1
|
Dhaini B, Arnoux P, Daouk J, Lux F, Tillement O, Hagège A, Hamieh T, Shafirstein G, Frochot C. Energy Transfer between AGuIX Nanoparticles and Photofrin under Light or X-ray Excitation for PDT Applications. Pharmaceuticals (Basel) 2024; 17:1033. [PMID: 39204138 PMCID: PMC11357330 DOI: 10.3390/ph17081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Photodynamic therapy is an accepted therapy cancer treatment. Its advantages encourage researchers to delve deeper. The use of nanoparticles in PDT has several advantages including the passive targeting of cancer cells. The aim of this article is to evaluate the effectiveness of AGuIX nanoparticles (activation and guiding of irradiation by X-ray) in the presence or absence of a photosensitizer, Photofrin, under illumination of 630 nm or under X-ray irradiation. The goal is to improve local tumor control by combining PDT with low-dose-X-ray-activated NPs in the treatment of locally advanced metastatic lung cancer. The study of the energy transfer, which occurs after excitation of Gd/Tb chelated in AGuIX in the presence of Photofrin, was carried out. We could observe the formation of singlet oxygen after the light or X-ray excitation of Gd and Tb that was not observed for AGuIX or Photofrin alone, proving that it is possible to realize energy transfer between both compounds.
Collapse
Affiliation(s)
- Batoul Dhaini
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences I, Lebanese University, Beirut 1102, Lebanon
| | - Philippe Arnoux
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
| | - Joël Daouk
- Université de Lorraine, CNRS, CRAN, 54505 Vandoeuvre-les-Nancy, France;
| | - François Lux
- Université de Lyon, CNRS, ILM, 69007 Lyon, France; (F.L.); (O.T.)
| | | | - Agnès Hagège
- Université Claude Bernard Lyon 1, CNRS, ISA, 69100 Villeurbanne, France (T.H.)
| | - Tayssir Hamieh
- Université Claude Bernard Lyon 1, CNRS, ISA, 69100 Villeurbanne, France (T.H.)
- Faculty of Science and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Gal Shafirstein
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14226, USA;
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
| |
Collapse
|
2
|
Chargari C, Maury P, Texier M, Genestie C, Morice P, Bockel S, Gouy S, Ba M, Achkar S, Lux F, Tillement O, Dufort S, Duc GLE, Debeaumont O, Massard C, Maulard A, Porcel E, Bahleda R, Ammari S, Morel D, Espenel S, Pautier P, Robert C, Deutsch E. Theragnostic Gadolinium-Based Nanoparticles Safely Augment X-ray Radiation Effects in Patients with Cervical Cancer. ACS NANO 2024; 18:16516-16529. [PMID: 38912600 DOI: 10.1021/acsnano.3c12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Activated guided irradiation by X-ray (AGuIX) nanoparticles are gadolinium-based agents that have the dual benefit of mimicking the effects of a magnetic resonance imaging (MRI) contrast agent used in a clinical routine and enhancing the radiotherapeutic activity of conventional X-rays (for cancer treatment). This "theragnostic" action is explained on the one hand by the paramagnetic properties of gadolinium and on the other hand by the generation of high densities of secondary radiation following the interaction of ionizing radiation and high-Z atoms, which leads to enhanced radiation dose deposits within the tumors where the nanoparticles accumulate. Here, we report the results of a phase I trial that aimed to assess the safety and determine the optimal dose of AGuIX nanoparticles in combination with chemoradiation and brachytherapy in patients with locally advanced cervical cancer. AGuIX nanoparticles were administered intravenously and appropriately accumulated within tumors on a dose-dependent manner, as assessed by T1-weighted MRI, with a rapid urinary clearance of uncaught nanoparticles. We show that the observed tumor accumulation of the compounds can support precise delineation of functional target volumes at the time of brachytherapy based on gadolinium enhancement. AGuIX nanoparticles combined with chemoradiation appeared well tolerated among the 12 patients treated, with no dose-limiting toxicity observed. Treatment yielded excellent local control, with all patients achieving complete remission of the primary tumor. One patient had a distant tumor recurrence. These results demonstrate the clinical feasibility of using theranostic nanoparticles to augment the accuracy of MRI-based treatments while focally enhancing the radiation activity in tumors.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Pauline Maury
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Matthieu Texier
- Biostatistics Unit, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Catherine Genestie
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Philippe Morice
- Department of Surgery, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Sébastien Gouy
- Department of Surgery, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Mouhamadou Ba
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69622 Villeurbanne, France
- Institut Universitaire de France, 75231 Paris, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69622 Villeurbanne, France
| | | | | | | | - Christophe Massard
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy Cancer Campus, Villejuif 94805, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- University Paris-Saclay Faculty of Medicine, Le Kremlin, Bicêtre 94270, France
| | - Amandine Maulard
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Ratislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Samy Ammari
- Department of Radiology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Daphné Morel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Sophie Espenel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Patricia Pautier
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- University Paris-Saclay Faculty of Medicine, Le Kremlin, Bicêtre 94270, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- INSERM1030 Molecular Radiotherapy and Therapeutic Innovation Gustave Roussy Cancer Campus, Villejuif 94805, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif 94805, France
- University Paris-Saclay Faculty of Medicine, Le Kremlin, Bicêtre 94270, France
| |
Collapse
|
3
|
Tarin M, Babaei M, Eshghi H, Matin MM, Saljooghi AS. Targeted delivery of elesclomol using a magnetic mesoporous platform improves prostate cancer treatment both in vitro and in vivo. Talanta 2024; 270:125539. [PMID: 38141466 DOI: 10.1016/j.talanta.2023.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND To improve the anticancer properties of elesclomol (ELC), targeted theranostic nanoparticles (NPs; APT-PEG-Au-MMNPs@ELC) were designed to increase the selectivity of the drug delivery system (DDS). MATERIALS AND METHODS ELC was synthesized and entrapped in the open porous structure of magnetic mesoporous silica nanoparticles (MMNPs). The pore entrance of MMNPs was then blocked using gold gatekeepers. Finally, the external surfaces of the particles were grafted with functional polyethylene glycol (PEG) and EpCAM aptamer to generate biocompatible and targeted NPs. In the next step, the physicochemical properties of prepared NPs were fully evaluated and their anticancer potential was evaluated both in vitro and in vivo. RESULTS The targeted NPs were successfully synthesized with a final size diameter of 81.13 ± 7.41 nm. The results indicated a pH-dependent release pattern, which sustained for 72 h despite an initial rapid release. Upon exposure to APT-PEG-Au-MMNPs@ELC, higher cytotoxicity was observed in human prostate cancer cells (PC-3) as compared with control Chinese hamster ovary (CHO) cells, indicating higher specificity of targeted NPs against EpCAM-positive cancerous cells. Moreover, APT-PEG-Au-MMNPs@ELC could induce apoptosis in PC-3 cells. In vivo results on a PC-3 xenograft tumor model demonstrated that targeted NPs could significantly inhibit tumor growth and diminish severe side effects of ELC, compared to the free drug. CONCLUSION Collectively, APT-PEG-Au-MMNPs@ELC could be considered a promising theranostic platform for the targeted delivery of ELC to improve its therapeutic effects in prostate cancer.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Carmès L, Bort G, Lux F, Seban L, Rocchi P, Muradova Z, Hagège A, Heinrich-Balard L, Delolme F, Gueguen-Chaignon V, Truillet C, Crowley S, Bello E, Doussineau T, Dougan M, Tillement O, Schoenfeld JD, Brown N, Berbeco R. AGuIX nanoparticle-nanobody bioconjugates to target immune checkpoint receptors. NANOSCALE 2024; 16:2347-2360. [PMID: 38113032 DOI: 10.1039/d3nr04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.
Collapse
Affiliation(s)
- Léna Carmès
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Guillaume Bort
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Curie, PSL Research University, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Universitaire de France (IUF), Paris, France
| | - Léa Seban
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Paul Rocchi
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Agnès Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 69100, Villeurbanne, France
| | - Laurence Heinrich-Balard
- Université Lyon 1, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Frédéric Delolme
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Virginie Gueguen-Chaignon
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Stephanie Crowley
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elisa Bello
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Needa Brown
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
- Department of Physics, Northeastern University, Boston 02115, USA.
