associative, mechanism of ligand displacement, with rate-limiting scission of the Pd-NHC bond followed by rapid dissociation of the pyridine moiety from Pd.
Collapse
Affiliation(s)
- Anton O Razgoniaev
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Logan M Glasstetter
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kacey C Hall
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matias Horst
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Khan S, Buğday N, Yaşar S, Ullah N, Özdemir İ. Pd-N-heterocyclic carbene complex catalysed C–H bond activation of 2-isobutylthiazole at the C5 position with aryl bromides. NEW J CHEM 2021. [DOI: 10.1039/d1nj00514f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An effective and efficient catalytic system has been reported for the synthesis of C5-arylated 2-isobutylthiazoles.
Collapse
Affiliation(s)
- Siraj Khan
- Quaid-i-Azam University
- Faculty of Biological Sciences
- Department of Pharmacy
- Islamabad
- Pakistan
| | - Nesrin Buğday
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| | - Sedat Yaşar
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| | - Naseem Ullah
- Quaid-i-Azam University
- Faculty of Biological Sciences
- Department of Pharmacy
- Islamabad
- Pakistan
| | - İsmail Özdemir
- İnönü University
- Faculty of Science and art
- Department of Chemistry
- Malatya
- Turkey
| |
Collapse
|
28
|
Gangwar MK, Butcher RJ. Chiral tricyclic triazolooxazine derived mesoionic carbene (MIC)-Pd(II) complexes of cyclohexene oxide scaffold: Synthesis, structure, and characterizations. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Espinosa MR, Doppiu A, Hazari N. Differences in the Performance of Allyl Based Palladium Precatalysts for Suzuki-Miyaura Reactions. Adv Synth Catal 2020; 362:5062-5078. [PMID: 33384575 DOI: 10.1002/adsc.202000987] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Palladium(II) precatalysts are used extensively to facilitate cross-coupling reactions because they are bench stable and give high activity. As a result, precatalysts such as Buchwald's palladacycles, Organ's PEPPSI species, Nolan's allyl-based complexes, and Yale's 1-tert-butylindenyl containing complexes, are all commercially available. Comparing the performance of the different classes of precatalysts is challenging because they are typically used under different conditions, in part because they are reduced to the active species via different pathways. However, within a particular class of precatalyst, it is easier to compare performance because they activate via similar pathways and are used under the same conditions. Here, we evaluate the activity of different allyl-based precatalysts, such as (η3-allyl)PdCl(L), (η3-crotyl)PdCl(L), (η3-cinnamyl)PdCl(L), and (η3-1-tert-butylindenyl)PdCl(L) in Suzuki-Miyaura reactions. Specifically, we evaluate precatalyst performance as the ancillary ligand (NHC or phosphine), reaction conditions, and substrates are varied. In some cases, we connect relative activity to both the mechanism of activation and the prevalence of the formation of inactive palladium(I) dimers. Additionally, we compare the performance of in situ generated precatalysts with commonly used palladium sources such as tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3), bis(acetonitrile)dichloropalladium(II) (Pd(CH3CN)2Cl2), and palladium acetate. Our results provide information about which precatalyst to use under different conditions.
Collapse
Affiliation(s)
- Matthew R Espinosa
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Angelino Doppiu
- Precious Metals Chemistry, Umicore AG & Co. KG, Rodenbacher Chaussee 4, Hanau-Wolfgang, Germany
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| |
Collapse
|
30
|
Scherpf T, Steinert H, Großjohann A, Dilchert K, Tappen J, Rodstein I, Gessner VH. Efficient Pd-Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angew Chem Int Ed Engl 2020; 59:20596-20603. [PMID: 32725943 PMCID: PMC7692947 DOI: 10.1002/anie.202008866] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Organolithium compounds are amongst the most important organometallic reagents and frequently used in difficult metallation reactions. However, their direct use in the formation of C-C bonds is less established. Although remarkable advances in the coupling of aryllithium compounds have been achieved, Csp2 -Csp3 coupling reactions are very limited. Herein, we report the first general protocol for the coupling or aryl chlorides with alkyllithium reagents. Palladium catalysts based on ylide-substituted phosphines (YPhos) were found to be excellently suited for this transformation giving high selectivities at room temperature with a variety of aryl chlorides without the need for an additional transmetallation reagent. This is demonstrated in gram-scale synthesis including building blocks for materials chemistry and pharmaceutical industry. Furthermore, the direct coupling of aryllithiums as well as Grignard reagents with aryl chlorides was also easily accomplished at room temperature.