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
5
|
Nakamura M, Mochizuki C, Kuroda C, Shiohama Y, Nakamura J. Size effect of fluorescent thiol-organosilica particles on their distribution in the mouse spleen. Colloids Surf B Biointerfaces 2023; 228:113397. [PMID: 37348267 DOI: 10.1016/j.colsurfb.2023.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
We investigated the distribution of intravenously administered thiol-organosilica particle (thiol-OS) in the spleen to evaluate their size effect in mice. A single administration of particles of thiol-OS containing rhodamine B (Rh) (90, 280, 340, 450, 630, 1110, 1670, and 3030 nm in diameter) was performed. After 24 h, we conducted a combination analysis using histological studies by fluorescent microscopy and quantitative inductively coupled plasma optical emission spectrometry (ICP-OES), which revealed no clear correlation between the particle size and spleen uptake of particle weight and number per tissue weight, and the injection dose. Moreover, Rh with 450 nm diameter (Rh450) showed the highest uptake, and Rh with 340 nm diameter (Rh340) showed the lowest uptake. Histologically, large fluorescent areas in the marginal zone (MZ) and red pulp (RP) of the spleen were observed for all particle sizes, but less in the follicle of white pulp. Using combination analysis using the particle weights of ICP-OES and the fluorescent area, we compared the distributions of each particle in each region. Rh450 had the largest accumulated weight in the MZ and RP. Particles larger than Rh450 showed negative correlations between their sizes and accumulated weight in the MZ and RP. Simultaneous dual administration of particles using Rhs and thiol-OS containing fluorescein (90 nm in diameter) showed the size-dependent difference in cellular distribution and intracellular localization. Immunohistochemical staining against macrophage markers, CD169, and F4/80 showed various colocalization patterns with macrophages that uptook particles, indicating differences in particle uptake in each macrophage may have novel significance.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Chika Kuroda
- Yamaguchi University Faculty of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
6
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from 68Ga positrons is involved in nanoscintillator and photosensitizer activation, the cytotoxic effect obtained by PDT remains controversial. Herein, we tested whether free 68Ga could substitute X-rays of X-PDT to obtain a cytotoxic phototherapeutic effect. Results were compared with those obtained with AGuIX@Gd-P1 nanoparticles. We showed, by Monte Carlo simulations, the contribution of Tb scintillation in P1 activation by an energy transfer between Tb and P1 after Cerenkov radiation, compared to the Gd-based nanoparticles. We confirmed the involvement of the type II PDT reaction during 68Ga-mediated Cerenkov luminescence, id est, the transfer of photon to AGuIX@Tb-P1 which, in turn, generated P1-mediated singlet oxygen. The effect of 68Ga on cell survival was studied by clonogenic assays using human glioblastoma U-251 MG cells. Exposure of pre-treated cells with AGuIX@Tb-P1 to 68Ga resulted in the decrease in cell clone formation, unlike AGuIX@Gd-P1. We conclude that CR-PDT could be an alternative of X-PDT.
Collapse
|
8
|
Sun H, Cai H, Xu C, Zhai H, Lux F, Xie Y, Feng L, Du L, Liu Y, Sun X, Wang Q, Song H, He N, Zhang M, Ji K, Wang J, Gu Y, Leduc G, Doussineau T, Wang Y, Liu Q, Tillement O. AGuIX nanoparticles enhance ionizing radiation-induced ferroptosis on tumor cells by targeting the NRF2-GPX4 signaling pathway. J Nanobiotechnology 2022; 20:449. [PMID: 36242003 PMCID: PMC9569109 DOI: 10.1186/s12951-022-01654-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
In the frame of radiotherapy treatment of cancer, radioresistance remains a major issue that still needs solutions to be overcome. To effectively improve the radiosensitivity of tumors and reduce the damage of radiation to neighboring normal tissues, radiosensitizers have been given increasing attention in recent years. As nanoparticles based on the metal element gadolinium, AGuIX nanoparticles have been shown to increase the radiosensitivity of cancers. Although it is a rare nanomaterial that has entered preclinical trials, the unclear biological mechanism hinders its further clinical application. In this study, we demonstrated the effectiveness of AGuIX nanoparticles in the radiosensitization of triple-negative breast cancer. We found that AGuIX nanoparticles increased the level of DNA damage by compromising the homologous recombination repair pathway instead of the non-homologous end joining pathway. Moreover, the results showed that AGuIX nanoparticles induced apoptosis, but the degree of apoptosis ability was very low, which cannot fully explain their strong radiosensitizing effect. Ferroptosis, the other mode of cell death, was also discovered to play a significant role in radiation sensitization, and AGuIX nanoparticles may regulate the anti-ferroptosis system by inhibiting the NRF2-GSH-GPX4 signaling pathway.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hui Cai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hezheng Zhai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.,School of Precision Instruments and OPTO-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - François Lux
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100, Villeurbanne, France.,Institut Universitaire de France (IUF), 75231, Paris, France
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Li Feng
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Jinan, 250014, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaohui Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Géraldine Leduc
- NH TherAguix S.A.S, 29 chemin du Vieux Chêne, 38240, Meylan, France
| | | | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Olivier Tillement
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100, Villeurbanne, France
| |
Collapse
|
9
|
Highly stable, non-toxic and functionalized nanoemulsion for the early diagnosis and amelioration of cancer. Pharm Pat Anal 2022; 11:155-162. [PMID: 36200656 DOI: 10.4155/ppa-2021-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: To overcome the limitations associated with conventional formulations for cancer treatment by the effective utilization of nanoemulsion with therapy and diagnosis through the single unit. Patent: US20210275687 describes the usage of functionalized various oil-in-water nanoemulsions as pharmacological vehicles with theranostic potential in cancer treatment. Materials & methods: Vitamin E, oleic acid, sphingomyelin, ligands for functionalization, contrast agents and therapeutic biomolecules. Results: The toxicity studies conducted on healthy mice did not show any apparent toxicity issues. The stability studies conducted at 40 °C and 75% relative humidity, which is mandatory for regulatory approval, indicated the adequate physical stability of the formulation. Conclusion: The studies exhibited the promising theranostic potential of the developed nanoemulsion for the effective management and diagnosis of cancer and metastatic diseases.
Collapse
|
10
|
Song H, Sun H, He N, Xu C, Wang Y, Du L, Liu Y, Wang Q, Ji K, Wang J, Zhang M, Gu Y, Zhang Y, Feng L, Tillement O, Wang W, Liu Q. Gadolinium-based ultra-small nanoparticles augment radiotherapy-induced T-cell response to synergize with checkpoint blockade immunotherapy. NANOSCALE 2022; 14:11429-11442. [PMID: 35904053 DOI: 10.1039/d2nr02620a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Radiotherapy suffers from its high-dose radiation-induced systemic toxicity and radioresistance caused by the immunosuppressive tumor microenvironment. Immunotherapy using checkpoint blocking in solid tumors shows limited anticancer efficacy due to insufficient T-cell infiltration and inadequate systemic immune responses. Activation and guiding of irradiation by X-ray (AGuIX) nanoparticles with sizes below 5 nm have entered a phase III clinical trial as efficient radiosensitizers. This study aimed to develop a unique synergistic strategy based on AGuIX-mediated radiotherapy and immune checkpoint blockade to further improve the efficiency for B16 tumor therapy. AGuIX exacerbated radiation-induced DNA damage, cell cycle arrest, and apoptosis on B16 cells. More importantly, it could efficiently induce the immunogenic cell death of irradiated B16 tumor cells, and consequently trigger the maturation of dendritic cells and activation of systemic T-cell responses. Combining AGuIX-mediated radiotherapy with programmed cell death protein 1 blockade demonstrated excellent synergistic therapeutic effects in both bilateral and metastatic B16 tumor models, as indicated by a significant increase in the infiltration of effector CD8+ T cells and effective alleviation of the immunosuppressive tumor microenvironment. Our findings indicate that the synergy between radiosensitization and immunomodulation provides a new and powerful therapy regimen to achieve durable antitumor T-cell responses, which is promising for cancer treatment.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Li Feng
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | | | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
11
|
Rocchi P, Brichart-Vernos D, Lux F, Morfin I, David L, Rodriguez-Lafrasse C, Tillement O. A New Generation of Ultrasmall Nanoparticles Inducing Sensitization to Irradiation and Copper Depletion to Overcome Radioresistant and Invasive Cancers. Pharmaceutics 2022; 14:pharmaceutics14040814. [PMID: 35456648 PMCID: PMC9024746 DOI: 10.3390/pharmaceutics14040814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
An emerging target to overcome cancer resistance to treatments is copper, which is upregulated in a wide variety of tumors and may be associated with cancer progression and metastases. The aim of this study was to develop a multimodal ultrasmall nanoparticle, CuPRiX, based on the clinical AGuIX nanoparticle made of the polysiloxane matrix on which gadolinium chelates are grafted. Such hybrid nanoparticles allow: (i) a localized depletion of copper in tumors to prevent tumor cell dissemination and metastasis formation and (ii) an increased sensitivity of the tumor to radiotherapy (RT) due to the presence of high Z gadolinium (Gd) atoms. CuPRiX nanoparticles are obtained by controlled acidification of AGuIX nanoparticles. They were evaluated in vitro on two cancer cell lines (lung and head and neck) using the scratch-wound assay and clonogenic cell survival assay. They were able to reduce cell migration and invasion and displayed radiosensitizing properties.
Collapse
Affiliation(s)
- Paul Rocchi
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- NH TherAguix SA, 38240 Meylan, France
| | - Delphine Brichart-Vernos
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Univ. Lyon, Lyon 1 University, 69921 Oullins, France;
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- Institut Universitaire de France (IUF), 75000 Paris, France
- Correspondence: ; Tel.: +33-4-72-43-12-00
| | - Isabelle Morfin
- LiPhy, Université Grenoble Alpes, CNRS, UMR UMR5588, 38401 Grenoble, France;
| | - Laurent David
- Ingénierie des Matériaux Polymères, Université de Lyon, Université Claude Bernard Lyon 1, Université Jean Monet, Institut National des Sciences Appliquées de Lyon, CNRS, UMR 5223, 15, bd A. Latarjet, 69622 Villeurbanne, France;
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Univ. Lyon, Lyon 1 University, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils of Lyon, 69310 Pierre-Bénite, France
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
| |
Collapse
|
12
|
Chen J, Dong H, Bai L, Li L, Chen S, Tian X, Pan Y. Multifunctional high- Z nanoradiosensitizers for multimodal synergistic cancer therapy. J Mater Chem B 2022; 10:1328-1342. [PMID: 35018941 DOI: 10.1039/d1tb02524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy (RT) is one of the most common and effective clinical therapies for malignant tumors. However, there are several limitations that undermine the clinical efficacy of cancer RT, including the low X-ray attenuation coefficient of organs, serious damage to normal tissues, and radioresistance in hypoxic tumors. With the rapid development of nanotechnology and nanomedicine, high-Z nanoradiosensitizers provide novel opportunities to overcome radioresistance and improve the efficacy of RT by deposition of radiation energy through photoelectric effects. To date, several types of nanoradiosensitizers have entered clinical trials. Nevertheless, the limitation of the single treatment mode and the unclear mechanism of nanoparticle radiosensitization have hindered the further development of nanoradiosensitizers. In this review, we systematically describe the interaction mechanisms between X-rays and nanomaterials and summarize recent advances in multifunctional high-Z nanomaterials for radiotherapeutic-based multimodal synergistic cancer therapy. Finally, the challenges and prospects are discussed to stimulate the development of nanomedicine-based cancer RT.
Collapse
Affiliation(s)
- Jieyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Haiyue Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Linrong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Sijie Chen
- Ming Wai Lau Centre of Reparative Medicine Karolinska Institutet, Hong Kong
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
13
|
Rocchi P, Labied L, Doussineau T, Julien M, Giroud B, Vulliet E, Randon J, Tillement O, Hagège A, Lux F. Identification of Molecular Fragments in Equilibrium with Polysiloxane Ultrasmall Nanoparticles. NANOMATERIALS 2022; 12:nano12050738. [PMID: 35269226 PMCID: PMC8912117 DOI: 10.3390/nano12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
During recent decades, ultrasmall inorganic nanoparticles have attracted considerable interest due to their favorable biodistribution, pharmacokinetics and theranostic properties. In particular, AGuIX nanoparticles made of polysiloxane and gadolinium chelates were successfully translated to the clinics. In an aqueous medium, these nanoparticles are in dynamic equilibrium with polysiloxane fragments due to the hydrolysis of Si-O-Si bonds. Thanks to high-performance liquid chromatography coupled with electrospray ionization mass spectrometry, all these fragments were separated and identified.
Collapse
Affiliation(s)
- Paul Rocchi
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (L.L.); (O.T.)
- NH TherAguix S.A, 29 Chemin du Vieux Chêne, 38240 Meylan, France; (T.D.); (M.J.)
| | - Lucie Labied
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (L.L.); (O.T.)
- Institut des Sciences Analytiques, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, UMR 5280, 69100 Villeurbanne, France; (B.G.); (E.V.); (J.R.); (A.H.)
| | - Tristan Doussineau
- NH TherAguix S.A, 29 Chemin du Vieux Chêne, 38240 Meylan, France; (T.D.); (M.J.)
| | - Michel Julien
- NH TherAguix S.A, 29 Chemin du Vieux Chêne, 38240 Meylan, France; (T.D.); (M.J.)
| | - Barbara Giroud
- Institut des Sciences Analytiques, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, UMR 5280, 69100 Villeurbanne, France; (B.G.); (E.V.); (J.R.); (A.H.)
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, UMR 5280, 69100 Villeurbanne, France; (B.G.); (E.V.); (J.R.); (A.H.)
| | - Jérôme Randon
- Institut des Sciences Analytiques, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, UMR 5280, 69100 Villeurbanne, France; (B.G.); (E.V.); (J.R.); (A.H.)
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (L.L.); (O.T.)
| | - Agnès Hagège
- Institut des Sciences Analytiques, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, UMR 5280, 69100 Villeurbanne, France; (B.G.); (E.V.); (J.R.); (A.H.)
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (L.L.); (O.T.)
- Institut Universitaire de France (IUF), 75000 Paris, France
- Correspondence: ; Tel.: +33-(0)4-7243-1200
| |
Collapse
|
14
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Feasibility study and direct extraction of endogenous free metallic cations combining hemodialysis and chelating polymer. Sci Rep 2021; 11:19948. [PMID: 34620952 PMCID: PMC8497614 DOI: 10.1038/s41598-021-99462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
In this article, we report the conception and the use of dialysis-based medical device for the extraction of metals. The medical device is obtained by addition in the dialysate of a functionalized chitosan that can chelate endogenous metals like iron or copper. This water-soluble functionalized chitosan is obtained after controlled reacetylation and grafting of DOTAGA. Due to the high mass of chitosan, the polymer cannot cross through the membrane and the metals are trapped in the dialysate during hemodialysis. Copper extraction has been evaluated in vitro using an hemodialysis protocol. Feasibility study has been performed on healthy sheep showing no acute toxicity througout the entire dialysis procedure and first insights of metallic extraction even on healthy animals.
Collapse
|
16
|
Tran V, Lux F, Tournier N, Jego B, Maître X, Anisorac M, Comtat C, Jan S, Selmeczi K, Evans MJ, Tillement O, Kuhnast B, Truillet C. Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque. Adv Healthc Mater 2021; 10:e2100656. [PMID: 34212539 DOI: 10.1002/adhm.202100656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Indexed: 01/10/2023]
Abstract
AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89 Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89 Zr-AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole-body imaging is performed in non-human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
Collapse
Affiliation(s)
- Vu‐Long Tran
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - François Lux
- Institut Lumière Matière Université Claude Bernard Lyon I CNRS UMR 5306 Villeurbanne 69622 France
- Institut Universitaire de France (IUF) Paris France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Benoit Jego
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Xavier Maître
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | | | - Claude Comtat
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Sébastien Jan
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | | | - Michael J. Evans
- Department of Radiology and Biomedical Imaging University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
- Department of Pharmaceutical Chemistry University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
| | - Olivier Tillement
- Institut Lumière Matière Université Claude Bernard Lyon I CNRS UMR 5306 Villeurbanne 69622 France
| | - Bertrand Kuhnast
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| |
Collapse
|
17
|
Longo E, Sancey L, Cedola A, Barbier EL, Bravin A, Brun F, Bukreeva I, Fratini M, Massimi L, Greving I, Le Duc G, Tillement O, De La Rochefoucauld O, Zeitoun P. 3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography. Front Oncol 2021; 11:554668. [PMID: 34113554 PMCID: PMC8185349 DOI: 10.3389/fonc.2021.554668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.
Collapse
Affiliation(s)
- Elena Longo
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany.,Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| | - Lucie Sancey
- Institute for Advanced Biosciences U1209 UMR5309 UGA, Allée des Alpes-Site Santé, La Tronche, France
| | | | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Inna Bukreeva
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,P. N. Lebedev Physical Institute, RAS, Moscow, Russia
| | - Michela Fratini
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lorenzo Massimi
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany
| | | | - Olivier Tillement
- Institut lumière-matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, Villeurbanne, France
| | | | - Philippe Zeitoun
- Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| |
Collapse
|
18
|
Daouk J, Iltis M, Dhaini B, Béchet D, Arnoux P, Rocchi P, Delconte A, Habermeyer B, Lux F, Frochot C, Tillement O, Barberi-Heyob M, Schohn H. Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14050396. [PMID: 33922073 PMCID: PMC8143523 DOI: 10.3390/ph14050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AGuIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.