Collapse
Affiliation(s)
- Thorsten Scherpf
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Henning Steinert
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Angela Großjohann
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Katharina Dilchert
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Jens Tappen
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Ilja Rodstein
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Viktoria H. Gessner
- Faculty of Chemistry and BiochemistryChair of Inorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
31
|
Kumar A, Kumar M, Verma AK. Well-Defined Palladium N-Heterocyclic Carbene Complexes: Direct C-H Bond Arylation of Heteroarenes. J Org Chem 2020; 85:13983-13996. [PMID: 33064481 DOI: 10.1021/acs.joc.0c02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of palladium N-heterocyclic carbene (NHC) complexes of type trans-{(NHC)PdCl2L} (L = C5H5N, 3-ClC5H4N, and PPh3) (3-5) have been developed as efficient precatalysts for direct C-H bond arylation of various heteroarenes. In particular, an in situ generated new NHC ligand derived from {1,3-di-(2,6-diethylphenyl)acenaphtho[1,2-d] imidazolium} chloride (2) is used for the stabilization of the palladium metal center. Among the screened palladium precatalysts (3-5), the most active PEPPSI themed complex (3) was successfully employed toward direct C-H bond arylation of various heteroarenes and aryl bromides. A range of functional groups on aryl bromides as well as on heteroarenes sustained throughout the standard reaction conditions for easy access of various arylated heterocyclic compounds. Significantly, the utility of the protocol was demonstrated by the effective synthesis of a precursor of raloxifene, a selective estrogen receptor modulator.
Collapse
Affiliation(s)
- Anuj Kumar
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Manoj Kumar
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
32
|
Biological Activities of NHC–Pd(II) Complexes Based on Benzimidazolylidene N-heterocyclic Carbene (NHC) Ligands Bearing Aryl Substituents. Catalysts 2020. [DOI: 10.3390/catal10101190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-heterocyclic carbene (NHC) precursors (2a–i), their pyridine-enhanced precatalyst preparation stabilization and initiation (PEPPSI)-themed palladium N-heterocyclic carbene complexes (3a–i) and palladium N-heterocyclic triphenylphosphines complexes (4a–i) were synthesized and characterized by elemental analysis and 1H NMR, 13C NMR, IR, and LC–MS spectroscopic techniques. The (NHC)Pd(II) complexes 3–4 were tested against MCF7 and MDA-MB-231 cancer cells, Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Candida albicans microorganisms, Leishmania major promastigotes and amastigotes, Toxoplasma gondii parasites, and Vero cells in vitro. The biological assays indicated that all compounds are highly active against cancer cells, with an IC50 < 1.5 µg mL−1. Eight compounds proved antibacterial and antileishmanial activities, while only three compounds had strong antifungal activities against C. albicans. In our conclusion, compounds 3 (b, f, g, and h) and 4b are the most suitable drug candidates for anticancer, antimicrobial, and antiparasitical.
Collapse
|
33
|
Ahmadvand Z, Bayat M, Zolfigol MA. Toward prediction of the precatalyst activation mechanism through the cross-coupling reactions: Reduction of Pd(II) to Pd(0) in precatalyst of the type Pd-PEPPSI. J Comput Chem 2020; 41:2296-2309. [PMID: 32757323 DOI: 10.1002/jcc.26393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
Pd-PEPPSI type complexes are widely used as precatalyst in a variety of organic reactions, including the Negishi, Kumada and Suzuki-Miyaura cross-coupling reactions. The aim of this research is to determine potential proposed reaction pathways 1, 2, or 2' (See Schemes 1 and S1-S4) for Pd-PEPPSI precatalyst activation in the presence of ethylene glycol as a solvent also in the gas phase at Cam-B3LYP-D3 method nominated among eight DFT methods examined. There is also investigation into the impact of promoter bases (NaOEt, NaOi Pr, NaOt Bu) on precatalyst activation of Pd-PEPPSI. Eventually, the most favorable proposed reaction pathway and promoter base for reducing Pd(II) to Pd(0) are predicted computationally. Notably, our findings are consistent with the organ Pd-PEPPSI type complexes that offer increased catalytic activity and provide basic information in the presence of solvents designing the monoligated Pd(0)-solvent.
Collapse
Affiliation(s)
- Zeinab Ahmadvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Bayat
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
34
|
Palladium PEPPSI-IPr Complex Supported on a Calix[8]arene: A New Catalyst for Efficient Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysts 2020. [DOI: 10.3390/catal10091081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report here the synthesis and characterization of a new calix[8]arene-supported PEPPSI-IPr Pd polymetallic complex. This complex, showing greater steric hindrance around the Pd centers compared with previous calix[8]arene-based catalysts, demonstrated high reactivity and selectivity for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions. Along with this good performance, the new catalyst showed low Pd leaching into the final Suzuki–Miyaura coupling products, indicative of a heterogeneous-type reactivity. This rare combination of good reactivity towards challenging substrates and low metal leaching offers great promise at both academic and industrial levels.
Collapse
|
35
|
Scherpf T, Steinert H, Großjohann A, Dilchert K, Tappen J, Rodstein I, Gessner VH. Efficient Pd‐Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thorsten Scherpf
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Henning Steinert
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Angela Großjohann
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Katharina Dilchert
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Jens Tappen
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Ilja Rodstein
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Viktoria H. Gessner
- Faculty of Chemistry and Biochemistry Chair of Inorganic Chemistry Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
36
|
Hu H, Gilliam AM, Qu F, Shaughnessy KH. Enolizable Ketones as Activators of Palladium(II) Precatalysts in Amine Arylation Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huaiyuan Hu
- Department of Chemistry and Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Ashley M. Gilliam
- Department of Chemistry and Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry and Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
37
|
Pertschi R, Hatey D, Pale P, de Frémont P, Blanc A. Synthesis, Characterization, and Catalytic Activity of Chiral NHC Platinum(II) Pyridine Dihalide Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Romain Pertschi
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Delphine Hatey
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Pierre de Frémont
- Synthèse, Réactivité et Catalyse Organométalliques (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
38
|
NHC-Pd(II)-azole complexes catalyzed Suzuki–Miyaura cross-coupling of sterically hindered aryl chlorides with arylboronic acids. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Chen YC, Faver JC, Ku AF, Miklossy G, Riehle K, Bohren KM, Ucisik MN, Matzuk MM, Yu Z, Simmons N. C-N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2020; 31:770-780. [PMID: 32019312 PMCID: PMC7086399 DOI: 10.1021/acs.bioconjchem.9b00863] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
DNA-encoded
chemical library (DECL) screens are a rapid and economical
tool to identify chemical starting points for drug discovery. As a
robust transformation for drug discovery, palladium-catalyzed C–N
coupling is a valuable synthetic method for the construction of DECL
chemical matter; however, currently disclosed methods have only been
demonstrated on DNA-attached (hetero)aromatic iodide and bromide electrophiles.