Collapse
Affiliation(s)
- Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Mathilde Iltis
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Batoul Dhaini
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Denise Béchet
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Paul Rocchi
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Alain Delconte
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | | | - François Lux
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Olivier Tillement
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
- Correspondence: ; Tel.: +33-(0)3-72-74-61-14
| | - Hervé Schohn
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| |
Collapse
|
19
|
Borisova T, Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Paliienko K, Grytsaenko V, Lux F, Lysenko V, Rocchi P, Komisarenko S, Tillement O. Unique features of brain metastases-targeted AGuIX nanoparticles vs their constituents: A focus on glutamate-/GABA-ergic neurotransmission in cortex nerve terminals. Food Chem Toxicol 2021; 149:112004. [PMID: 33482259 DOI: 10.1016/j.fct.2021.112004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
Gadolinium-based radiosensitizing AGuIX nanoparticles (AGuIX) currently tested two phase 2 clinical trials in association with radiotherapy for the treatment of brain metastases. Here, excitatory/inhibitory neurotransmission was assessed in rat cortex nerve terminals in the presence of AGuIX and their constituents (DOTAGA and DOTAGA/Gd3+) at concentrations used for medical treatment, and those 5-24 times higher. The ambient level, transporter-mediated, tonic and exocytotic release of L-[14C]glutamate and [3H]GABA, the membrane potential of nerve terminals were not changed in the presence of AGuIX at concentrations used for medical treatment ([Gd3+] = 0.25 mM, corresponding to 0.25 g.L-1), and DOTAGA (0.25 mM) and DOTAGA/Gd3+ (0.25 mM/0.01 mM). Difference between AGuIX and the precursors was uncovered, when their concentrations were increased. AGuIX (1.25-6 mM) did not change any transport characteristics of L-[14C]glutamate and [3H]GABA, whereas, DOTAGA (1.25-6 mM) affected the membrane potential, ambient level, and exocytotic release of L-[14C]glutamate and [3H]GABA. Gd3+ did not mask, but even enhanced above effects of DOTAGA. Therefore, AGuIX did not influence glutamate- and GABA-ergic neurotransmission at the presynaptic site. In contrast, DOTAGA and mixture DOTAGA/Gd3+ significantly affected synaptic neurotransmission at high concentrations. AGuIX own structure that overcomes neurotoxic features of their constituents.
Collapse
Affiliation(s)
- Tatiana Borisova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine.
| | - Natalia Pozdnyakova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Valeria Grytsaenko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Francois Lux
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Paul Rocchi
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Olivier Tillement
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| |
Collapse
|
20
|
Mochizuki C, Nakamura J, Nakamura M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021; 9:73. [PMID: 33451074 PMCID: PMC7828543 DOI: 10.3390/biomedicines9010073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have demonstrated several advantages for biomedical applications, including for the development of multifunctional agents as innovative medicine. Silica nanoparticles hold a special position among the various types of functional nanoparticles, due to their unique structural and functional properties. The recent development of silica nanoparticles has led to a new trend in light-based nanomedicines. The application of light provides many advantages for in vivo imaging and therapy of certain diseases, including cancer. Mesoporous and non-porous silica nanoparticles have high potential for light-based nanomedicine. Each silica nanoparticle has a unique structure, which incorporates various functions to utilize optical properties. Such advantages enable silica nanoparticles to perform powerful and advanced optical imaging, from the in vivo level to the nano and micro levels, using not only visible light but also near-infrared light. Furthermore, applications such as photodynamic therapy, in which a lesion site is specifically irradiated with light to treat it, have also been advancing. Silica nanoparticles have shown the potential to play important roles in the integration of light-based diagnostics and therapeutics, termed "photo-theranostics". Here, we review the recent development and progress of non-porous silica nanoparticles toward cancer "photo-theranostics".
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
21
|
Du Y, Sun H, Lux F, Xie Y, Du L, Xu C, Zhang H, He N, Wang J, Liu Y, Leduc G, Doussineau T, Ji K, Wang Q, Lin Z, Wang Y, Liu Q, Tillement O. Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56874-56885. [PMID: 33326207 DOI: 10.1021/acsami.0c16548] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Radiotherapy is the main treatment for cancer patients. A major concern in radiotherapy is the radiation resistance of some tumors, such as human nonsmall cell lung cancer. However, the radiation dose delivered to the tumors is often limited by the possibility of collateral damage to surrounding healthy tissues. A new and efficient gadolinium-based nanoparticle, AGuIX, has recently been developed for magnetic resonance imaging-guided radiotherapy and has been proven to act as an efficient radiosensitizer. The amplified radiation effects of AGuIX nanoparticles appear to be due to the emission of low-energy photoelectrons and Auger electron interactions. We demonstrated that AGuIX nanoparticles exacerbated radiation-induced DNA double-strand break damage and reduced DNA repair in the H1299 nonsmall cell lung cancer cell line. Furthermore, we observed a significant improvement in tumor cell damage and growth suppression, under radiation therapy, with the AGuIX nanoparticles in a H1299 mouse xenograft model. This study paves the way for research into the radiosensitization mechanism of AGuIX nanoparticles and provides a scientific basis for the use of AGuIX nanoparticles as radiosensitizing drugs.
Collapse
Affiliation(s)
- Yanan Du
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
- Tianjin Center for Disease Control and Prevention, 300011 Tianjin, China
| | - Hao Sun
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - François Lux
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100 Villeurbanne, France
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Liqing Du
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Ningning He
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | | | | | - Kaihua Ji
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Qin Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Zhenhua Lin
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| | - Yan Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Olivier Tillement
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100 Villeurbanne, France
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| |
Collapse
|
22
|
Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2020. [DOI: 10.2478/pjmpe-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Radiosensitization of the cancer cells by the heavy atoms of nanoparticles was the subject of some studies. But, the physical characterization to determine the weight of all interactions hasn’t been made numerically. The aim of this study was to calculate and compare the dose enhancement (DE) for different energies. The Monte Carlo simulation method was used in the current study. The influence of gold nanoparticles (GNP) size, beam quality, the GNP concentration, and dose inhomogeneity on the radiosensitization by DE was studied. A 35% increase in the photoelectric effect was observed while energy decreased from 18 MV to 300 kV. In the microscopic study which DE calculated in 30 µm from a single GNP, a 79% decreasing in DE within the first 1µm was seen and it declined to 2% in 30 µm from the GNP center. The effect was observed at small distances only. Our study revealed that the dose inhomogeneity around a nanoparticle is the main and very strong effect of DE on a macroscopic scale. In the location which 35% DE occurs most malignant cells survival will be effectively reduced. Our research indicates the need for further research.
Collapse
|
23
|
Mueller R, Moreau M, Yasmin-Karim S, Protti A, Tillement O, Berbeco R, Hesser J, Ngwa W. Imaging and Characterization of Sustained Gadolinium Nanoparticle Release from Next Generation Radiotherapy Biomaterial. NANOMATERIALS 2020; 10:nano10112249. [PMID: 33202903 PMCID: PMC7697013 DOI: 10.3390/nano10112249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
Smart radiotherapy biomaterials (SRBs) present a new opportunity to enhance image-guided radiotherapy while replacing routinely used inert radiotherapy biomaterials like fiducials. In this study the potential of SRBs loaded with gadolinium-based nanoparticles (GdNPs) is investigated for magnetic resonance imaging (MRI) contrast. GdNP release from SRB is quantified and modelled for accurate prediction. SRBs were manufactured similar to fiducials, with a cylindrical shell consisting of poly(lactic-co-glycolic) acid (PLGA) and a core loaded with GdNPs. Magnetic resonance imaging (MRI) contrast was investigated at 7T in vitro (in agar) and in vivo in subcutaneous tumors grown with the LLC1 lung cancer cell line in C57/BL6 mice. GdNPs were quantified in-phantom and in tumor and their release was modelled by the Weibull distribution. Gd concentration was linearly fitted to the R1 relaxation rate with a detection limit of 0.004 mmol/L and high confidence level (R2 = 0.9843). GdNP loaded SRBs in tumor were clearly visible up to at least 14 days post-implantation. Signal decrease during this time showed GdNP release in vivo, which was calculated as 3.86 ± 0.34 µg GdNPs release into the tumor. This study demonstrates potential and feasibility for SRBs with MRI-contrast, and sensitive GdNP quantification and release from SRBs in a preclinical animal model. The feasibility of monitoring nanoparticle (NP) concentration during treatment, allowing dynamic quantitative treatment planning, is also discussed.
Collapse
Affiliation(s)
- Romy Mueller
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Correspondence:
| | - Michele Moreau
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Protti
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02110, USA;
| | - Olivier Tillement
- Institut Lumière Matière, CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen Hesser
- Department Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany;
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Central Institute for Computer Engineering (ZITI), Heidelberg University, 68159 Mannheim, Germany
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.M.); (S.Y.-K.); (R.B.); (W.N.)