We developed conditions utilizing an N-heterocyclic
carbene–palladium catalyst that extends this reaction to the
coupling of DNA-conjugated (hetero)aromatic chlorides with (hetero)aromatic
and select aliphatic amine nucleophiles. In addition, we evaluated
steric and electronic effects within this catalyst series, carried
out a large substrate scope study on two representative (hetero)aryl
bromides, and applied this newly developed method within the construction
of a 63 million-membered DECL.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - John C Faver
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Angela F Ku
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Gabriella Miklossy
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kevin Riehle
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kurt M Bohren
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Melek N Ucisik
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nicholas Simmons
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
40
|
Yang J, Lu J, Wang T, Zhao Y, Zhu G. A series of (NHC)Pd(N
˄
O)(OAc) complexes: synthesis, characterization and catalytic activities towards desulfinative Sonogashira coupling of arylsulfonyl hydrazides with arylalkynes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jin Yang
- School of Chemistry and Materials ScienceHuaibei Normal University Huaibei Anhui 235000 P R China
| | - Jian‐Zhong Lu
- School of Chemistry and Materials ScienceHuaibei Normal University Huaibei Anhui 235000 P R China
| | - Tian Wang
- School of Chemistry and Materials ScienceHuaibei Normal University Huaibei Anhui 235000 P R China
| | - Ya‐Yu Zhao
- School of Chemistry and Materials ScienceHuaibei Normal University Huaibei Anhui 235000 P R China
| | - Guang‐Hao Zhu
- School of Chemistry and Materials ScienceHuaibei Normal University Huaibei Anhui 235000 P R China
| |
Collapse
|
41
|
Almallah H, Brenner E, Matt D, Jahjah M, Hijazi A, Gourlaouen C. Anagostic Interactions in Alkyl-Fluorenyl-Substituted N‐Heterocyclic Carbene Complexes of Palladium(II). Aust J Chem 2020. [DOI: 10.1071/ch19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two imidazolylidene (Im) complexes of the general formula trans-[PdX2(Im)(pyridine)] (X=Cl (2), Br (3)), in which the N-heterocyclic carbene ligand has one of its nitrogen atoms substituted by a bulky 9-propyl-9-fluorenyl group (PrF), have been prepared and fully characterised by spectroscopic methods and single-crystal X-ray structure analyses. In the solid state, the Im ring plane and the coordination plane of each complex are nearly orthogonal, thereby minimising the steric interactions between the N-substituents and the halide atoms. In both structures two methylenic C–H bonds sit near the dz2 axis point to the palladium atom, resulting in CH⋯Pd separations of 2.58/2.95Å in 2 and 2.74/2.74Å in 3. NMR measurements and DFT calculations indicate that these methylene groups are involved in anagostic CH⋯M interactions but not in significant H⋯X bonding.
Collapse
|
42
|
Labattut A, Abi Fayssal S, Buendia J, Abdellah I, Huc V, Martini C, Schulz E. Calixarene-supported Pd–NHC complexes as efficient catalysts for scalable Suzuki–Miyaura cross-couplings. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00118j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calixarene-supported PEPPSI-catalysts deliver high yielding and almost Pd trace-free Suzuki–Miyaura coupling products.
Collapse
Affiliation(s)
- Axel Labattut
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | - Sandra Abi Fayssal
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | | | - Ibrahim Abdellah
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | - Vincent Huc
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | | | - Emmanuelle Schulz
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| |
Collapse
|
43
|
Kaloğlu M, Gürbüz N, Yıldırım İ, Özdemir N, Özdemir İ. Well‐defined PEPPSI‐themed palladium–NHC complexes: synthesis, and catalytic application in the direct arylation of heteroarenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistryİnönü University 44280 Malatya Turkey
- Catalysis Research and Application Centerİnönü University 44280 Malatya Turkey
| | - Nevin Gürbüz
- Faculty of Science and Arts, Department of Chemistryİnönü University 44280 Malatya Turkey
- Catalysis Research and Application Centerİnönü University 44280 Malatya Turkey
| | - İlkay Yıldırım
- Vocational School of Health Services, Department of RadiotherapyBiruni University 34010 İstanbul Turkey
| | - Namık Özdemir
- Faculty of Education Department of Mathematics and Science EducationOndokuz Mayıs University 55139 Samsun Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistryİnönü University 44280 Malatya Turkey
- Catalysis Research and Application Centerİnönü University 44280 Malatya Turkey
| |
Collapse
|
44
|
Zhang Y, Han F, Zhang M, Zhang H, Li Y, Wang R, Zeng Y, Liu G. Highly Active Pd-PEPPSI Complexes for Suzuki-Miyaura Cross-coupling of Aryl Chlorides: an Investigation on the Effect of Electronic Properties. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9222-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Fowler JM, Britton E, Pask CM, Willans CE, Hardie MJ. Cyclotriveratrylene-tethered trinuclear palladium(ii)-NHC complexes; reversal of site selectivity in Suzuki-Miyaura reactions. Dalton Trans 2019; 48:14687-14695. [PMID: 31538177 DOI: 10.1039/c9dt03400e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The trinuclear complexes [{PdI2(pyCl)}3(L1)] C1 and [{PdI2(pyCl)}3(L2)] C2, where pyCl = 3-chloropyridine, L1 = methyl(cyclotriguaiacylenyl)methylbenzimidazol-2-ylidene and L2 = benzyl(cyclotriguaiacylenyl)methylbenzimidazol-2-ylidene, each feature three palladium N-heterocyclic carbene (NHC) centres tethered onto a host-type cyclotriguaiacylene scaffold. Crystal structures of different solvates of complex C1 reveal different host-guest motifs including intra-cavity binding of dioxane guests concomitant with intramolecular halogen bonding interactions of C1. Mononuclear NHC analogues of C1 and C2, namely [PdI2(pyCl)(L3)] C3 and [PdI2(pyCl)(L4)] C4, where L3 = (3-chloropyridyl)-1-(2-methoxyphenyoxy)methyl-3-methylbenzimidazol-2-ylidene and L4 = (3-chloropyridyl)-1-(2-methoxyphenyoxy)methyl-3-benzylbenzimidazol-2-ylidene, were also synthesised and their crystal structures determined. Complexes C1-C4 are competent catalysts for Suzuki Miyaura cross-coupling, and interestingly exhibit a switch in the normal regioselectivity observed for reactions of 2,4-dibromopyridine with aryl boronic acids, usually C2-selective, yielding C4-arylated product preferentially over C2-arylated product.