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
24
|
Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, Costes N, Mérida I, Léon C, Dia M, Paillard M, Confais J, Rossetti F, Langlois JB, Troalen T, Iecker T, Le Bars D, Lancelot S, Bouchier B, Lukasziewicz AC, Oudotte A, Nighoghossian N, Ovize M, Contamin H, Lux F, Tillement O, Canet-Soulas E. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun 2020; 2:fcaa193. [PMID: 33305265 PMCID: PMC7716090 DOI: 10.1093/braincomms/fcaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In an acute ischaemic stroke, understanding the dynamics of blood-brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood-brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood-brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood-brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K trans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10-3 min-1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10-3 min-1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K trans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10-3 min-1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, K trans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, K trans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K trans quantification with AGuIX® nanoparticles can monitor early blood-brain barrier damage and treatment effect in ischaemic stroke after reperfusion.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne 69621, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Marlène Wiart
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Ramonet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Lebanese University-Beirut, Lebanon
| | - Mélanie Paillard
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | - Fabien Rossetti
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | | | - Didier Le Bars
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | | | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - François Lux
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| |
Collapse
|
25
|
Gries M, Thomas N, Daouk J, Rocchi P, Choulier L, Jubréaux J, Pierson J, Reinhard A, Jouan-Hureaux V, Chateau A, Acherar S, Frochot C, Lux F, Tillement O, Barberi-Heyob M. Multiscale Selectivity and in vivo Biodistribution of NRP-1 -Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma. Int J Nanomedicine 2020; 15:8739-8758. [PMID: 33223826 PMCID: PMC7673487 DOI: 10.2147/ijn.s261352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). METHODS The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. RESULTS The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 μM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. CONCLUSION Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
Collapse
Affiliation(s)
- Mickaël Gries
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Noémie Thomas
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Joël Daouk
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Paul Rocchi
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
| | - Laurence Choulier
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
| | - Justine Jubréaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Julien Pierson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Aurélie Reinhard
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Valérie Jouan-Hureaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Alicia Chateau
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
| | - François Lux
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
- Institut Universitaire de France, Paris, France
| | | | - Muriel Barberi-Heyob
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| |
Collapse
|
26
|
Montigaud Y, Pourchez J, Leclerc L, Tillement O, Clotagatide A, Bal C, Pinaud N, Ichinose N, Zhang B, Perinel S, Lux F, Crémillieux Y, Prevot N. Nebulised Gadolinium-Based Nanoparticles for a Multimodal Approach: Quantitative and Qualitative Lung Distribution Using Magnetic Resonance and Scintigraphy Imaging in Isolated Ventilated Porcine Lungs. Int J Nanomedicine 2020; 15:7251-7262. [PMID: 33061379 PMCID: PMC7533906 DOI: 10.2147/ijn.s260640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose This study aims at determining lung distribution of gadolinium-based polysiloxane nanoparticles, AGuIX® (small rigid platform - SRP), as a potential theranostic approach by the pulmonary route. Methods First, the aerodynamic size distribution and the aerosol output rate were thoroughly characterized. Then, a multimodal approach using magnetic resonance (MR) and gamma-camera (GC) imaging allows to assess the deposition of the aerosolised nanoparticles in the respiratory tract using isolated ventilated porcine lungs. Results The SRP has proven to be radiolabelled by radioisotope with a good yield. Crude SRP or radiolabelled ones showed the same aerodynamic size distribution and output as a conventional molecular tracer, as sodium fluoride. With MR and GC imaging approaches, the nebulised dose represented about 50% of the initial dose of nanoparticles placed in the nebuliser. Results expressed as proportions of the deposited aerosol showed approximately a regional aerosol deposition of 50% of the deposited dose in the lungs and 50% in the upper airways. Each technique assessed a homogeneous pattern of deposited nanoparticles in Lungs. MR observed a strong signal enhancement with the SRP, similar to the one obtained with a commonly used MRI contrast agent, gadoterate meglumine. Conclusion As a known theranostic approach by intravenous administration, SRP appeared to be easily aerosolised with a conventional nebuliser. The present work proves that pulmonary administration of SRP is feasible in a human-like model and allows multimodal imaging with MR and GC imaging. This work presents the proof of concept of SRP nebulisation and aims to generate preclinical data for the potential clinical transfer of SRP for pulmonary delivery.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | | | - Anthony Clotagatide
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Bei Zhang
- Canon Medical Systems Europe, Zoetermeer, Netherlands
| | - Sophie Perinel
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | - François Lux
- Institut Lumière Matière, Université de Lyon, Villeurbanne, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Nathalie Prevot
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
27
|
Byrne HL, Le Duc G, Lux F, Tillement O, Holmes NM, James A, Jelen U, Dong B, Liney G, Roberts TL, Kuncic Z. Enhanced MRI-guided radiotherapy with gadolinium-based nanoparticles: preclinical evaluation with an MRI-linac. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00065-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The AGuIX® (NH TherAguix) nanoparticle has been developed to enhance radiotherapy treatment and provide strong MR contrast. These two properties have previously been investigated separately and progressed to clinical trial following a clinical workflow of separate MR imaging followed some time later by radiotherapy treatment. The recent development of MRI-linacs (combined Magnetic Resonance Imaging–linear accelerator systems enabling MRI-guided radiotherapy) opens up a new workflow where MR confirmation of nanoparticle uptake can be carried out at the time of treatment. A preclinical study was carried out to assess the suitability of a gadolinium-containing nanoparticle AGuIX® (NH TherAguix) for nano-enhanced image-guided radiotherapy on an MRI-linac.
Methods
Treatments were carried out on F344 Fischer rats bearing a 9L glioma brain tumour. Animals received either: (A) no treatment; (B) injection of nanoparticles followed by MRI; (C) radiotherapy with MRI; or (D) injection of nanoparticles followed by radiotherapy with MRI. Pre-clinical irradiations were carried out on the 1.0 T, 6 MV in-line Australian MRI-linac. Imaging used a custom head coil specially designed to minimise interference from the radiotherapy beam. Anaesthetised rats were not restrained during treatment but were monitored with a cine-MRI sequence. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis was used to quantify residual gadolinium in the brain in normal and tumour tissue.
Results
A preclinical evaluation of nano-enhanced radiation treatment has been carried out on a 1.0 T MRI-linac, establishing a workflow on these novel systems. Extension of life when combining radiotherapy with nanoparticles was not statistically different from that for rats receiving radiotherapy only. However, there was no detrimental effect for animals receiving nanoparticles and radiation treatment in the magnetic field compared with control branches. Cine-MR imaging was sufficient to carry out monitoring of anaesthetised animals during treatment. AGuIX nanoparticles demonstrated good positive contrast on the MRI-linac system allowing confirmation of tumour extent and nanoparticle uptake at the time of treatment.
Conclusions
Novel nano-enhanced radiotherapy with gadolinium-containing nanoparticles is ideally suited for implementation on an MRI-linac, allowing a workflow with time-of-treatment imaging. Live irradiations using this treatment workflow, carried out for the first time at the Australian MRI-linac, confirm the safety and feasibility of performing MRI-guided radiotherapy with AGuIX® nanoparticles. Follow-up studies are needed to demonstrate on an MRI-linac the radiation enhancement effects previously shown with conventional radiotherapy.
Collapse
|
28
|
Sancey L, Sabido O, He Z, Rossetti F, Guignandon A, Bin V, Coll JL, Cottier M, Lux F, Tillement O, Constant S, Mas C, Boudard D. Multiparametric investigation of non functionalized-AGuIX nanoparticles in 3D human airway epithelium models demonstrates preferential targeting of tumor cells. J Nanobiotechnology 2020; 18:129. [PMID: 32912214 PMCID: PMC7488087 DOI: 10.1186/s12951-020-00683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP’s distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs. ![]()
Collapse
Affiliation(s)
- Lucie Sancey
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
| | - Odile Sabido
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, France.,, BiiGC EA2521, Saint-Etienne, France
| | - Fabien Rossetti
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France
| | - Alain Guignandon
- Université de Lyon, Saint-Etienne, France.,SAINBIOSE, Inserm U1059, LBTO Team, Saint-Etienne, France
| | - Valérie Bin
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Michèle Cottier
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France.,CHU Saint Etienne, Hôpital Nord, UF6725 Cytologie et Histologie Rénale, St-Etienne, France
| | - François Lux
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France.,NH Theraguix, 38240, Meylan, France.,Institut Universitaire de France (IUF), Paris, France
| | - Olivier Tillement
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France.,NH Theraguix, 38240, Meylan, France
| | - Samuel Constant
- Epithelix SARL, Geneva, Switzerland.,OncoTheis SARL, Geneva, Switzerland
| | | | - Delphine Boudard
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France. .,Université de Lyon, Saint-Etienne, France. .,CHU Saint Etienne, Hôpital Nord, UF6725 Cytologie et Histologie Rénale, St-Etienne, France.
| |
Collapse
|
29
|
Shrestha R, Teesdale-Spittle PH, Lewis AR, Rendle PM. Gadolinium Complexes Attached to Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrons: Magnetic Resonance Imaging Contrast Agents with Increased Relaxivity. Chempluschem 2020; 85:1881-1892. [PMID: 32845091 DOI: 10.1002/cplu.202000409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/01/2020] [Indexed: 12/16/2022]
Abstract
A range of poly ethoxy ethyl glycinamide (PEE-G) dendron scaffolds with gadolinium (III) complexes attached were synthesized with a focus on product purity and high Gd(III) loading. The nuclear magnetic resonance relaxivity of these products was measured and compared with commercially available low-molecular-weight magnetic resonance imaging contrast agents. Over twice the relaxivity based on Gd(III) concentration, and up to 20-fold increase in relaxivity were observed based on molecular concentration. Relaxivity properties were observed to increase with both increasing molecular weight and number of Gd(III) complexes attached, however a plateau was reached for molecular weight increase. T1 and T2 relaxivity properties were also investigated at two different magnetic fields. Transverse relaxivity is unaffected by magnetic field strength whereas increase in longitudinal relaxivity was not as pronounced at the higher field.
Collapse
Affiliation(s)
- Rinu Shrestha
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| | | | - Andrew R Lewis
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand.,Callaghan Innovation, PO Box 31 310, Lower Hutt, 5010, New Zealand
| | - Phillip M Rendle
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| |
Collapse
|
30
|
Salado-Leza D, Porcel E, Yang X, Štefančíková L, Bolsa-Ferruz M, Savina F, Dragoe D, Guerquin-Kern JL, Wu TD, Hirayama R, Remita H, Lacombe S. Green One-Step Synthesis of Medical Nanoagents for Advanced Radiation Therapy. Nanotechnol Sci Appl 2020; 13:61-76. [PMID: 32848371 PMCID: PMC7426062 DOI: 10.2147/nsa.s257392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations. MATERIALS AND METHODS This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement. RESULTS AND DISCUSSION Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations. CONCLUSION This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
- Cátedra CONACyT, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, 78210 San Luis Potosí, Mexico
| | - Erika Porcel
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Xiaomin Yang
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Lenka Štefančíková
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Marta Bolsa-Ferruz
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Farah Savina
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Diana Dragoe
- Université Paris Saclay, CNRS UMR 8182, Institut de Chimie Moléculaire et des Matériaux d’Orsay, 91405 Orsay, France
| | - Jean-Luc Guerquin-Kern
- Paris-Saclay University, Multimodal Imaging Center (UMS 2016/US 43) CNRS, INSERM, Institut Curie, 91405 Orsay, France
| | - Ting-Di Wu
- Paris-Saclay University, Multimodal Imaging Center (UMS 2016/US 43) CNRS, INSERM, Institut Curie, 91405 Orsay, France
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan
| | - Hynd Remita
- Université Paris Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sandrine Lacombe
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| |
Collapse
|
31
|
Human Serum Albumin in the Presence of AGuIX Nanoagents: Structure Stabilisation without Direct Interaction. Int J Mol Sci 2020; 21:ijms21134673. [PMID: 32630060 PMCID: PMC7369717 DOI: 10.3390/ijms21134673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
The gadolinium-based nanoagent named AGuIX® is a unique radiosensitizer and contrast agent which improves the performance of radiotherapy and medical imaging. Currently tested in clinical trials, AGuIX® is administrated to patients via intravenous injection. The presence of nanoparticles in the blood stream may induce harmful effects due to undesired interactions with blood components. Thus, there is an emerging need to understand the impact of these nanoagents when meeting blood proteins. In this work, the influence of nanoagents on the structure and stability of the most abundant blood protein, human serum albumin, is presented. Synchrotron radiation circular dichroism showed that AGuIX® does not bind to the protein, even at the high ratio of 45 nanoparticles per protein at 3 mg/L. However, it increases the stability of the albumin. Isothermal thermodynamic calorimetry and fluorescence emission spectroscopy demonstrated that the effect is due to preferential hydration processes. Thus, this study confirms that intravenous injection of AGuIX® presents limited risks of perturbing the blood stream. In a wider view, the methodology developed in this work may be applied to rapidly evaluate the impact and risk of other nano-products that could come into contact with the bloodstream.
Collapse
|
32
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
33
|
Ahmad R, Schettino G, Royle G, Barry M, Pankhurst QA, Tillement O, Russell B, Ricketts K. Radiobiological Implications of Nanoparticles Following Radiation Treatment. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2020; 37:1900411. [PMID: 34526737 PMCID: PMC8427468 DOI: 10.1002/ppsc.201900411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/11/2020] [Indexed: 06/13/2023]
Abstract
Materials with a high atomic number (Z) are shown to cause an increase in the level of cell kill by ionizing radiation when introduced into tumor cells. This study uses in vitro experiments to investigate the differences in radiosensitization between two cell lines (MCF-7 and U87) and three commercially available nanoparticles (gold, gadolinium, and iron oxide) irradiated by 6 MV X-rays. To assess cell survival, clonogenic assays are carried out for all variables considered, with a concentration of 0.5 mg mL-1 for each nanoparticle material used. This study demonstrates differences in cell survival between nanoparticles and cell line. U87 shows the greatest enhancement with gadolinium nanoparticles (2.02 ± 0.36), whereas MCF-7 cells have higher enhancement with gold nanoparticles (1.74 ± 0.08). Mass spectrometry, however, shows highest elemental uptake with iron oxide and U87 cells with 4.95 ± 0.82 pg of iron oxide per cell. A complex relationship between cellular elemental uptake is demonstrated, highlighting an inverse correlation with the enhancement, but a positive relation with DNA damage when comparing the same nanoparticle between the two cell lines.
Collapse
Affiliation(s)
- Reem Ahmad
- Division of Surgery and Interventional ScienceUniversity College LondonCharles Bell House, 43–45 Foley StreetLondonW1W 7JNUK
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
- Department of Medical Physics and BioengineeringUniversity College LondonMalet Place Engineering Building, Gower StreetLondonWC1E 6BTUK
| | - Giuseppe Schettino
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
- Radiation and Medical Physics GroupFaculty of Engineering and Physical SciencesUniversity of Surrey388 Stag HillGuilfordGU2 7XHUK
| | - Gary Royle
- Department of Medical Physics and BioengineeringUniversity College LondonMalet Place Engineering Building, Gower StreetLondonWC1E 6BTUK
| | - Miriam Barry
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Olivier Tillement
- Institut Lumière MatièreUniversité Claude Bernard Lyon 1CNRS UMR 5306Villeurbanne69622France
| | - Ben Russell
- Nuclear Metrology GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
| | - Kate Ricketts
- Division of Surgery and Interventional ScienceUniversity College LondonCharles Bell House, 43–45 Foley StreetLondonW1W 7JNUK
| |
Collapse
|
34
|
Fétiveau L, Paul G, Nicolas-Boluda A, Volatron J, George R, Laurent S, Muller R, Sancey L, Mejanelle P, Gloter A, Gazeau F, Catala L. Tailored ultra-small Prussian blue-based nanoparticles for MRI imaging and combined photothermal/photoacoustic theranostics. Chem Commun (Camb) 2020; 55:14844-14847. [PMID: 31768507 DOI: 10.1039/c9cc07116d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultrasmall sub-10 nm nanoparticles of Prussian blue analogues incorporating GdIII ions at their periphery revealed longitudinal relaxivities above 40 mM-1 s-1 per GdIII regardless of the nature of the core and the polymer coating. Large T1-weighted contrast enhancements were achieved in addition to a highly efficient photothermal effect and in vivo photoacoustic imaging in tumors.
Collapse
Affiliation(s)
- Lucile Fétiveau
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris Sud Paris Saclay, 91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles. Am J Cancer Res 2020; 10:1319-1331. [PMID: 31938067 PMCID: PMC6956799 DOI: 10.7150/thno.37543] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Interest of tumor targeting through EPR effect is still controversial due to intrinsic low targeting efficacy and rare translation to human cancers. Moreover, due to different reasons, it has generally been described for relatively large nanoparticles (NPs) (hydrodynamic diameter > 10 nm). In this review EPR effect will be discussed for ultrasmall NPs using the example of the AGuIX® NP (Activation and Guiding of Irradiation by X-ray) recently translated in clinic. AGuIX® NP is a 4 ± 2 nm hydrodynamic diameter polysiloxane based NP. Since AGuIX® NP biodistribution is monitored by magnetic resonance imaging (MRI) and its activation is triggered by irradiation upon X-rays, this NP is well adapted for a theranostic approach of radiotherapy cancer treatment. Here we show that AGuIX® NP is particularly well suited to benefit from EPR-mediated tumor targeting thanks to an ultrasmall size and efficacy under irradiation at small dose. Indeed, intravenously-injected AGuIX® NP into rodent cancer models passively reached the tumor and revealed no toxicity, favoured by renal clearance. Moreover, translation of AGuIX® NP accumulation and retention into humans carrying brain metastases was validated during a first-in-man phase Ib trial taking advantage of easy biodistribution monitoring by MRI.