Collapse
Affiliation(s)
- Jonathan M Fowler
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
46
|
Shaughnessy KH. Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species. Isr J Chem 2019. [DOI: 10.1002/ijch.201900067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevin H. Shaughnessy
- Department of Chemistry & Biochemistry The University of Alabama Tuscaloosa AL 35487-0336 USA
| |
Collapse
|
47
|
Yan L, Han L, Xie R. Synthesis and catalytic performance of 2-ferrocenylpyridine palladacycle complexes. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1662898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ligang Yan
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, China
| | - Ruijun Xie
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
48
|
Karataş MO, Çalgın G, Alıcı B, Gökçe B, Gençer N, Taşkın Tok T, Arslan O, Kılıç‐Cıkla I, Özdemir N. Inhibition of paraoxonase 1 by coumarin‐substituted N‐heterocyclic carbene silver(I), ruthenium(II) and palladium(II) complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mert Olgun Karataş
- Faculty of Arts and Science, Department of Chemistryİnönü University +9044280 Malatya Turkey
| | - Gamze Çalgın
- Faculty of Arts and Science, Department of Chemistryİnönü University +9044280 Malatya Turkey
| | - Bülent Alıcı
- Faculty of Arts and Science, Department of Chemistryİnönü University +9044280 Malatya Turkey
| | - Başak Gökçe
- Faculty of Pharmacy, Department of BiochemistrySüleymen Demirel University +9032260 Isparta Turkey
| | - Nahit Gençer
- Faculty of Arts and Science, Department of ChemistryBalıkesir University +9010440 Balıkesir Turkey
| | - Tuğba Taşkın Tok
- Faculty of Arts and Science, Department of ChemistryGaziantep University +9027310 Gaziantep Turkey
| | - Oktay Arslan
- Faculty of Arts and Science, Department of ChemistryBalıkesir University +9010440 Balıkesir Turkey
| | - Işın Kılıç‐Cıkla
- Department of General SecretaryOndokuz Mayıs University +9055139 Samsun Turkey
| | - Namık Özdemir
- Faculty of Education, Department of Mathematics and Science EducationOndokuz Mayıs University +9055139 Samsun Turkey
| |
Collapse
|
49
|
|
50
|
Ingoglia BT, Wagen CC, Buchwald SL. Biaryl Monophosphine Ligands in Palladium-Catalyzed C-N Coupling: An Updated User's Guide. Tetrahedron 2019; 75:4199-4211. [PMID: 31896889 DOI: 10.1016/j.tet.2019.05.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past three decades, Pd-catalyzed cross-coupling reactions have become a mainstay of organic synthesis. In particular, catalysts derived from biaryl monophosphines have shown wide utility in forming C-N bonds under mild reaction conditions. This work summarizes a variety of C-N cross-coupling reactions using biaryl monophosphines as supporting ligands, with the goal of directing synthetic chemists towards the ligands and conditions best suited for a particular coupling.
Collapse
Affiliation(s)
- Bryan T Ingoglia
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Corin C Wagen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|