Collapse
|
36
|
Hu P, Fu Z, Liu G, Tan H, Xiao J, Shi H, Cheng D. Gadolinium-Based Nanoparticles for Theranostic MRI-Guided Radiosensitization in Hepatocellular Carcinoma. Front Bioeng Biotechnol 2019; 7:368. [PMID: 31828068 PMCID: PMC6890599 DOI: 10.3389/fbioe.2019.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Radiation therapy (RT) of hepatocellular carcinoma (HCC) is limited by low tolerance of the liver to radiation, whereas radiosensitizers are effective in reducing the required radiation dose. Multimodality gadolinium-based nanoparticles (AGuIX) are small and have enhanced permeability and retention effects; thus, they are very suitable for radiation sensitizer HCC RT. Here, we evaluated the potential value of AGuIX for theranostic MRI-radiosensitization in HCC. Methods: The radiosensitization effects of AGuIX were evaluated via in vitro and in vivo experiments. Tumor growth, apoptosis imaging, and immunohistochemistry were performed to verify the antitumor effects of RT with AGuIX. Results:In vitro evaluation of the efficacy of radiosensitivity of the AGuIX demonstrated that the presence of AGuIX significantly decreased HepG2 cell survival when combined with an X-ray beam. In vivo MRI imaging showed the ratio of tumor/liver concentration of the AGuIX was the highest 1 h after intravenous injection. For antitumor effects, we found that the tumor size decreased by RT-only and RT with AGuIX. The antitumor effects were more effective with high-dose AGuIX-mediated RT. Apoptosis imaging and immunohistochemistry both demonstrated that the degree of the cell apoptosis was highest with a high dose of AGuIX-mediated RT. Conclusions: This study provides compelling data that AGuIX can facilitate theranostic MRI-radiosensitization in HCC.
Collapse
Affiliation(s)
- Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
37
|
Kunjachan S, Kotb S, Pola R, Pechar M, Kumar R, Singh B, Gremse F, Taleeli R, Trichard F, Motto-Ros V, Sancey L, Detappe A, Yasmin-Karim S, Protti A, Shanmugam I, Ireland T, Etrych T, Sridhar S, Tillement O, Makrigiorgos M, Berbeco RI. Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery. Sci Rep 2019; 9:15844. [PMID: 31676822 PMCID: PMC6825216 DOI: 10.1038/s41598-019-50538-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Effective drug delivery is restricted by pathophysiological barriers in solid tumors. In human pancreatic adenocarcinoma, poorly-permeable blood vessels limit the intratumoral permeation and penetration of chemo or nanotherapeutic drugs. New and clinically viable strategies are urgently sought to breach the neoplastic barriers that prevent effective drug delivery. Here, we present an original idea to boost drug delivery by selectively knocking down the tumor vascular barrier in a human pancreatic cancer model. Clinical radiation activates the tumor endothelial-targeted gold nanoparticles to induce a physical vascular damage due to the high photoelectric interactions. Active modulation of these tumor neovessels lead to distinct changes in tumor vascular permeability. Noninvasive MRI and fluorescence studies, using a short-circulating nanocarrier with MR-sensitive gadolinium and a long-circulating nanocarrier with fluorescence-sensitive nearinfrared dye, demonstrate more than two-fold increase in nanodrug delivery, post tumor vascular modulation. Functional changes in altered tumor blood vessels and its downstream parameters, particularly, changes in Ktrans (permeability), Kep (flux rate), and Ve (extracellular interstitial volume), reflect changes that relate to augmented drug delivery. The proposed dual-targeted therapy effectively invades the tumor vascular barrier and improve nanodrug delivery in a human pancreatic tumor model and it may also be applied to other nonresectable, intransigent tumors that barely respond to standard drug therapies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.
| | - Shady Kotb
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Bijay Singh
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Felix Gremse
- Experimental Molecular Imaging, University Hospital and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Reza Taleeli
- Division of Medical Physics & Engineering, University of Texas Southwestern Medical Center, Texas, United States
| | - Florian Trichard
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS UMR 5309 Joint Research Center, Grenoble, France
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Andrea Protti
- Lurie Family Imaging Center, Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ilanchezhian Shanmugam
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Department of Earth and Environmental Sciences, Boston University, Boston, MA, United States
| | - Tomas Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, MA, United States
| | - Olivier Tillement
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ross I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Dufort S, Appelboom G, Verry C, Barbier EL, Lux F, Bräuer-Krisch E, Sancey L, Chang SD, Zhang M, Roux S, Tillement O, Le Duc G. Ultrasmall theranostic gadolinium-based nanoparticles improve high-grade rat glioma survival. J Clin Neurosci 2019; 67:215-219. [DOI: 10.1016/j.jocn.2019.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/28/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
|
39
|
Abstract
Radiation therapy has made tremendous progress in oncology over the last decades due to advances in engineering and physical sciences in combination with better biochemical, genetic and molecular understanding of this disease. Local delivery of optimal radiation dose to a tumor, while sparing healthy surrounding tissues, remains a great challenge, especially in the proximity of vital organs. Therefore, imaging plays a key role in tumor staging, accurate target volume delineation, assessment of individual radiation resistance and even personalized dose prescription. From this point of view, radiotherapy might be one of the few therapeutic modalities that relies entirely on high-resolution imaging. Magnetic resonance imaging (MRI) with its superior soft-tissue resolution is already used in radiotherapy treatment planning complementing conventional computed tomography (CT). Development of systems integrating MRI and linear accelerators opens possibilities for simultaneous imaging and therapy, which in turn, generates the need for imaging probes with therapeutic components. In this review, we discuss the role of MRI in both external and internal radiotherapy focusing on the most important examples of contrast agents with combined therapeutic potential.
Collapse
|
40
|
Europium labeled lactosylated albumin as a model workflow for the development of biotherapeutics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:21-30. [PMID: 30844577 DOI: 10.1016/j.nano.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 11/22/2022]
Abstract
Lactosylated albumin is currently used as a radiopharmaceutical agent to image the liver asialoglycoprotein receptors and quantify hepatic liver function in various diseases. A lactosylated protein (LACTAL) conjugate showed excellent liver uptake compared to non-lactosylated protein and a high signal to noise ratio, based on the biodistribution in mice using 99mTc-scintigraphy. However, in the laboratory, it is useful to have a method that can be used in daily practice to quantify cellular targeting or biodistribution. We propose a methodology from synthesis validation to pre-clinical demonstration and introduce a new practical detector (LACTAL.Eu) of the LACTAL molecule in biological media. We confirmed the purity and colloidal stability of the sample through physical analytical techniques, then showed the absence of in vitro toxicity of the agent and demonstrated in vitro targeting. Taking advantage of the fluorescence decay of the lanthanide, we performed measurements directly on the cell media without any further treatment. Finally, biodistribution in mice was confirmed by ex vivo measurements.
Collapse
|
41
|
Bagheri A, Masoudinia M. Catalytic Properties of Gadolinium Oxide in the Removal of Doxycycline with Anticancer Activity. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618060343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018; 8:6210-6232. [PMID: 30613293 PMCID: PMC6299694 DOI: 10.7150/thno.26610] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET)-magnetic resonance (MR) or single photon emission computed tomography (SPECT)-MR hybrid imaging is being used in daily clinical practice. Due to its advantages over stand-alone PET, SPECT or MR imaging, in many areas such as oncology, the demand for hybrid imaging techniques is increasing dramatically. The use of multimodal imaging probes or biomarkers in a single molecule or particle to characterize the imaging subjects such as disease tissues certainly provides us with more accurate diagnosis and promotes therapeutic accuracy. A limited number of multimodal imaging probes are being used in preclinical and potential clinical investigations. The further development of multimodal PET-MR and SPECT-MR imaging probes includes several key elements: novel synthetic strategies, high sensitivity for accurate quantification and high anatomic resolution, favourable pharmacokinetic profile and target-specific binding of a new probe. This review thoroughly summarizes all recently available and noteworthy PET-MR and SPECT-MR multimodal imaging probes including small molecule bimodal probes, nano-sized bimodal probes, small molecular trimodal probes and nano-sized trimodal probes. To the best of our knowledge, this is the first comprehensive overview of all PET-MR and SPECT-MR multimodal probes. Since the development of multimodal PET-MR and SPECT-MR imaging probes is an emerging research field, a selection of 139 papers were recognized following the literature review. The challenges for designing multimodal probes have also been addressed in order to offer some future research directions for this novel interdisciplinary research field.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
| | - Krishna K. Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
| | - Oliver Langer
- Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, A-1090, Vienna, Austria
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jiang Liu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology and Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P.R. China, 315201
| | - David Ng Chee Eng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921
- Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| |
Collapse
|
43
|
Functionalization of Gadolinium Chelates Silica Nanoparticle through Silane Chemistry for Simultaneous MRI/ 64Cu PET Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7938267. [PMID: 30515070 PMCID: PMC6236700 DOI: 10.1155/2018/7938267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
Abstract
Multimodal nanoprobes are highly demanded for biomedical imaging applications to enhance the reliability of the diagnostic results. Among different types of nano-objects, ultrasmall silica gadolinium nanoparticle (SiGdNP) appears as a safe, effective, and versatile platform for this purpose. In this study, a new method to functionalize SiGdNP based on silane chemistry has been reported. Two types of chelating silanes (APTES-DOTAGA and APTES-NODAGA) have been synthesized and grafted on SiGdNP by a simple one-step protocol. This functionalization strategy requires no other reactants or catalyzers and does not compromise the ultrasmall size of the particles. NODAGA-functionalized particle has been labeled with 64Cu isotope and injected intravenously to mice bearing TS/A carcinoma tumor for biodistribution study to demonstrate its potential as a bimodal MRI/PET imaging agent. A fully integrated MRI/PET system was used to simultaneously monitor the distribution of the particle. The results showed that the functionalized particle maintained properties of a renal clearable NP which could rapidly escape through kidneys and had low retention in other organs, especially liver, even though its accumulation in the tumor was modest.
Collapse
|
44
|
Lux F, Tran VL, Thomas E, Dufort S, Rossetti F, Martini M, Truillet C, Doussineau T, Bort G, Denat F, Boschetti F, Angelovski G, Detappe A, Crémillieux Y, Mignet N, Doan BT, Larrat B, Meriaux S, Barbier E, Roux S, Fries P, Müller A, Abadjian MC, Anderson C, Canet-Soulas E, Bouziotis P, Barberi-Heyob M, Frochot C, Verry C, Balosso J, Evans M, Sidi-Boumedine J, Janier M, Butterworth K, McMahon S, Prise K, Aloy MT, Ardail D, Rodriguez-Lafrasse C, Porcel E, Lacombe S, Berbeco R, Allouch A, Perfettini JL, Chargari C, Deutsch E, Le Duc G, Tillement O. AGuIX ® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol 2018; 92:20180365. [PMID: 30226413 PMCID: PMC6435081 DOI: 10.1259/bjr.20180365] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.
Collapse
Affiliation(s)
- François Lux
- NH TherAguix SAS, Villeurbanne, France.,Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Vu Long Tran
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France.,Nano-H SAS, Saint-Quentin-Fallavier, France
| | - Eloïse Thomas
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | | | - Fabien Rossetti
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Matteo Martini
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Charles Truillet
- Imagerie Moléculaire In Vivo, Inserm, CEA, CNRS, Univ Paris Sud, Université Paris Saclay - Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Guillaume Bort
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Franck Denat
- Institut de Chimie Moléculaire, Université de Bourgogne, Dijon, France
| | | | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexandre Detappe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Yannick Crémillieux
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR, Université Bordeaux, Bordeaux, France
| | - Nathalie Mignet
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,CNRS, UTCBS UMR , Paris, France.,Université Paris Descartes Sorbonne-Paris-Cité, Paris, France.,INSERM, UTCBS U 1022, Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,CNRS, UTCBS UMR , Paris, France.,Université Paris Descartes Sorbonne-Paris-Cité, Paris, France.,INSERM, UTCBS U 1022, Paris, France
| | - Benoit Larrat
- NeuroSpin, CEA Saclay, Gif-sur-Yvette, France.,Université Paris-Saclay, Orsay, France
| | - Sébastien Meriaux
- NeuroSpin, CEA Saclay, Gif-sur-Yvette, France.,Université Paris-Saclay, Orsay, France
| | - Emmanuel Barbier
- INSERM, Univ. Grenoble Alpes, Grenoble Institut des Neurosciences , Grenoble, France
| | - Stéphane Roux
- Institut UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, Besançon, France
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Marie-Caline Abadjian
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carolyn Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory Institut National de la Santé et de la Recherche Médicale U1060,INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center forScientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | | | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, UMR, Université de Lorraine-CNRS, Nancy, France
| | - Camille Verry
- Radiotherapy department, CHU de Grenoble, Grenoble cedex 9, France
| | - Jacques Balosso
- Radiotherapy department, CHU de Grenoble, Grenoble cedex 9, France
| | - Michael Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, USA
| | | | - Marc Janier
- UNIV Lyon - Université Claude Bernard Lyon 1, Villeurbanne, France.,Hospices Civils de Lyon, plateforme Imthernat, Hôpital Edouard Herriot, Lyon, France
| | - Karl Butterworth
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Stephen McMahon
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Kevin Prise
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Marie-Thérèse Aloy
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Dominique Ardail
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Claire Rodriguez-Lafrasse
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Erika Porcel
- ISMO UMR, Université Paris Saclay, Université Paris Sud, CNRS, Orsay cedex, France
| | - Sandrine Lacombe
- ISMO UMR, Université Paris Saclay, Université Paris Sud, CNRS, Orsay cedex, France
| | - Ross Berbeco
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Awatef Allouch
- Cell death and Aging team, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Laboratory of Molecular Radiotherapy INSERM, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Université Paris Sud - Paris , rue Edouard Vaillant, Villejuif, France
| | - Jean-Luc Perfettini
- Cell death and Aging team, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Laboratory of Molecular Radiotherapy INSERM, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Université Paris Sud - Paris , rue Edouard Vaillant, Villejuif, France
| | - Cyrus Chargari
- French Military Health Academy, Ecole du Val-de-Grâce, Paris, France.,Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France.,Radiotherapy Department, Gustave Roussy, Villejuif, France.,Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Radiotherapy Department, Gustave Roussy, Villejuif, France.,Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Olivier Tillement
- NH TherAguix SAS, Villeurbanne, France.,Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| |
Collapse
|
45
|
Lemercier G, Four M, Chevreux S. Two-photon absorption properties of 1,10-phenanthroline-based Ru(II) complexes and related functionalized nanoparticles for potential application in two-photon excitation photodynamic therapy and optical power limiting. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
46
|
Polysiloxanes in Theranostics and Drug Delivery: A Review. Polymers (Basel) 2018; 10:polym10070755. [PMID: 30960680 PMCID: PMC6403785 DOI: 10.3390/polym10070755] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023] Open
Abstract
One of the historical problems of medicine is that often, diagnosis and therapy do not interface, at best. Moreover, especially in some areas, such as oncology, the stress for the organism during the two phases (diagnosis and therapy) can become excessive, and be fatal to the success of the treatment. The extraordinary progress of nanotechnology in the last 25 years has offered the opportunity to build a nanoplatform able to ferry drugs, and loads onto them both imaging and therapeutic functions, thus creating nanosystems capable of diagnosis, drug delivery, and monitoring of therapeutic response. The purpose of this unusual, and up to recent times, unimaginable, marriage between diagnosis and therapeutics is the reaching of protocols more specific to individuals. The dual use of particles/device lead to a personalized medicine. Due to their biocompatibility, versatility, physical and chemical resistance, and ability to be functionalized, silica nanoparticles and polysiloxanes are the heart and the shield of this nanoplatform, respectively. In this short review, I analyze the applications of these silicon-based materials in the field of controlled drug delivery.
Collapse
|
47
|
Abstract
The introduction of image guidance in radiation therapy and its subsequent innovations have revolutionised the delivery of cancer treatment. Modern imaging systems can supplement and often replace the historical practice of relying on external landmarks and laser alignment systems. Rather than depending on markings on the patient's skin, image-guided radiation therapy (IGRT), using techniques such as computed tomography (CT), cone beam CT, MV on-board imaging (OBI), and kV OBI, allows the patient to be positioned based on the internal anatomy. These advances in technology have enabled more accurate delivery of radiation doses to anatomically complex and temporally changing tumour volumes, while simultaneously sparing surrounding healthy tissues. While these imaging modalities provide excellent bony anatomy image quality, magnetic resonance imaging (MRI) surpasses them in soft tissue image contrast for better visualisation and tracking of soft tissue tumours with no additional radiation dose to the patient. However, the introduction of MRI into a radiotherapy facility has a number of complications, including the influence of the magnetic field on the dose deposition, as well as the effects it can have on dosimetry systems. The development and introduction of these new IGRT techniques will be reviewed, and the benefits and disadvantages of each will be described.
Collapse
Affiliation(s)
- G S Ibbott
- Department of Radiation Physics, UT MD Anderson Cancer Center, 1400 Pressler St., Unit 1420, Houston, TX 77030, USA
| |
Collapse
|
48
|
Ly J, Li Y, Vu MN, Moffat BA, Jack KS, Quinn JF, Whittaker MR, Davis TP. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W 5O 18) 2] 9- form stable, high relaxivity MRI contrast agents. NANOSCALE 2018; 10:7270-7280. [PMID: 29632934 DOI: 10.1039/c8nr01544a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.
Collapse
Affiliation(s)
- Joanne Ly
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
50
|
Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol 2018; 63:02TR01. [PMID: 29125831 DOI: 10.1088/1361-6560/aa99ce] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.
Collapse
Affiliation(s)
- Zdenka Kuncic
- School of Physics and Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|